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Leon M. Keer Appointed New Technical Editor

of the Journal of Applied Mechanics

Professor L. M. Keer has been appointed Technical Editor
of the Journal of Applied Mechanics for a five-year term
beginning January 1, 1988. Professor Keer succeeds Professor
L. B. Freund, who completes his five-year term of service on
December 31.

Ben Freund is a tough act to follow. His performance in
running Journal operations, finding top candidates as
Associate Editors, and interfacing with ASME's Publications
Committee has been outstanding. Ben faced the same
challenge five years ago when he succeeded C. S. Hsu, who
served as Technical Editor during 1976-1982. The results of
such leadership are evident in the current health and vitality of
the Journa!.

Leon's appointment is the culmination of a year-long search
process. In accordance with the rules of the Applied
Mechanics Division, the AMD Executive Committee estab­
lished in the summer of 1986 a Search Committee to recom­
mend candidates. The members were Jan Achenbach (Chair­
man), Richard Benson, Ben Freund, C.S. Hsu, Sid Leibovich,
and Jim Rice. The committee forwarded its recommendations
to the Executive Committee in June, and Leon was nominated
and subsequently approved by the ASME Board on Com­
munications. I should mention that the appointment requires
a commitment from the Technical Editor's home institution;
Northwestern University's willingness to provide the necessary
office space is much appreciated. I should also mention that,
having served on the previous search committee in 1981-1982,
I can attest to the time-consuming nature of this work; we in
the AMD are indebted to the search committee members for
their fine service.

Leon M. Keer is Professor of Civil Engineering and
Mechanical and Nuclear Engineering, as well as Associate
Dean for Research and Graduate Study at Northwestern
University. He holds B.S. and M.S. degrees from the Califor­
nia Institute of Technology and a Ph.D. from the University

Leon M. Keer

of Minnesota; also, he is a Registered Professional Engineer in
the State of California. Leon has made important research
contributions in the areas of stress analysis, fracture
mechanics, geotechnology, mechanical contact, and tribology.
He is a Fellow of the ASME and the American Academy of
Mechanics.

With this appointment, Leon joins a distinguished group of
key figures in Applied Mechanics. The Journal of Applied
Mechanics is a central activity of the AMD, and enjoys a
prominent position in the mechanics literature. We are
grateful to Ben Freund for his leadership in maintaining that
position and extend to Leon our warm support as he begins his
appointment as Technical Editor.

Thomas L. Geers
for the
AMD Executive Committee

Journal of Applied Mechanics Correspondence

Effective January 1, 1988, all JAM correspondence,
including submission of manuscripts, should be directed
to:

Professor L. M. Keer
The Technological Institute

Northwestern University
Evanston, Illinois 60208
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J. D. Achenbach 
Fellow ASME. 

D. A. Sotiropoulos 

H.Zhu 

Department of Civil Engineering, 
Northwestern University, 

Evanston, IL 60201 

Characterization of Cracks From 
Ultrasonic Scattering Data 
An inverse method for ultrasonic scattering data is proposed, to characterize a 
planar crack of general shape contained in an elastic solid. The method is based on 
an integral representation for the scattered field in the frequency domain. For a 
given scattered field the inverse problem has been formulated as a nonlinear op­
timization problem. At low frequencies its solution gives the location of the crack, 
the orientation of the crack-plane, and the crack-opening volumes. In addition the 
Mode I stress-intensity factor is obtained for a related static stress state correspon­
ding to service loads. 

Introduction 

A crack in the interior of a solid body can often be detected 
nondestructively by observation of its effect on an externally 
applied ultrasonic field. The influence of a crack on the 
overall strength of a component generally depends, however, 
on its location, size, shape, and orientation. Hence, a useful 
nondestructive test should go beyond crack detection to crack 
characterization, with the ultimate aim of an efficient assess­
ment of the crack's influence on the integrity of the body 
under service loads. 

In this paper we propose an inverse method for ultrasonic 
crack-scattering data to characterize a crack of general shape 
in a homogeneous isotropic linearly elastic solid. The method 
is based on the well-known integral representation for the scat­
tered field. Even though this representation is simplified for 
the far field and for large wavelengths as compared to a cross-
sectional dimension of the crack, it retains validity for points 
closer to the crack than similar formulas presented in previous 
studies. For a given scattered field the inverse problem is 
subsequently formulated as a nonlinear optimization problem. 
Its solution gives the location of the crack, the crack's orienta­
tion, and the components of the crack-opening volume tensor 
induced by the probing ultrasonic field. In addition, for a 
related problem of quasi-static loading, the Mode I stress in­
tensity factor and the strain energy induced by the presence of 
the crack have been computed directly from the results of the 
inverse problem. 

In recent years numerous results have become available for 
fields generated by scattering of ultrasonic waves by cracks. 
Solutions for two-dimensional configurations in unbounded 
bodies have been discussed by Achenbach et al. (1982), who 
also listed earlier references, e.g., Mai (1970). The three-
dimensional case of scattering of a plane wave by a penny-

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OP APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, December 10, 1986; final revision June 24, 1987. 

shaped crack has been investigated by Krenk and Schmidt 
(1982) and Martin (1982). The more difficult configurations of 
a surface-breaking and a subsurface crack has been considered 
by Mendelsohn et al. (1980) and Achenbach and Brind (1981), 
for the in-plane problem. Three-dimensional scattering by a 
surface-breaking crack has been analyzed by Angel and 
Achenbach (1984). For the surface breaking crack, com­
parisons between analytical results and experimental data have 
been presented by Yew et al. (1984), Dong and Adler (1984), 
and Vu and Kinra (1985). Experimental results for reflection 
of a surface wave by a subsurface crack oriented normal to the 
free surface were obtained by Khuri-Yakub et al. (1984), who 
observed very satisfactory agreement with theoretical results. 
There are, of course, also numerical studies, principally by the 
T-matrix method. Typical of these is the work of Visscher 
(1985). 

Recent review papers of ultrasonic QNDE which include 
substantial discussions of scattering of ultrasonic waves by 
cracks are those of Fu (1982) and Thompson (1983). In­
teresting practical applications have been discussed by Coffey 
and Chapman (1983). 

Whereas a substantial body of literature has become 
available for the direct problem of scattering by cracks, 
relatively little has been published on the inverse problem. A 
method based on inverse time-domain ray tracing, which has 
yielded some interesting results, has been discussed by Norris 
and Achenbach (1982). Papers by Teitel (1978) and Guber-
natis and Domany (1979) have discussed the determination of 
orientation and size for cracks which are elliptical in shape, 
and whose location is known a priori. Their method is based 
on the quasi-static crack-opening displacements given by 
Eshelby (1957). The method of this paper, which is not based 
on Eshelby's result, offers two advantages over previous solu­
tions. One advantage is that the crack may be of general shape 
(i.e., it is not assumed elliptical a priori). The other is that the 
solution is valid for frequencies higher than the "quasi-static" 
ones. As mentioned before, another new feature of this study 
is that the location of the crack does not have to be known a 
priori. 

754 / Vol. 54, DECEMBER 1987 Transactions of the ASME 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 Crack configuration in the x and £ coordinate systems. The x 
system (not indicated) coincides with the I system. 

Integral Representation for the Scattered Field 

The faces of a perfect mathematical crack are smooth and 
infinitesimally close, but they do not interact with each other. 
From the analytical point of view a perfect mathematical 
crack is a surface in space which does not transmit tractions. 
The model is acceptable for a real crack, provided that the lat-
ter's faces are slightly separated and that the length 
characterizing crack-face roughness is much smaller than the 
dominant wavelengths of an incident pulse of ulstrasonic wave 
motion. 

Figure 1 shows a flat crack of surface area A. Two coin­
ciding coordinate systems (xx, x2, x3) and (?1; ?2, £3) with 
origin at the "scattering center" (defined later) of A are de­
fined. The unit normal, n, to the crack-plane makes an angle 9 
with the x3 axis, and the projection of n on the xxx2 plane 
makes an angle <f> with the xx axis. The incidence of a pulse of 
elastic wave motion produces a scattered field. A representa­
tion for the scattered field can conveniently be obtained in the 
frequency domain. The incident pulse may be expressed as a 
Fourier superposition of harmonics, next the scattered field 
generated by a single incident harmonic can be calculated, and 
finally all scattered harmonic fields can be superimposed to 
yield the scattered pulse. Hence, the generic problem is one of 
scattering of an incident displacement wave of the general 
form 

u'"(x)exp(-/W)> 

where u'" (x) is understood to depend on frequency. The term 
exp ( - io>f) will be omitted in the sequel. The scattered field is 
defined as the difference between the total field and the inci­
dent field, i.e., 

ui(x) = uf(x) + uf(x) (2) 

The components of the corresponding stress tensors are 
related by 

T ( / (X) = T ^ ( X ) + T f (X) (3) 

It is well known that the integral representation for the scat­
tered displacement field may be expressed in the form 

wf (x) = j ^ Ci]lmDklm(x-VAUiMnjMdA(?) (4) 

where 

Dkfm (x - ?) = - — w£f(x - ?) (5) 

In these relations «£,(x-ij) is the basic singular solution 
(Green's vector), i.e., the displacement at position x in direc­
tion xk, due to a unit time-harmonic force applied in direction 
x( at x = ?. Then —Dktm (x - ?) is the displacement produced at 
x in the xk direction by a double force applied at x = J, with 
forces in the £ direction and moment arm in the m direction. 
The displacement discontinuities Aw, (?) = At/f (?) are related 
to the crack opening displacements Aw, (?) by 

A«,.(?)=7VAu,.(?) (6) 

where the matrix [7] defines the rotation of the ? system 
relative to the ?" system 

[71 = 
COS0COS0 
sin0 cos<£ 
COS(/> 

sin0 
-COS0 

0 

cosfl sin(/> 
sin0 sin0 
COS0 

(7) 

and the ? coordinate system is such that ?3 is normal to the 
crack plane. The crack opening displacement Au(?) is defined 
in the usual manner as 

Au(?~) = u(?" + en) - u(? - en) (8) 

where n is the outward normal to the crack plane as shown in 
Fig. 1. 

For a homogeneous isotropic material Cijtm has the form 

Cij(m = ̂ ifitm + M ( ^ A ' m + &im&jt) ( 9 ) 

In the x system, the basic singular solution for an isotropic 
solid is 

/i«g,(x-?) 

1 

k\ dxkdX[ 
[-G(kLR) + G(kTR)] + G(kTR)5k 

where 

G(kaR)-
exp(ikaR) 

A-KR 
a = L,T 

kL=- :(X + 2/x)/p, 

kj — - , r2 -CT- \i.lp, 

and 

i ? = l x - ? l 

The fields for the corresponding double forces are 

(10) 

(11) 

(12) 

(13) 

(14) 

(l) /*A«h.(x-£) = /* 
dx„ 

u£ f (x-?) = 
r2 

T^kLG(kLR)AL
ktn 

+ kTG(kTR) [Ajtm +ym ( , • - — ) « „ ] , (15) 

where 

Aa — 

-y^m(l~)~[l^(i~)]^ (16) 

57Ar7f7m (17) 

7,= ( * , - $ , ) / * (18) 

It is instructive to write the details of the scattered field in the 
x system, for which the x3 axis is along the normal to the crack 
plane. Theny'=3 and equation (4) can be split into contribu­
tions from three basic sets of double forces, which are related 
to crack-opening displacements in the x,, x2, and x3 direc­
tions, respectively: 
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r = (XiX,)V l , and x, = x{ /r (25,26) 

Fig. 2 Double forces for scattered fields 

«?(*)= L^i'Mx) (19) 
; = i 

where 

[4"(x) = /,t4'.13>(x) + /iC41.31'(x) (20) 

t / ^ x ) = »Uf™(x) + ,*£/p3>(x) (21) 

t43»(x) = \[43 'n>(x) + Xf43'22>(x) + (X + 2fi) C43'33)(x) (22) 

In equations (19)-(22) 

a 
t/[' /,fm) 

(*) = T ^ ( "w(x ; l )A« , ( IWMf2 (23) 

Even though the results of this section have cast scattering 
theory in an elegant form, the actual direct scattering problem 
is far from solved, since the crack-opening displacements are 
not known a priori. To obtain a set of equations for Aw,-, we 
must return to the representation given by equation (19). The 
stresses corresponding to equation (19) can be obtained by 
substitution into Hooke's law. Then by letting x approach A, 
the stresses should satisfy fff (x) = - fj" (x). The resulting 
equations are integral equations for Azi,(£). These equations 
require careful handling, because the integrands contain 
singularities. The general system of equations has been 
presented by Budiansky and Rice (1979). 

The complexity of the exact method of solution has 
stimulated the development of approximate approaches. In 
two well-known approximate theories, which are valid at low 
and high frequencies, respectively, a form of Au(|) is 
postulated and usc (x) is subsequently computed by equation 
(19). At low frequencies the static crack-opening displacement 
can be substituted in the integral, to give the so-called quasi-
static scattering theory. At very high frequencies the 
geometrical elastodynamic field on the illuminated crack-face 
can be used as the crack-opening displacement. Subsequent 
evaluation of equation (19) produces the "physical 
elastodynamics" or Kirchhoff approximation to the scattered 
field. 

In many practical applications the distance from the obser-, 
vation point to the center of the crack is much larger than a 
characteristic dimension, a, of the crack. At point x outside 
the crack we may write 

R=\x-t\=r\l-

where 

£•£ 1 l£l2 (£-x)2 

2r2 - • ] (24) 

Since r » a , and I? I = (£2 + £2 + £2)'/! < a, equation (24) 
becomes 

R = r 

Furthermore, the assumption 

a 
(kaa) « 1 , a = L,T, 

r 

together with equation (24) gives 

e =e e 

(27) 

(28) 

(29) 

Equations (27) and (29), substituted in equations (10) and 
(4), will give rise to integrals of the general form 

Ia = \Ae'ikai'iAuia)nJ^)dA^) (30) 

In deriving equation (30) the assumptions r» a and (28) were 
made. These assumptions include the case 

kaa<\ and r?>a (31,32) 

which is under consideration in this study. 
To determine the solution of the inverse problem, it is con­

venient to further reduce the integrals of equation (30). Use of 
the first mean value theorem in equation (30) gives 

/„=*-*-<-v,, 
where 

K„= j ^ AM,(£)/!,(€)d4(f) 

(33) 

(34) 

In equation (33), £* is a point on the crack plane. We call this 
point the scattering center. If kaa <K 1 (quasistatic case), then 
Ia = Vy, provided that the origin of the coordinate systems 
(x, £) is any point on the crack plane. In this case, the scattered 
field given by equation (35) below, would be "independent" 
of the choice of the origin. In our study, we do not make the 
strict quasistatic assumption. The origin is chosen to coincide 
with the scattering center i- *. It should be mentioned that dif­
ferent observation points x would define different £*. 
However, if the observation points are not very far from each 
other, it is expected that J* would be approximately the same, 
and 

Ia~Vu (35) 

Use of equation (35), reduces the scattered field given by equa­
tion (4) to 

uf(x) = Cu(mDk,m(x)Vij (36) 

where Dktm (x) follows from equation (15). 
In the x coordinates Vy = Vj353j are the crack-opening 

volumes corresponding to the crack-opening displacements 
defined by equation (8) 

L M,rf)dA(£) (37) 

The scattered field is now given by equation (19), where in­
stead of equation (23) we have 

Ui'-""Hx)=Dk!mV0 (38) 

The scattered field consists of fields generated by sets of dou­
ble forces located at the scattering center of the crack, and 
whose configuration is summarized in Fig. 2. 

A general theory for body-force equivalents of displacement 
discontinuities was first developed by Burridge and Knopoff 
(1964). It is not surprising that the scattering problem has been 
reduced to the same kind of source theory, which is well 
known from seismology and the theory of acoustic emission. 
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Inverse Problem 
In terms of the known coordinate system, xix2x-i, whose 

orientation is known but not the location of its origin, the 
scattered displacement field, equation (36), may be written in 
vector-matix form as 

{«JC(x)J6xl = [£ (x) ] 6 x l 2 (B] 1 2 x l (39) 

where the scattered displacement vector {usc ] has 6 com­
ponents considering its real and imaginary parts. Similarly 
[B] has 12 components. The rth equation of equation (39) in 
complex form is: 

uf (x) — [LlnLn2LniLi22LmLm] [B] 

where 

in=(\ + 2lx)Din+\(.Di22+Dm) L 

'-'ill 

Ljn : 

^i22 : 

Lai • 

L, 

and 

--2ix(Dn2+Di2!) 

--2lx(Din+Dm) 

--(K + 2^)Di22 + \(Din+Dm) 

-2^(Din+Dm) 

,m^ (\ + 2ix)Dm + \(Din+Di22) 

\B]T=[VnVl2VnV22V2,V^T 

(40) 

(41) 

(42) 

The terms Ditm are given by equation (15). Let us suppose that 
the left-hand side of equation (39) is known. The equation 
then defines a set of 6 nonlinear equations for 15 unknowns (3 
components of x, and 12 components of B). This is an 
underdetermined system of nonlinear equations. To obtain a 
unique solution the system has to be overdetermined. Thus, 
the data uf is needed in 3 observation points (x1, x2, x3), since 
the components of vector B are independent of x. This way, 
there are 18 equations and 15 unknowns. To reduce the 
number of unknowns we first eliminate the unknown B and 
subsequently we solve for x. However, an inspection of equa­
tion (39) reveals that the left inverse of [Z-(x)] does not exist 
(more rows than columns). Thus to solve for B one needs to 
consider the data in 2 observation points simultaneously. This 
gives 

usc(xl) 

wIC(x2) 
-P(x ) l 2 x l 2 i - 6 ] 12x1 » 
12x1 

(43) 

where it has been taken into account that x1 

where X,2 is known. Equation (43) yields 
+ X, 

[B)=[P(xi)]-
uic(x>) 

usc(x2) 
(44) 

Substitution of equation (44) into equation (39) for the 3rd 
observation point, x3, gives 

^ ( x 1 ) 
jM"'(x3)l=[Z,(x3)][P(x1)]-1 

usc (x2) 
(45) 

The solution of the inverse problem has, therefore, been 
reduced to the solution of equation (45). This is a system of 6 
nonlinear equations for 3 unknowns (x\, x\, x\), since the rela­
tionship between x1, x2. x3, is known from the relative posi­
tion of the instrument that measures the scattered data. To 
solve the nonlinear optimization problem defined by equation 
(45), the following six residuals, g, (x), are defined: 

? (x ' ) ! = f" i c (x 3 ) ) - [ i (x 3 ) ] [P(x 1 ) ] -
MSC(X') 

usc(x2) 
(46) 

The residuals, ^ ( x 1 ) , are now minimized in the least squares 
sense with respect to x1, i.e., we seek 

Min 
vl 

(!>?(*')] (47) 

Equations (46) and (47) define a nonlinear least squares pro­
blem. Its solution is obtained through use of a modification of 
the Levenberg-Marquardt algorithm as outlined in the User-
Guide for MinPack-1 (1980). The solution so obtained is the 
unknown x1 = (x\, x\, x\). Substitution of x1 in equation (44) 
gives the crack-opening volume tensor, Vy, in the global x 
system. 

Once Vjj has been obtained, the crack opening volumes in 
the x system may be obtained by the rule of transformation of 
a second order tensor 

m = [7r'mm, (48) 
where both V,j and V,j are symmetric, 

[V\-

0 0 

V-,, (49) 

and [7] is defined by equation (7). From the invariants of the 
two tensors we obtain 

Vv, V„ + Vn+Vv 

as well as the relation 

1 
(V\i + Vl,)=-(VnV22+ V22 K33 + Vu K33) 

(50) 

(51) 

From the zero terms of V^, equation (48) yields three 
nonlinear equations for the unknown angles 6 and 4>. The solu­
tion to this overdetermined system of equations is obtained in 
the same manner as the solution to equation (45). Subsequent­
ly Vjj follow from the remaining equations of (48). Equations 
(50) and (51) can be used as a check on the results. 

The results of the inverse problem, namely, the crack's loca­
tion, the orientation of the crack plane, and the crack-opening 
volumes, Vy, do not completely characterize the crack. In the 
next Section we will show that these results do, however, make 
it possible to estimate the maximum value of a stress-intensity 
factor under a service loading condition without further 
assumptions on the crack shape. As shown in the remainder of 
this Section, it is also possible to fully characterize the crack, 
provided that it may be assumed that the crack is elliptical in 
shape. 

Suppose that the axes of the ellipse are defined by a system 
of coordinates 77,, TJ2 where the major axis, i)l, makes an angle 
X with the | j , axis, and where the ellipse would be defined by 
(i^/a)2 + (ri2/b)2 = 1, a > b. As shown in this Section it is 
then possible to obtain a, b, and x from the computed low fre­
quency values of the crack-governing volumes V^. If the crack 
would, in fact, not be elliptic in shape, then the computation 
will produce a, b, and x for an equivalent crack of elliptical 
shape. 

Let us define as f,3 the stress components on the crack plane 
at the centroid of the crack in the x coordinates. The com­
ponents f/3 can be computed from the incident wave and the 
results of the inverse problem for crack location and orienta­
tion of the crack plane. Next we define f }3, where 
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-ft„*£ 
cosx sinx 0 

- sinx cosx 0 
0 0 1 

(52) 

(53) 

At low frequencies the tractions may be taken as uniform (and 
equal to r?3) over the crack plane. The corresponding crack 
opening displacements then follow from Eshelby's. results 
(1957) as 

[A«f] = C<'>ffc(l-
V\ 

where 

C < 3 > = -
2b l-v 

E(a) n 

In these expressions 

r , = £ ( « ) + • 

c<2> = 
2a 

A 
b2 

cm-. 

• ) " 

2b 

(54) 

(55a,b,c) 

E(a) 
- + -

v a 

1 1 

[K(a) - £ ( « ) ] 

l-v (3 a2 

a = (l-b2/az)'A, P = b/a 

[E(a)-P2K(a)] 

(56) 

(57) 

(S8a,b) 

Here v is Poisson's ratio, and n is the shear modulus, while 
E(a) and ^(a) are complete elliptic integrals of the second and 
first kinds, respectively, with modulus a. 

Integration of equation (54) over A yields the crack-opening 
volumes 

Vl=\ [&u}]dA = C<" fl —- nab 
J<4p 3 

(59) 

These crack opening volumes are related to the crack opening 
volumes computed from the inverse problem by 

Vl=P,jVfl (60) 

where /3,y is defined by equation (53). Since Va are known, 
equation (60) gives 3 nonlinear equations for the 3 unknowns, 
a, b, and x- The complicated forms of C ( , ) as given by equa­
tions (55a, b, c) may make these equations difficult to solve. 

Numerical Tests 

Several numerical tests were carried out to check the validity 
of the solution of the inverse problem. The results of one of 

the tests are given here. The crack considered is elliptical, with 
semi-axes defined by b/a = 0.8. The orientation of the crack 
is specified by d- 1, <j>= 1 (see Fig. 1). The crack is contained 
in an infinite elastic isotropic solid characterized by Poisson's 
ratio v = 0.3 and cL = 6,000 m/s. The incident displacement 
field is a longitudinally polarized plane wave incident along 
the -<-x3 direction, with amplitude u° and wavenumber kL. 

To obtain the position of the crack and the crack-opening 
volumes Vi3, the scattered displacement field is needed at 3 
observation points. This data is synthesized by first solving the 
direct problem as defined by equation (36). For small kLa, the 
crack-opening volumes are assumed to be given by equation 
(59). The real parts are zero. In general, this would not be 
true. Subsequent use of equation (36) gives the scattered 
displacement field. The three observation points chosen ar­
bitrarily are x'/cr = (6, 7, 10), xVa = (10, 8.5, 10), xVa = 
(14, 10, 10). The scattered displacement was calculated at 
these 3 points, for kLa = 0.325, 0.35, 0.375, 0.4. The scat­
tered particle velocity components are listed in Table I in the 
g loba l sy s t em, for kLa = 0 . 4 . H e r e ( i i " ) N = 
u r e ( \ + 2/x)/lffgl. Note that \xsc = -ikLcLusc and \af3\ = 
(\ + 2n)kLu0. 

The synthesized scattered data was used to solve the inverse 
problem. The position of one of the observation points was 
obtained as well as the crack-opening volumes, and the crack 
orientation. In Table 2, the actual parameters used in the solu­
tion of the direct problem (Actual) are compared with the 
solution of the inverse problem (Inverse 1) for all kLa con­
sidered. The match is excellent. The real parts are not shown 
even though the match is also excellent. Numerical tests were 

Table 1 Real and imaginary parts of normalized velocity 
components for the scattered field at three positions: x Va = 
(6, 7, 10), x V « = (10, 8.5,10), and x V a = (14,10,10). All 
components are in m/s. 

kLa = 0A 

1*1 )N 

("I)/V 

("?)* 
("2)N 

(U?)N 

("3>A/ 

x'/a 

3.60 m/s 

-3 .42 

-4 .08 

0.60 

0.42 

-2 .58 

x2/a 

-0 .06 m/s 

4.68 

-0 .18 

-9 .36 

-0 .24 

-13.56 

x3/a 

2.76 m/s 

-7 .80 

9.18 

3.90 

12.90 

8.76 

Table 2 Comparison of actual parameters with results of the inverse problem, for 
use of data based on the actual parameters (Inverse 1) and use of modified data 
(Inverse 2), for four values of kLa 

kLa = 0.325 

ArLa = 0.35 

A:La = 0.375 

A:La = 0.4 

Actual 

Inverse 1 

Inverse 2 

Actual 

Inverse 1 

Inverse 2 

Actual 

Inverse 1 

Inverse 2 

Actual 

Inverse 1 

Inverse 2 

V 1 

xi 

a 
6 

6 

6.48 

6 

6 

6.63 

6 

6 

6.61 

6 

6 

6.2 

A 
a 

7 

7 

7.35 

7 

7 

6.93 

7 

7 

7.69 

7 

7 

7.04 

A 
a 

10 

10 

10.80 

10 

10 

10.84 

10 

10 

10.38 

10 

10 

10.41 

e 

1. 

1. 

0.83 

1. 

1. 

0.85 

1. 

1. 

0.87 

1. 

1. 

0.87 

0 

0.98 

1.00 

0.98 

0.99 

iVn 

u°A 

0.18 

0.18 

0.17 

0.20 

0.20 

0.19 

0.22 

0.22 

0.20 

0.24 

0.24 

0.21 

'?23 
u°A 

0 

0 

-0 .06 

0 

0 

-0 .07 

0 

0 

-0 .08 

0 

0 

-0 .08 

iV3i 

u°A 

0.36 

0.36 

0.37 

0.39 

0.39 

0.39 

0.42 

0.42 

0.42 

0.45 

0.45 

0.44 
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also performed on modified data to test the stability of the 
solution. In Table 2, the results of one of the tests are shown 
(Inverse 2). For the modified data, the x, component of the 
scattered displacement field at x1 was taken as 0.92 times the 
exact displacement. The x2 component of us at x2 was 0.98 
times the exact displacement, and the x3 component of us at x3 

was 1.06 times the exact displacement. For all the other com­
ponents of the scattered displacement the exact synthesized 
scattered data were used. The test displacement function used, 
in this particular example, has a frequency spectrum for each 
component that slightly deviates from that of the exact 
displacement. The results are satisfactory and it is concluded 
that errors in the scattered data cause errors of the same order 
in the crack location and orientation, and crack-opening 
volumes. 

The success of the proposed inverse method in practical ap­
plications depends on the availability of suitable low frequen­
cy scattering data. Appropriate signal processing of ex­
perimental time-domain measurements will give frequency do­
main data. In the low-frequency range it may, however, be 
necessary to fit the displacement data on a curve of the general 
form constant X k\, to improve the accuracy. It is noted from 
Table 1 that an incident plane wave produced by a regular 
transducer will generate a very small scattered field. This is 
primarily due to the geometrical attenuation caused by the 
term a/r. The displacements tend to be particularly small in 
the plane perpendicular to the ray connecting the point of 
observation and the centroid of the inhomogeneity. The scat­
tered displacement magnitude can, however, be amplified con­
siderably by the use of a focused transducer. But even then on­
ly the radial displacement component may be useful. In that 
case the number of observation points would have to be 
tripled to make up for the lack of transverse displacement 
data. This would have to be done in any event if a water-bath 
configuration would be used. 

Strength Considerations 

The ultimate goal of quantitative nondestructive evaluation 
is to obtain information on the residual strength of materials 
and components. Information on the location, size, shape and 
orientation of cracks makes it possible to calculate critical 
strength parameters such as stress intensity factors. As pointed 
out by Budiansky and Rice (1978), it is, however, also feasible 
to compute stress intensity factors directly from low-
frequency ultrasonic scattering data. 

In this Section we show that the zero-frequency limits of the 
crack-opening volumes computed from the ultrasonic data, 
yield direct estimates of the stress intensity factors for a 
related service loading condition. For this purpose the incident 
ultrasonic wave is redefined as 

u° 
"3 (x) = —,— exp{ikLx3) (61) 

ikLa 
in order that the zero-frequency limit will correspond to a 
nonzero stress of the form 

u° 
T°j = c m — - (62) 

The corresponding crack-opening volumes follow from the 
computed Va as 

K<3=lim - i ^ - (63) 
kL-o ikLa 

It is known (see, e.g., Budiansky and O'Connell, 1976) that 
a crack opening volume is related to a corresponding stress-
intensity factor by 

V^=^n3\sPck
2jds, (64) 

Journal of Applied Mechanics 

where S is the edge of the crack, pc is a length, and f°3 is the 
stress component normal to the crack. Furthermore, kx = 
K\/r^ is the reduced Mode I stress-intensity factor. According 
to Budiansky and Rice (1978) the right-hand-side of equation 
(66) can be approximated by an expression in terms of the 
maximum value of kx. This results in 

F ° 3 24/J ^ K * ' ^ " 1 (65) 

Equation (65) gives (^i)max> the maximum value of the reduced 
stress intensity factor, in terms of the results of the inverse 
problem: 

r 24 ii K?31
 l /6 

L( l - j ' ) i r 3 T?3 J 

Now suppose the body is subjected to a service load which 
gives rise to a static stress field T ?•. Let 

T'U = KT°U (67) 

It then immediately follows that the maximum Mode I stress 
intensity factor corresponding to the service load is 

(*f)max = Kr?3(£?)max (68) 

Analogous calculations can be carried out for combined Mode 
II and Mode III stress intensity factors. 

Another quantity that can be computed from the ultrasonic 
test results is the total potential energy change AW of the solid 
body due to the presence of the crack. In the limit of zero fre­
quency we obtain from the ultrasonic test results 

±W°=-^-i°BV% (69) 

The corresponding results for the static load immediately 
follows as 

AWS = K2AW°, (70) 

where equation (67) has been used. 
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Elastic Wave Scattering by 
Surface-Breaking Planar and 
Nonplanar Cracks 
Scattering of elastic waves by surface-breaking planar and nonplanar (branched) 
cracks has been studied in this paper. Attention has been focused on the near-field 
surface displacements and the crack-tip (s) stress-intensity factors. For planar nor­
mal cracks the stress-intensity factors are shown to agree with earlier results. 
Numerical results showing normalized vertical surface displacements are presented 
for incident body and surface waves. It is shown that the results for planar and 
branched cracks can be significantly different in some instances. 

Introduction 

Problems of elastic wave scattering by surface-breaking and 
near-surface cracks are of considerable current interest for 
ultrasonic nondestructive evaluation. Ultrasonic scattering by 
planar cracks near or at the free surface of a semi-infinite 
elastic homogeneous medium has been studied theoretically by 
many authors. References to recent papers on this subject can 
be found in Shah et al. (1985), Achenbach et al. (1984), and 
Van der Hijden and Neerhoff (1984). Some experimental 
works on surface-breaking normal planar cracks have also 
been reported by Hirao et al. (1982), Yew et al. (1984), and 
Dong and Adler (1984). 

Ultrasonic scattering by surface-breaking planar and 
branched cracks of arbitrary orientation is the subject of this 
investigation. To our knowledge this problem has not received 
much attention in the literature. An approximate solution that 
is valid at low frequencies was presented by Datta (1979) for 
SH wave diffraction by a canted surface-breaking planar 
crack. Subsequently, a hybrid finite element and eigenfunc-
tion technique was used by Datta et al. (1982) to study SH 
wave diffraction by a planar surface-breaking canted crack. 

In this paper we use the same hybrid technique as in Datta et 
al. (1982) to study the scattering of in-plane body and surface 
waves by canted planar and normal surface-breaking branch­
ed cracks. We focus our attention to the near-field. Numerical 
results are presented for the vertical surface displacement 
amplitudes near the base of the crack and crack-tip(s) stress-
intensity factors. 

Formulation and Solution 

Consider a homogeneous, isotropic, and linearly elastic 
medium with a surface-breaking crack of arbitrary orientation 
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and shape as shown in Figs. 1(a) and 1(b). It is assumed that 
the displacement is independent of the z coordinate and its z 
component is zero. It is further assumed that the displacement 
u (x, y, t) at a point P to be time-harmonic of the form u (x, 
y)e~"*' where to is the circular frequency. Then u satisfies the 
equation of motion in y > 0 (at points not on the crack) 

( i V 2 u + ( X + r i V V - n = - / i A (1) 

where X, n are Lame constants, p the mass density, and the 
factor e~'"' has been dropped. 

The solution of equation (1) can be expressed in terms of 
longitudinal and shear wave potentials, 4> and 4>, in the form 

u = V 0 + V X ( ^ ) (2) 

Furthermore, in a homogeneous half-space, 4> and \p can be ex­
pressed in an infinite series of multipolar potentials as (Datta 
and El-Akily, 1978) 

<A= £ Uti + bAfi) 
n= — oo 

4= L (anVn+bji) 
(3) 

n= — oo 

where expressions for 4>%, i/-£, 4>%, and \j/s
n, can be found in 

Datta and El-Akily (1978). The coefficients a„, bn are found 
by satisfying the appropriate boundary conditions. The series 
expansion is in terms of multipolar sources located at 0 ' (Figs. 
1(a) and 1(b)) and is valid outside of a circle of radius large 
enough to enclose the crack inside (see Datta and El-Akily, 
1978). 

The representation (3) is not useful for satisfying the 
boundary conditions on the crack surface. For this reason, a 
different representation is needed in this near-field region. In 
this paper, the region inside the fictitious boundary B (Figs. 
1(a) and 1(b)) is divided into finite elements having TV, number 
of interior nodes and NB number of boundary nodes. In the 
following the region inside B is denoted by Region II. 
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Fig. 1 (a) Geometry of a planar canted crack; (b) geometry of a branch­
ed Y crack 

For the finite element representation in Region II, the 
energy functional is taken to be 

/* '=-—U (<r'e* — pu2\fu*)dxdy 

j f l ( P ^ - U I + P I - U B ) * 

(4) 

where " * " indicates complex conjugate and a and e are col­
umn vectors defined as 

o= [a] = (0^,0^,0^) (5) 

(6) 

Superscript T denotes transpose. The PB and UB represent the 
traction and displacement on B, respectively. 

It is assumed that the displacement field within the y'th ele­
ment is represented in terms of the shape functions Lj(x, y) 
and elemental nodal displacements {qj) as 

D Ljlj (7) 
y=i 

where each qj has two components, u^ and uyj, along the x 
and y directions, respectively. The number of nodes in each 
element is given by Ne. 

The a]j and e?- are computed by substituting equation (7) in­
to strain-displacement relations and these, in turn, into the 
stress-strain relations. Using these in equation (4), we get 

F= qfSnqi + qfSJBqB + q*B
TSB,d, 

+ q I r S M q f l - q * T > y - P ^ " > q s 

in which q7 = q<P, qB = qg>, P^1' = P$> and the elemental im­
pedance matrices Sy are defined as 

[se] = \\R (mT[D]m-PeJ[L]T[L])dxdy. 

In equation (9), 

W]= 0 — =[N][L]-

(9) 

a 
dx 

o A 
dy 

a d 
dy dx 

"L, 0 L2 . .' 

0 L, 0 . . 

\e + 2fie 

K 
0 

K 
\e + 2fie 

0 

0 

0 

Me 

Note that [L] is a 2 x 2Ne matrix. 
For an isotropic material [D] is given by 

[D] = 

where \e and \xe are the Lame's constants. 
In representing the inner region into finite elements it has 

been assumed that the crack faces do not come into contact. 
Also, in order to model the crack-tip singularity, quarter-point 
singularity elements have been used. The details of the 
singularity elements have been discussed by Barsoum (1977) 
and the extraction of stress intensity factors from the crack 
opening displacements (COD) has been discussed by Datta 
and Shah (1982) and Shah et al. (1986). 

To find the constants a„, bn appearing in equation (3) and 
the nodal displacements in Region II, it is necessary to use the 
continuity of displacement and traction on B. This is discussed 
in the following. 

The incident displacement fields will be assumed to arise 
from the incident plane P and SV waves, and their reflections 
from the free surface y = 0. The case of incident Rayleigh 
waves will also be considered. 

Let us suppose that in the absence of the crack the free field 
is the sum of the incident and reflected fields, that is 

wf = Mj')+«jr> 0=1 ,2) . (10) 

For the Rayleigh wave uf> is the associated displacement. 
The total field outside B then is 

Uj = u}s>+u(f» (/=1,2) (11) 

where ujs) is given by equations (2) and (3). 
Using equations (2) and (3), the displacements at the nodes 

on B can be written as 

(qif'} = [G]{a) (12) 
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Fig. 2 Comparison of stress-intensity factors calculated by the 
present method and those given in Achenbach et al. (1980). Incident 
wave is a Rayleigh wave propagating in the x direction. 

where [G] is a 2NB x 2NB matrix formulated in Appendix A 
and vector (a) is 

[«i. ,aNR,bu ,bN„ 

Similarly, using equations (2) and (3) in the stress-strain 
relation, the traction at the nodes on B can be expressed in the 
form 

[4'))=[Flfa) (13) 

where [F] is also a 2NB x 2NB matrix defined in Appendix A. 
To express {aB

s) j in terms of (q^>), we use the expression 
for the virtual work done on the boundary B, which is 

JB 
(14) 

where superscript (1) denotes the total field in Region I (out­
side B). 

Because of the continuity of displacements and traction on 
B, we have 

qy) = qg'=qi0 ) + qi" (15) 

«i!> = 0g> = ($> + <#> (16) 

where superscript (2) denotes the total field in Region II. 
Substituting equations (12), (13), (15), and (16) in equation 

(14), and noting that Sq^1' = 5q^s), we obtain from equation 
(14) 

57r={5a*| r{Py)) (17) 

where P^1' is given by 

{ P g ) ) = t f ] ( a ) + {Pg>) (18) 

Here 

and 

[Si=l [G*]T[F\dr 

?<§>) = \BlG*]T[o<g>]dr. 

(19) 

(20) 
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Fig. 3 Stress-intensity factors for various crack geometries due to inci­
dent P wave 

Equations (19) and (20) are approximated by 

[R] = [G*]T[F\R Ad 

and 

}R AO 

(21) 

(22) {n))=[G*]T[aB 

where R Ad is the arc length between two adjacent boundary 
nodes on contour B. Note that the first two rows and last two 
rows of equations (21) and (22) are multiplied by R Ad/2 in­
stead of R Ad, because they correspond to the first and last 
boundary nodes, respectively. 

Substituting equation (12) in equation (8) and taking the 
variation, we obtain a set of simultaneous equations which 
may be written in matrix form as 

G*TSJB 

SIBG 

G*TSBBG 

<I/ SIBqf 

(23) 

The first equation of equation (23) can be written as: 

q /=-S /?
,[s / l lGa + Sfflqg>]. (24) 

The second equation can be written as 

G* TSjBqr + G* TSBBG a - - G* TSBBqf + Pg>. (25) 

Substituting equations (18) and (24) into equation (25), we 
obtain 
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dent Rayleigh wave propagating in the x direction 

[G* T (SBB - SfBSFl'SIB) G - * ] (a) = 

(26) 

-G'TfSn-S&SniSajqW + VW 

In equation (26), the generalized coordiantes (a j are the on­
ly unknowns. Therefore, (a) can be evaluated. Once (a) are 
known, the near and far displacement and stress fields can be 
determined. 

Numerical Results and Discussion 

In this paper, the boundary B enclosing the interior region is 
not a complete circle, and so the potentials </>£, *//%, and </>£, t/'f 
cannot be expanded in cylindrical wave functions as was done 
by Shah et al. (1985). Instead the integrals giving these poten­
tials and their derivatives were evaluated numerically for every 
node on B. These integrals are of the same forms as the coeffi­
cients (Pmn, Qm„, etc.) that appear in the wave function expan­
sion used by Shah et al. (1985). Thus they are evaluated by us­
ing the same deformed path (El-Akily and Datta, 1981) that 
was used to calculate those coefficients. For more details the 
reader is referred to Datta and Sabina (1986) and Chin (1985). 
It was found that 24 terms were needed in the series expan­
sions (3) for the range of frequencies (0 < k2 D < 5.5) con­
sidered here. 

The hybrid method is employed to study scattering by P, 
SV, and Rayleigh waves by three types of surface breaking 

cracks: a vertical crack (Fig. 1(«) with a = 90 deg), a 45 deg 
inclined crack (Fig. 1(a), with a = 45 deg), and a vertical 
branched (7) crack (Fig. 1(b)). The Poisson's ratio of the 
material is taken to be 1/3. The method used here is applicable 
to a surface-breaking crack of arbitrary geometry. It can be 
used for a planar or a Y crack of arbitrary orientation as well 
as for a Y crack of arbitrary branch lengths and opening 
angles. Of course, if the branches are too close, then very fine 
meshes would be required. The examples chosen here are only 
for illustrative purposes. 

Stress intensity factors at the tips of the cracks were 
calculated and for the particular case of a planar surface-
breaking normal crack they were found to agree well with the 
results of Achenbach et al. (1980). These are shown in Fig. 2. 

Next, normalized stress-intensity factors are shown in Figs. 
3-5 for incident P, SV, and Rayleigh waves. It is seen that for 
P and Rayleigh waves the stress-intensity factors at the crack-
tips of the three types of cracks are quite different, particular­
ly at high frequencies. This is particularly significant for the 
branched crack, even though the branches are quite small. 

The surface displacements at y = 0 are calculated by using 
equations (3) in (2) after (a] are calculated. Normalized 
values of u^s) are presented in Figs. 6-10. For each type of 
crack mentioned above, five cases of incident waves were con­
sidered: plane P wave incident at 0 deg and 45 deg, plane SV 
wave incident at 0 deg and 45 deg, and finally the Rayleigh 
wave. Some representative results are shown here. In these 
figures NF represents the normalization factor. 

764 / Vol. 54, DECEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



SURFACE DISPLACEMENT 
VERT. CRACK 
R WAVE 

K2D 
9 0.225 
A 0.9 
• 2.25 

NF 
0.047 
0.19 
0.47 

i n * (J. 

-2.00 2.00 

Fig. 6 Normalized scattered vertical surface displacement amplitude 
due to Rayieigh wave incident on a normal surface-breaking planar 
crack 

>r--*-*
-*l^-^iHlC? 

rA 
I 3 

J o 
/ 1 

V
o.

40
 

i b 

Uy 
SURFACE DISPLACEMENT 
Y-CRACK 
R WAVE 

Kj,D NF 
• 0.225 0.047 
A 0.9 0.19 
B 2.25 0.47 
x 4.5 0.93 

\ ^ ^ r ~ ° ^ 

^ _ ^ ^ i - i ^ i i - * * ^ 

-2.00 -1.50 -1.00 -0.50 0.00 
X/D 

0.50 1.00 1.50 2.00 

Fig. 7 Normalized scattered vertical surface displacement amplitude 
due to Rayieigh wave incident on a normal surface-breaking branched 
crack 

Figures 6 and 7 show the scattered vertical surface displace­
ment amplitudes for a Rayieigh wave incident from the left on 
a normal planar and branched crack. It is seen that there are 
large differences in the forward direction between the two 
cases as the frequency becomes large. In the backward direc­
tion, however, the differences are not verysignificant. Figures 
8 and 9 show the results for an incident SFwave moving ver­
tically as well as at 45 deg to the vertical. Large differences are 
found for vertical incidence, but not in the other case. Finally, 
Fig. 10 shows the case of a Rayieigh wave incident on a canted 
crack. This figure is to be contrasted with Fig. 6. The large dif­
ferences shown clearly distinguish a canted crack from a nor­
mal crack. 

Conclusion 

Model calculations of elastic wave scattering by surface-
breaking planar and nonplanar cracks have been presented. 
These calculations show that near-field surface displacements 
due to scattering by planar and branched cracks are quite dif­
ferent even when the branches are small. Also, it is found that 
signatures of normal and canted cracks are very dissimilar. 
These characteristic differences can be used to discriminate 
between the various cases. 

In this paper we have confined our attention to near-field 
results. However, once the (a) are known they can be used to 
compute displacements at any point outside the circular arc B. 
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Fig. 8 Normalized scattered vertical surface displacement amplitude 
due to SV wave incident on a normal surface-breaking planar crack 
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Fig. 9 Normalized scattered vertical surface displacement amplitude 
due to SV wave incident on a normal surface-breaking branched crack 
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due to Rayleigh wave incident on a normal surface-breaking canted 
crack 

Although the results presented here are for homogeneous 
medium, the technique can be generalized to study cracks in a 
composite medium. These are presently under investigation 
and will be reported later. 
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A P P E N D I X A 

Formulation of Matrices [G] and [F] 

As mentioned before, the scattered nodal displacement vec­
tor, ( q ^ ' ) . was formed by evaluating ux

s) and uy
s) at NB 

number of points on contour B. Thus, we have: 

( q ^ l = [ G ] { a ) (.4-1) 

where 

{qif ) = {«**,. • • • ,uxBs "yB\> ,u 

,. b,, ,bh 

yBNB 

T 

If [G] is partitioned as, 

~GXA ! GXB 

GYA | GYB 2NRX2NR 

(A-2) 

(A-3) 

(A-4) 

then each of the NB x NB submatrices can be evaluated from 
equations (2) and (3) at (xh yt) on B as 

(GXB)in=(<t>lx + tly) 

( G r a ) , „ = ( < , - * * , ) , i = l to A^ 

(A-S) 

The parameter n in the summation series of equation (3) is 
taken from -(NB/2 - 1) to NB/2 for numerical purposes. 
Hence, n in the first column to the last column of each sub-
matrix corresponds to - (A/fl/2 - 1) to NB/2, respectively. 

To formulate the matrix [F\, the components Tx and Ty of 
the traction vector T were calculated at each nodal point on B. 
If the radius vector of that point makes an angle 6 with the x 
axes, then 

Tx = o^cosfl + oxysm8 

Ty = oxycosd + o^sinfl. 
(A-6) 

Evaluating ojg), ayp, and axp at NB number of points on 
contour B and substituting in equation 04-6), we have the scat­
tered nodal stress vector, [aB

s)), as in equation (13), 

( 4 s ) l = [Fl[a) (A-l) 

where 

BS) 1 - I TxB{ . • • • >TXBNB > • • • >TyBBl
 TyBNB 1 ^ " 8 ) 

and (a) is defined in equation 04-3) 
[F] is partitioned as 

FXA 

FYA 

FXB 

FYB 2NBX2NB 

Each of the A^ x NB submatrices can be evaluated at (xh yt) 
on B as, 
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(F^);„=[(X + 2 , ) ( ^ + ̂ ) + X ( ^ - ^ ) ] c o s 9 +[(X + 2,)(^-^) + X ( ^ + ^ ) ] s i sin0 

Parameter n ranges from - (NB/2 - 1) to NB/2 as discussed 
i,xy ' Tn,yy 

(FYA)in=ix(24>iXy + >Pn,yy-^,xx)cosd before, a n d / = ltOiV f i. 
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Variational Principles for Some 
Nonstandard Elastic Problems 
Variational principles are derived for some nonstandard problems involving elastic 
bodies in smooth contact. For these problems, the portions of the surfaces where 
one boundary condition holds rather than another must be determined as part of the 
solution to the problem. Cases considered include a body containing a crack or 
delamination, indentation by a rigid punch, and contact with an elastic foundation. 

Introduction 

The principles of minimum potential energy and minimum 
complementary energy for infinitesimal elastic deformations 
are well known for problems in which the tractions or the 
displacements are specified at each point of the surface of an 
elastic body (see Sokolnikoff, 1956, for example). The prin­
ciples can lead to bounds on quantities of physical interest and 
can be used to obtain approximate analytical and numerical 
solutions. For some problems, the portions of the surface 
where one boundary condition holds rather than another must 
be determined as part of the solution to the problem. For ex­
ample, in problems involving contact between elastic bodies, 
the shape of the contact area can vary with the loading (for 
references see Gladwell, 1980). Uniqueness of solution for 
typical problems of this type was considered by Shield (1982) 
for problems involving smooth contact between surfaces of 
elastic bodies. Here we again consider elastic problems involv­
ing smooth contact and develop variational principles for 
some typical situations: loading of a body containing a crack 
across which there is no cohesion, bodies in smooth contact, 
indentation by a smooth rigid punch, and contact with a 
smooth elastic foundation. The examples can be combined to 
treat more complex problems, such as the indentation of an 
elastic body containing a crack. 

The principles rest on the positive-definiteness of the strain 
energy and they show that the potential and complementary 
energies attain absolute minimum values only when the trial 
functions generate the strains or stresses of the actual solution. 
Weaker stationary principles apply without the assumption of 
positive-definiteness of the strain energy. It is assumed that 
the integrals involved are convergent if they are improper and 
this requires the states considered to have finite total strain 
energy or total complementary energy. The elastic material 
can be inhomogeneous. At an interface between two materials 
in a composite, the displacements and traction are assumed to 
be continuous across the interface but delaminations can be 
included if they are modeled as cracks across which there is no 
cohesion. 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 
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Elastic Body With a Crack 

We assume that the strain-energy density W of the body is 
positive-definite and we write 

2W{e)= cmei}ekl (cijkl = cm = cm), 

where ey are the infinitesimal strains referred to rectangular 
Cartesian axes xh The stresses ty are related to the strains 
through 

Uj—Cijklekl' eij - Cijklhh 

where CiJkl have the same symmetries as cjjk/. The strain-
energy is also a positive-definite function Wc of the stresses, 

2Wc(t) = Cukltytkl. 

In the unstressed reference state, the body occupies a region 
Kwith surface S and we suppose that it contains a crack across 
which the material has no cohesion. The crack is defined by a 
surface C in V, and we use n to denote the unit normal to one 
side of the surface C. We use ± signs to indicate values of 
quantities on the two sides of C, with the + sign referring to 
the side of C with exterior normal n. We shall also use square 
brackets to indicate the difference in the values of a quantity 
across C, so that for the displacement field u, for example, 

[u] = u + — u~ . 

Under loading of the body, we assume that at points of the 
crack surface C either (/) the crack opens with no traction 
transmitted across C or (ii) the two sides remain in smooth 
contact. Then at points of C we have 

(u+ - u ~ ) - n = [u]«n< 0, (1) 

(2) 

and we require on C 

either (/') T+ = - T " = 0 when [u]-n < 0 

or (ii) T + = - T + = ~pn when [u] = 0, 

where T is the surface traction and p (x) is the (nonnegative) 
pressure transmitted across C. We set p = 0 at points of C 
where (/) holds. 

The loading of the body is assumed to be caused by a body 
force F, prescribed surface tractions TG on a portion ST of S 
and prescribed displacements uG on the remainder Sy of S. 
The displacement field u is unique except possibly for a rigid 
displacement, depending on the conditions on Sy (Shield, 
1982). 

We define the potential energy P as the functional 
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P[u'}= f W(e')dV- f T ° . u ' r f S - f F-u'dV (3) 

for fields u ' such that 

u ' = u G o n S y , [u '] .n < Oon C. (4) 

We set 

u ' =u +Au. 

Then Au is zero on Sy and we have 

W(e')=W(e)+tijAeiJ+W(Ae). (5) 

The stresses ty satisfy equilibrium with body force F and with 
the divergence theorem and boundary conditions we get 

P[u'}-P[u} = [ W(Ae)dV+ [ T- [Au]dS, 

where contributions from both sides of C have been included 
in the integral over C. For the actual solution T • [u] is zero on 
C in view of equations (2) and the integral over C has the value 

[ T>[u']dS=- [ pn-[u']dS. 

From equation (4) this is seen to be greater than or equal to 
zero and with Wpositive-definite, we have 

P{u'\ > P{u] 

with equality if and only if u and u ' have the same strains and 
n • [u'] is zero where/) is nonzero. 

Thus we have: For displacements which satisfy the displace­
ment boundary conditions and have no interpenetration of 
material across the crack, the potential energy P is least for the 
displacements of the actual solution. 

The complementary energy Q is defined as 

Q[t'}=\ Wc(t')dV-\ 1''\xGdS (6) 
J V J Sy 

for stresses t'y in equilibrium with F and such that 

tyrtj^Tf onST, T '+ = - T ' ~ = - p ' n on C, 

where p' > 0. We set 

tu = tu + Atu> 

so that the stresses Aty satisfy equilibrium with no body force 
and have zero traction on ST. We have 

Wc(t')=Wc(t)+Atijeij+W(At), (7) 

and with the divergence theorem we obtain 

Q[t' )-Q[t] = \ y Wc (At)dV+ j c AT.[u]dS. 

As before T • [u] is zero on C and the integral over C becomes 

f T-[u]dS=- f p'n>[u]dS > 0. 

It follows that 

Q[t') ^ Qlt) 

with equality if and only if t{j = /,-, in V, and we have: For 
stress fields with the given surface tractions and in equilibrium 
with the given body force and which transmit at most pressure 
across the crack, the complementary energy Q is least for the 
stresses of the actual solution. 

For the actual solution we have 

P{u}+Q{t)=2\ WdV-[ T-udS- [ ¥-udV=0, (8) 

using the divergence theorem and T • [u] = 0 on the crack 
(Clapeyron's theorem). We then have 

P[u') > P[u) > -Q[t'}, (9) 

and the principles provide upper and lower bounds for the 
potential energy. 

Smooth Contact Between Elastic Bodies 

For simplicity we consider contact between two elastic 
bodies occurring over parts of the surfaces of the bodies which 
are nearly plane, but the approach is easily generalized. In the 
reference configuration the bodies touch at the origin 0 of 
coordinates and the plane x3 = 0 is tangent to both bodies at 
0. The bodies occupy regions Vl and V2 with the x3 axis 
pointing into V2. Under loading, contact may occur over sur­
faces Cx and C2 of the bodies, defined as the nearly plane sur­
faces 

Q : *3 =/(*i> *2)> C2:x3=g(Xi,x2), 

where xx, x2 lie in a region C of the x^ -x2 plane enclosing the 
origin and 

f(xux2) < g(xux2). 

The contact is smooth and we denote the pressure between 
the two bodies by the nonnegative function/>(.*:,, x2), defined 
over C. Then 

T\=-T\=p(xux2)onC, (10) 

where the superscripts indicate values for the two bodies. The 
bodies do not penetrate each so that the displacement compo­
nent «3 satisfies 

u\-u\ >f-gonC. (11) 

At each point of C we require 

p = 0 when u\-u\ > f—g, u\-u\=f~g whenp > 0. (12) 
On the remaining portions Sj and S2 of the surfaces of the two 
bodies, we suppose that tractions TG are specified on parts 
SlT, S2T and displacements uG are specified on parts Sw, S2U 

of Sit S2, respectively. We use Sr and Sy to denote SIT + S2T 

and Sw + S2U. The body force F is assumed known in 
V— V\ + V2. The solution is unique except possibly for a rigid 
body displacement (Shield, 1982). 

The potential energy P is again defined by equation (3) for 
displacements which satisfy the boundary conditions on Sy 
and which satisfy (11) on C. As in the previous section, we 
look at the difference between P{ u' j and P{ u), use equation 
(5) and the divergence theorem, and find that the difference 
involves the integral 

( T>(u'-u)dS. 
Jc1 + c2 

In view of equations (10) and (12), the integral becomes 

\jcP{u^-u^-(J-g)}dS, 

and this is nonnegative because M3' satisfies (11). Thus we can 
show that: For displacements which satisfy the displacement 
boundary conditions and which satisfy (11) on C, the poten­
tial energy is least for the displacements of the actual solution. 

The complementary energy Q is defined by 

Q{t']=\ Wc(t')dV-\ T'-vLGdS-\ p'(f-g)dS (13) 
JV JSy JC 

for stresses ty in equilibrium with the given body force and 
given tractions and which involve at most a pressure p' be­
tween the bodies across C. The difference between Q\V } and 
Q{t] is transformed as in the previous section and we are led 
to consider the sign of 
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[ (T'-T).urfS-[ (p'-p)(f-g)dS. 
J Ci + C2 JC 

This can be written as 

\c(P'-P) [ul-u\-(J-g))dS. 

and with equations (11) and (12) we see that the integral is 
nonnegative. Thus we can show that: For stress fields in 
equilibrium with the given body force and given tractions and 
which involve at most a pressure between the bodies across C, 
the complementary energy is least for the stresses of the actual 
solution. 

For the actual solution we again have P{u\ = - Q[t] and 
the principles lead to upper and lower bounds on P{u\. 

Indentation by a Smooth Rigid Punch 

In order to illustrate problems in which an elastic body can 
come into contact with a rigid body of known shape, we con­
sider indentation by a smooth rigid punch when the possible 
area of contact is a region C of the xrx2 plane enclosing the 
origin 0. The exterior normal to the body at 0 is along the x3 
axis, and the remainder of the surface of the body is denoted 
byS. 

When the movement of the punch is known, we will have 
u3 < g(xu x2) on C, (14) 

where g is a known function, and we require at each point of C 

p = 0 when u3 < g, u3 =g when p > 0, (15) 
where p is the contact pressure. Tractions are prescribed on a 
part ST of S and displacements on the remainder Sy of S, with 
a known body force in the region V occupied by the body. 

The problem can be considered as a limiting case of contact 
between two elastic bodies. The potential energy is defined to 
be the functional (3) for displacements which satisfy the condi­
tions on Sy and (14) on C. We can then proceed as in the 
previous section to show that: The potential energy is least for 
the displacements of the actual solution. 

The complementary energy Q is defined to be 

Q[t'}=[ Wc{t')dV-[ T'-uGdS+[ p'gdS 
JV JSy JC 

for stresses in equilibrium with the given body force and sur­
face tractions and which involve a pressure p' in the contact 
area C. Then: Q will be an absolute minimum for the stresses 
of the actual solution. 

Instead of prescribing the movement of the punch, we may 
prescribe the downward force L on' the punch and the 
moments M,, M2 of the force about the xx, x2 axes, with 
prescribed loading on S as before. The contact pressure/? must 
then satisfy 

L=[ pdS, Af, = - f px2dS, M2=\ px^dS. (16) 

For a known punch shape g(xu x2) the solution will satisfy 

u3 < g {Xi, x2) - d + ax2 - bxx on C, (17) 

with equality where p is nonzero. The constants d, a, b are 
determined as part of the solution, which will be unique except 
possibly for a rigid body displacement (Shield, 1982). (Other 
problems may be treated; for example, we may require the 
punch to indent without tilting and then a, b are zero and M,, 
M2 are not prescribed.) 

The potential energy is defined as 

P{u')=\ W(e')dV-\ TG-u'dS 
JV JST 

- ( F>u'dV-Ld' ~Mxa' -M2b' (18) 

for fields u' which satisfy the displacement conditions on Sv 
and which are such that 

u'3 < g(xt, x2)-d' +a'x2-b'xl on C, (19) 
where d', a', b' are constants. After transformation, we find 
that 

P{u')-P{u)=[ W(Ae)dV 

- [ p(u3'-ui)dS-L(d'-d)-Ml(a'-a)-M2(b' -b). 

If we set 

v = u3 +d—ax2 + bxlt v' =u3+d' —a'x2 + b'xx 

and use equations (16), then apart from the strain-energy term 
the right-hand side becomes 

- \ p(v'-v)dS. 

Now where/? > 0, equality holds in (17) and v = g. Because 
v' < g from (19), we then see that the integrand is non-
positive. Thus: The potential energy is least for the 
displacements of the actual solution. 

The complementary energy is defined to be 

Q{t'}=\ Wc(t')dV-[ T-uGdS+ [ p'gdS 
JV JSu JC 

for stresses in equilibrium with the given body force and sur­
face tractions and which involve a pressure p' in the contact 
area C satisfying the loading conditions (16). We can then 
show that 

QW }-Q[t} = \ v Wc(At)dV- j c (p' -p) (u3 -g)dS. 

Because p' and p apply the same resultant force and moment 
over C, the integral over C can be written as 

] (p' -p)(u3-g + d-ax2 + bx1)dS. 

Equality holds in (17) where/? > 0 so that there is no contribu­
tion to the integral from p, and the contribution from /?' is 
nonpositive in view of (17). It follows that: The complemen­
tary energy is least for the stresses of the actual solution. 

For the actual solution we have P{u] = — Q{t\ for both 
punch problems of this section. 

Smooth Contact With an Elastic Foundation 

Variational principles also hold for elastic bodies which can 
receive support from a foundation of the Winkler type. For 
simplicity we assume here that the foundation has a plane sur­
face and lies below the plane x3 = 0. The portion of the sur­
face of an elastic body that can come into contact with the 
foundation is the nearly plane surface 

X3 = / ( * ! , X2) 

touching the plane x3 = 0 but lying entirely above it, where 
xux2 lie in a region C of the xrx2 plane. The reactive 
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pressure p of the foundation is proportional to the downward 
displacement of the surface, so that on C we require 

/7 = Owhen«3 > -f,p= -K(u3 + / ) when u3 < - / , (20) 

where K > 0 is the stiffness of the foundation (K may vary 
with*,, x2)- If we define q (w3) by 

q(u3) = 0 when w3 > — / , q(u3) = 1 when u3 < —/, 

then we can write 

T3=p=-K(u3+f) q(u3) on C, (21) 

while the tangential tractions are zero on C. Boundary condi­
tions on the remaining surface S of the body and a body force 
field are prescribed as before. 

The potential energy is defined to be 

P[u'}=[ W{e')dV- [ Ta.u'dS 

- J ^ F . u W + ^ - ^cK(ui+f)2q'dS, 

where q' = q(u3), for displacement fields u3 which satisfy the 
displacement boundary conditions on Sy. Using equation (5) 
and the divergence theorem, we find that 

P{u'}-P[u]=\ W(Ae)dV 

+ — K(v'2q' + v2q-2vqv')dS (22) 

in which 

v = u3+f, v'=ui+f. 

By considering the various possibilities for the signs of v and 
v' together with the corresponding values for the step func­
tions q and q', we find that the integrand of the integral over 
C in equation (22) is nonnegative. Thus we again have: The 
potential energy is an absolute minimum for the displacements 
of the actual solution. 

For the complementary energy we take 

Q[t')=[ Wc(t')dV-{ T'.uGdS 
Jv Jsu 

+ \ic(p'2/2K+p'f)dS 

for stresses in equilibrium with the given body force and sur­
face tractions and which involve a pressure p' on the founda­
tion interface C. Using equation (7) and the divergence 
theorem, we can show that 

Q[t'}-Q[t} = \vWc(At)dV 

+ \ c {(p'2-p2)/2K+(p'-p)(u3+f))dS. 

From equations (20), the integrand of the integral over C is 
found to be nonnegative and we see that: The complementary 
energy is an absolute minimum for the stresses of the actual 
solution. 

We can also show that P{u] = - Q{t), so that the prin­
ciples can be used to bound P{u]. 
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Sufficient Symmetry Conditions for 
Isotropy of the Elastic Moduli 
Tensor 
Symmetry conditions are found that assure isotropy of the fourth rank tensor of 
elastic moduli. Crystallography provides the answer to this problem in the two-
dimensional context, namely one axis of three-fold symmetry assures the isotropy of 
properties in the plane normal to the axis. The present work provides the answer in 
the three-dimensional problem: 6 axes of five-fold symmetry are sufficient to give 
isotropy of the elastic moduli. An important restriction must accompany the present 
result. The derivation is given in the special form appropriate to low density 
materials which have a microstructure that transmits load according to the axial 
deformation of a space network of material distributed into micro-struts. The cor­
responding fiber composite idealization is that of a fiber dominated system, it 
therefore follows that if the fibers take the 6 specific orientations in three-space then 
isotropy is obtained. 

Introduction 

One of the basic questions in materials science concerns the 
determination of the symmetry conditions that assure 
isotropy. Of course isotropy has meaning only when specified 
relative to some particular property. For example, thermal 
conductivity is isotropic for the case of cubic symmetry. 
However, elastic moduli are not isotropic for cubic symmetry. 
The crucial distinction in this particular example is that heat 
conduction is characterized by a second rank tensor while 
elastic moduli are of a fourth rank tensor. In general, the 
number of independent constants associated with a particular 
property are directly determined by and known for the various 
types of symmetry encountered in the field of crystallography. 
However, none of the 32 crystal classes has symmetry suffi­
cient to assure isotropy of the tensor of elastic moduli. This 
important property is the subject of the present work and suf­
ficient conditions on material symmetry will be determined in 
order to assure isotropy of elastic moduli. 

The simplest of the crystal classes is that involving cubic 
symmetry. This type of symmetry involves 4 axes of three-fold 
symmetry and it is sufficient to give isotropy of any second 
rank property tensor, thus involving only a single property 
(see for example Nye, 1957). The fourth rank elasticity tensor 
for cubic symmetry involves three independent constants, one 
more than is necessary for isotropy. Thus the symmetry type 
to give isotropy of the elastic moduli or compliances must be 
of higher order than that of cubic symmetry. In 
crystallography treatments, isotropy of moduli is introduced 
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by merely stating it without defining a minimum symmetry 
class. From a group theory point of view this corresponds to 
saying that the symmetry class has an infinite number of 
elements. It is conceivable that this is the only possible solu­
tion to the problem of associating symmetry conditions with 
isotropy of moduli, however, this can easily be reasoned to not 
be likely in the following sense. Since 4 axes of three-fold sym­
metry assures isotropy of second rank tensors, it is likely that 
there is some higher order symmetry type, but with a finite 
number of elements, that assures isotropy of fourth rank 
property tensors. This will be found to be the case. 

Another piece of evidence supports the contention that a 
rather simple symmetry class should assure isotropy of 
moduli. First, some terminology must be standardized. 
Henceforth the term isotropy will be taken to mean isotropy 
with respect to the tensor of elastic properties. Also the term 
isotropy means isotropy with respect to three-dimensional 
Euclidean space. The latter terminology immediately raises the 
question of corresponding behavior in two-space. That is, 
what are the conditions that give isotropy in two-space? The 
answer to this question has been known for many years and 
was first determined in the context of crystallography. 
Specifically, close-packed hexagonal symmetry implies elastic 
properties characterization through the 5 constants of 
transverse isotropy. In the plane of the hexagonal symmetry, 
the material is isotropic. Thus, in a planar, two-dimensional 
context isotropy is assured by close pack hexagonal symmetry 
which is mathematically characterized by 1 axis of six-fold 
symmetry. So then 1 axis of six-fold symmetry gives isotropy 
in two-space; although it is not obvious, so too does three-fold 
symmetry. It is reasonable to expect that some rather simple 
symmetry form would also give isotropy in three-space. In­
cidentally, the planar use of six-fold symmetry to give isotropy 
in two dimensions is widely employed in composite material 
laminate construction whereby lamina stacked at 60 deg angles 
with respect to each other assure "quasi-isotropy," meaning 
isotropy in the plane. 
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The present work will prove that 6 axes of five-fold sym­
metry are sufficient to provide isotropy. However, some 
qualifications must be placed upon the derivation. The present 
interest in isotropy arose from project work upon very low 
density materials (see Gibson and Ashby, 1982, for a discus­
sion of the many features of low density material microstruc-
ture). In some low density materials with appropriate 
microstructure, load can be transferred through a network of 
uniaxially load-bearing struts in the case of an open celled 
material. The material micro-structure involves various orien­
tations of these struts. Previous theoretical work (Christensen, 
1986) on these types of materials involved the assumption of 
conditions of isotropy through the device of letting the micro-
material load-bearing members assume a random orientation 
in three-space. This then avoided the question of determining 
the minimum number of spatial orientations needed for 
isotropy of these types of materials. In the following work the 
manner of proving that 6 axes of five-fold symmetry gives 
isotropy is restricted to the low density material type involving 
load transfer through uniaxial deformation of micro-material 
members.1 This restriction corresponds to other common 
idealizations. For example, the present results would also ap­
ply to fiber composite materials with the fibers oriented in 
three-space with the corresponding restriction being that the 
fiber-matrix system is fiber dominated. The present results 
also apply to a material whose stiffness is modeled by atomic 
interaction, but subject to the proviso that these interactions 
are only of the central force type. Primarily though, the pre­
sent proof is effected through use of rigorous results from the 
analysis of low density material mechanical behavior. It is 
probable, but not proved here, that the solution to the stated 
isotropy problem, involving 6 axes of five-fold symmetry, ap­
plies to more general material types as well. 

Finally one last clarification should be mentioned. These 
symmetry characterizations should not be confused with 
features of cell architecture in low density materials. Cell 
structure and type is a completely different area from ques­
tions of material symmetry, even though such cell structures 
do admit symmetry characterizations. To say this another 
way, symmetry types can be specified with no restriction or 
implication to the cell geometry. In fact, a cell type 
microstructure need not even exist. 

Conceptually, the manner of proving that 6 axes of five-fold 
symmetry gives isotropy involves showing that for this type of 
symmetry the effective modulus of deformation with respect 
to a particular direction of uniaxial strain is in fact independ­
ent of direction. Before getting to this proof, it is necessary to 
obtain some preliminary results by examining the vastly 
simpler two-dimensional problem, and then by examining 
cubic symmetry in the three-dimensional case. The starting 
point for the present work is to recall some results from the 
analysis of isotropic, very low density materials since the 
proof relies upon special forms of tensor transformations with 
respect to these types of materials. 

In the context of low density materials, the problem is to 
determine the two effective isotropic properties, ^ and k, in 
terms of the amount of material in the space network of struts 
and the elastic modulus, Em, of the strut material itself. This 
problem was first solved by Gent and Thomas (1963) in the 
context of cellular materials and by Christensen and Waals 
(1976) in the context of fiber reinforced materials having ran­
domly oriented fibers. The final results are 

V---

and 

rF 

~15~ 

rF 

(3) 

where c is the volume fraction of material, of modulus E,„. 
These are completely rigorous results from elasticity theory 
subject only to the idealization of load transfer by uniaxial 
deformation of the micro-structure. (See Christensen, 1986, 
for elaboration upon this condition.) The other isotropic 
properties corresponding to equations (3) are given by 

. cE,„ 

E = -

15 

Cl2jn-

(4) 

1 

The value of Poisson's ratio of 1/4 corresponds to the original 
one constant elasticity theory of Poisson and Cauchy whereby 
atoms were viewed as material points subject to central force 
attraction or repulsion. Obviously this corresponds to a 
macroscopic idealization of load transfer through a network 
of struts. 

It will be of value to have the proper form of the stress 
strain relation (1) for uniaxial strain, as specialized to low den­
sity, open cell materials. Combining equations (1), (3), and (4) 
gives 

au=rien 

where 

r\ = X + 2fx -
CtLm 

(5) 

(6) 

with en being the only nonzero component of strain. The sym­
bol r; will be used throughout as the modulus of one-
dimensional applied strain, i.e., uniaxial strain. 

It also will be useful to have forms corresponding to those 
just given but specified for two-dimensional conditions of 
plane stress. The appropriate stress-strain forms are 

E 

1 
- ( 6 1 1 + ^ 2 2 ) 

Low Density, Open Cell Material Isotropic Properties 

The stress-strain relations for linear, isotropic elasticity 
have the common form 

aij = \djjekk + 2n6u (1) 

where X and /z are the Lame constants and the Cartesian tensor 
notation is used. In terms of the alternate two mechanical 
properties involving the bulk modulus, k, and ix, then equa­
tion (1) has the alternate form 

"n = * V** + ̂  (eu —y^) (2) 
1 Budiansky and Kimmel (1986) have demonstrated isotropy for this type of 

symmetry in the context of modeling biological materials. See also the 
acknowledgment. 

< 7 2 2 = - -(e22 + ven) (7) 
\-v2 

al2 = 2ixel2 

where from Christensen and Waals (1976) the appropriate 
properties are given by 

„ cEm 

and 

1 

'T 
rF 

(8) 

Journal of Applied Mechanics DECEMBER 1987, Vol. 54/773 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Gm the tensor transformation assures an especially simple 

(a) Close packed hexagonal, 6-fold symmetry 

y 

1/2 

1/4 

(b) 4-fold symmetry and modulus 

Fig. 1 Two-dimensional forms 

For one-dimensional strain, in the context of plane stress, rela­
tions (7) and (8) give 

3 „ 

where £22 = e i 2 = 0-
The factors 3/8 in equation (9) and 1/5 in equation (6) 

represent the geometric effect of having the load bearing 
micro-structure members be randomly oriented in two-space 
and in three-space, respectively. These results will be applied 
in the next sections to determine conditions on symmetry to 
give isotropy. 

Two-Dimensional Symmetry Requirements 

It will be instructive to have displayed the relationship be­
tween isotropy and symmetry in the two-dimensional case 
before proceeding to the three-dimensional situation. As has 
already been mentioned, the two-dimensional case is fully 
understood. Following standard crystallography forms, as in 
Nye (1957), close packed, hexagonal symmetry implies 
transversely isotropic properties, which in the plane of the 
hexagonal symmetry are isotropic. Relative to an axis normal 
to this plane, the symmetry type is specified as one of six-fold 
symmetry. 

Figure 1(a) shows the six-fold symmetry form with 3 axes at 
120 deg angular intervals. Now stiffness is a fourth rank ten­
sor with the tensor transformation 

n =a p p t f 
^mnpq *-* ijkrmrnjipklqt 

(10) 

where lmi are the direction cosines. For the present interest in 
one-dimensional load carrying members, as the struts in the 
micro-scale view of low density materials, only one term in 
Gyki is nonzero, thus 

°ij = Gijkt£ki (11) 

where 

~iijki=EmA f o r i,j,k,l=l 

= 0 otherwise 

(12) 

with axis 1 taken in the direction of the member, and A the 
cross-sectional area of the member. With this restriction of 

form involving trigonometric functions to the fourth power. 
With respect to a one-dimensional strain state, as in the 

preceding section, the appropriate characterization of stiffness 
in the direction 6 in Fig. 1(a) is given by 

1 
cos40 + y c o s 4 ( y " #) + y c o s 4 (--- - (?) (13) 

where each of the three terms is the appropriately tensor 
transformed value for the three material load bearing direc­
tions in Fig. 1(a), and the coefficients of 1/3 are normalizing 
terms such that if the three directions were coincident the coef­
ficient would be unity, with r; non-dimensionalized. Expand­
ing the last two terms in equation (13) and using trigono­
metric identities reduces (13) to a form independent of 6, prov­
ing isotropy, and giving simply 

V=Y 04) 

Comparing the result (14) with the known isotropic result 
from the previous section, namely equation (9), shows coin­
cidence, as it must. Note that in equations (13) and (14) the 
term cE„, appearing in equation (9) has been absorbed into ij. 
The simple proof of two-dimensional isotropy just given ap­
peals to the especially simple case of uniaxial load transfer 
specified by equation (12). However, this latter restriction is 
not necessary, because in crystallography it is well known that 
three-fold or six-fold symmetry gives two-dimensional 
isotropy, with no further restriction. 

Next, the two-dimensionally anisotropic case of Fig. 1(b) is 
treated, since it will reveal some features which reappear in the 
three-dimensional case. For two orthogonal material direction 
axes the symmetry is four-fold and the one-dimensional strain 
modulus is given by 

7) = — cos40 + —cos4(90 + 6) 
2 2 

(15) 

where again the coefficients of 1/2 are normalizing terms. Ex­
panding the last term in equation (15) gives 

1 
1J = —COS 4 

1 
-sin40 (16) 

The dependence upon angle 6 precludes isotropy. It is obvious 
that the maximum and minimum values of rj are given by 

Imax — ,?8 = 0 _ " 

*/min ' 

(17) 

These maximum and minimum values of modulus under 
uniaxial strain conditions bracket the isotropic value of 3/8, as 
shown in Fig. 1(b). The maximum modulus direction is seen to 
be coincident with one of the material axes while the minimum 
modulus direction is, in an angular sense, equidistant from the 
two directions of material structure. These two-dimensional 
results are almost trivial, nevertheless they will provide 
guidance in the three-dimensional case where the manner for 
proceeding is far from trivial. 

Three-Dimensional Symmetry Requirements 

Two cases of three-dimensional symmetry will be studied, 4 
axes of three-fold symmetry and 6 axes of five-fold symmetry. 
The latter case is the one to be proven to provide isotropy. The 
former case, that of cubic symmetry, is studied first since it is 
much simpler and it will be helpful to see its features of 
anisotropy. 

4 Axes of Three-Fold Symmetry. The arrangement of 4 
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(a) Tetragonal axes arrangement 

35.26° 

(b) Properties directions 

Fig. 2 Cubic symmetry 

axes of three-fold symmetry is obtained from the standard 
geometric construction of a tetrahedron or cube. The system 
of cubic symmetry is as shown in Fig. 2 where each axis makes 
an angle of 109.47 deg with each other axis. In this arrange­
ment the material is distributed into four load bearing direc­
tions, having the stated symmetry. 

The modulus due to one-dimensional strain in the direction 
of any one axis, as in Fig. 2(a), is given by the nondimensional 
form 

Vl =—(1) + —(3)cos4109.47deg (18) 

where the 1/4 factors refer to a normalizing coefficient for 
four directions of symmetry, and each of the four directions 
transforms according to the special uniaxial forms in equa­
tions (11) and (12). Equation (18) becomes 

T?, =0.259 (19) 

In Fig. 2(b) the plane is taken such that it makes equal angles 
with all four axes. Axis 2 is normal to the plane and also 
makes the same angle with all four axes. In direction 2 the one-
dimensional strain modulus is given by 

(4) 
V2- -cos454.735deg (20) 

where there are 4 directions with the 1/4 normalizing coeffi­
cient. Equation (20) becomes 

7,2=0.111 (21) 

A third direction, labeled 3 in Fig. 2(b), gives the corre­
sponding modulus as 

(2) 

becoming 

r;3 =—cos435.265deg 

i?3 =0.222 

(22) 

(23) 

The following characteristics emerge from this exercise. It is 
no surprise that the modulus is direction dependent since the 
symmetry is cubic with three independent constants. As 
discussed by Love (1944) and Nye (1957), Neumann's Princi­
ple asserts that the property under consideration, in this case 
the one-dimensional strain modulus, ?/, must have the same or 

63.44° 

Fig. 3 Pentagonal dodecahedron 

a higher degree of symmetry as that of the basic geometry. 
This then guarantees that the directional dependence of i? will 
have 4 axes of three-fold symmetry and 3 axes of four-fold 
symmetry. That is, the shape of the surface for T\ as a function 
of direction will appear cubical in nature, having the form of a 
distorted cube. This then is sufficient to establish the ex-
tremum character for rj in the directions of the material 
members and in the directions that make equal angles with 
them, that is in the directions of the diagonals of the cube and 
in the directions of the cubical axes, respectively. These ex-
trema could either be maxima or minima. The results (19) and 
(21), however, show that 

and (24) 

'/min='?2=0.110 

Thus this type of symmetry is quite anisotropic with the ratio 
of maximum to minimum one-dimensional strain modulus be­
ing a little over a factor of 2, (actually 7/3), and bracketing the 
isotropic value of 1/5. Furthermore, it is seen that the direc­
tion of maximum modulus is coincident with one of the 
material direction axes while the direction of minimum 
modulus makes equal angles with all four axes. This behavior 
is the same as was found in the preceding two-dimensional 
cases, and this characteristic is of importance in the next 
section. 

6 Axes of 5-Fold Symmetry. With the background pro­
vided in the previous sections there is now enough information 
to proceed to the main case, the symmetry condition that 
assures isotropy in three-space. As already examined, cubic 
symmetry involves 4 axes of three-fold symmetry. Perhaps the 
next case to consider would be 5 axes of four-fold symmetry, 
however such a condition does not exist. Proceeding further 
suggests 6 axes of five-fold symmetry. This is a standard form 
and it is associated with two types of regular solids. These are 
the pentagonal dodecahedron and the icosahedron. The 
former involves twelve faces of pentagonal form while the 
later is made up of 20 faces of equilateral triangles. The pen­
tagonal dodecahedron has 20 vertices while the icosahedron 
has 12 vertices. In the case of the pentagonal dodecahedron, 6 
axes of five-fold symmetry are established by erecting normals 
to the faces at their centers, while in the case of the 
icosahedron the geometric center of the solid is connected to 
the vertices. In the following work the geometric features of 6 
axes of five-fold symmetry will be taken from the corre­
sponding geometric characteristics of a pentagonal 
dodecahedron. 

In the preceding case of cubic symmetry, it was sufficient to 
use characteristic angles with a specified number of significant 
figures and perform the moduli calculations at that level of ac-
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Direction of modulus 
measure 

Vertex 

Mid edge 

Fig. 4 Directions relative to a vertex of a pentagonal dodecahedron 

curacy to demonstrate anisotropy. In the present case to prove 
isotropy it is not permissible to do numerical calculations to 
some specified degree of accuracy. Rather, only closed-form 
analytical expressions can be used to obtain the proof. The ob­
vious way to attempt the proof would be to express the prop­
erty of interest as a function of angular orientation in a 
spherical coordinate system. With the effects of all six axes 
combined, an independence of angular orientation for the 
property would prove isotropy. While this simple procedure 
was followed in the two-dimensional case given earlier, it 
would be extremely complicated to do so here in the three-
dimensional case. Fortunately there is a much more direct 
path to the proof of isotropy, to be described next. 

A pentagonal dodecahedron is shown schematically in Fig. 
3. As already mentioned the 6 axes of five-fold symmetry are 
established by the normals to each face at their centers. Thus 
in the present problem the one-dimensional material members 
are distributed into these six directions. In terms of angular 
orientation, it is seen that the direction'coincident with one 
axis is an extremum orientation insofar as modulus is con­
cerned. This follows from Neumann's principle which was just 
discussed in connection with the cubic symmetry case. It is not 
clear whether it is a maximum or a minimum. Likewise a 
direction taken through a vertex is an extremum orientation 
because of the following symmetry pattern. Relative to a 
direction through a vertex, three of the symmetry axes have an 
equal angle with it, while the other three axes also have an 
equal (greater or lesser) angle with it. There is sufficient sym­
metry in this to assure an extremum characteristic. Again it is 
not known whether it would constitute a maximum or a 
minimum. Therefore, what can be said is that the direction 
coincident with one material axis and the direction that makes 
equal angles with the material axes constitute extremum orien­
tations with respect to modulus, one being a maximum, the 
other a minimum. The preceding work on cubic symmetry and 
two-dimensional orthotropy suggests that the direction coinci­
dent with one axis provides the maximum modulus while the 

other direction provides the minimum modulus. The proof of 
isotropy, to be given next, involves showing that the one-
dimensional strain moduli in these two directions are identical­
ly the same, and coincide with the known isotropic value, and 
since these are extremum orientations, the fourth-rank tensor 
of moduli must be isotropic. 

Begin by considering the stiffness in the direction of a vertex 
in the dodecahedron of Fig. 3. The appropriate geometry 
needed to determine the direction cosines for all six axes are as 
shown in Fig. 4. The appropriate nondimensional modulus for 
uniaxial strain is given by 

i? = 3 (—)cos40 + 3 (—)cos4/3 (25) 

where the three nearest material directions are of angle d from 
the vertex while the three furthest are of angle /3. The factor 
1/6 in equation (25) accounts for the presence of 6 axes of 
symmetry, and the load bearing element of each direction has 
stiffness characteristics given by equations (11) and (12). 

The basic geometry of the pentagonal dodecahedron is 
taken from the International Tables of X-ray Crystallography 
(1959). From this source 

T 6 

cos40 = (26) 

where 

r = —(1+VJ) (27) 

Angle /3 in equation (25) and Fig. 4, obtained by passing a 
plane through the pentagonal dodecahedron, can be written as 

but 

and 

/3 = 0 + 2a 

VI 

(28) 

(29) 

cos0 = -
V3(5)1M 

Combining equations (28) and (29) gives 

c o s / 3 = ( _ -
) V3(5)1/4 3 V —) 

3vT/ 
(30) 

Using T from equation (27) after some manipulation then gives 
the intermediate form 

cosj3 = 
V5-1 

2V3(5)1/4v7 
(31) 

where the identity 1/r = T- 1 has been used. Using T again and 
raising to the fourth power gives equation (31) as 

7-3V5 
cos4/3 = = - (32) 

45(3+ V5) V ' 

Now, using equation (27) in (26) gives that term as 

cos40 = — (9 + 4V5) (33) 

Combining equations (32) and (33) in (25) gives the final result 
for the modulus due to uniaxial strain in the direction of a 
vertex as 

I Vertex 
Direction 

(34) 

Next the modulus due to uniaxial strain in the direction of 
an axis of symmetry is determined. The appropriate expres­
sion for the non-dimensional modulus is 
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>? = — + 5(^—Jcos427 (35) 

where 2y is the angle between any two axes of symmetry. 
Using the pentagonal dodecahedron, the direction cosine 
between the normal to the center of a face, and the direction 
from the center of the dodecahedron to the adjacent mid edge 
location, is given by 

v7 
C O S 7 = W 7 r (36) 

Using equation (36) in (35) then gives 

U I = 4 <37> 
Isymm J 

axis 

From equations (34) and (37) the two extremum values for the 
modulus coincide. Furthermore, they are coincident with the 
known isotropic value from equation (6) thus the present case 
has been established as being isotropic. To state this explicitly, 
the condition of 6 axes of five-fold symmetry is sufficient to 
provide isotropy of the modulus tensor. 

This proof of isotropy is related to material directions in 
low density materials microstructure. Similar considerations 
apply to fiber reinforced composite materials under the pro­
viso that the material is fiber dominated, meaning that the 
matrix contribution to the stiffness is negligible compared 
with the fiber contribution. The fibers arranged according to 
the 6 directions specified above will then provide isotropy. 
Thus, 3 directions suffice for isotropy in two-dimensional con-
tinua while 6 directions are required for three-dimensional 
continua. 

The present proof is restricted to the cases discussed involv­
ing load transfer according to the simplified stiffness matrix of 
equations (11) and (12). In that special case only a single ele­
ment of the stiffness matrix was taken to be nonzero. This 
greatly simplified the number of terms to be considered in the 
tensor transformation relation. Nevertheless, these special 
cases probably cover the most important physical examples of 
materials whose microstructure exhibits special forms of direc­
tionality, i.e., low density, open cell materials, and fiber rein­
forced materials. It is likely that the present results can be 
generalized to the case where the individual material element is 
transversely isotropic rather than just being the special case 
considered here of transversely isotropic but with only one 
nonzero entry in the modulus matrix. Such a proof, however, 

would require retaining many more terms in the tensor 
transformation relations, and this may not be of any special 
physical relevance. 

Interestingly this same five-fold symmetry has been detected 
by X-ray diffraction in full density materials. These are called 
quasi-crystalline metals, and they do not fit into any of the 
conventional crystal classes (see Rawls, 1986, for a recent 
overview of developments in this field). With regard to the low 
density materials of primary interest in the present work, 
reference can be made to Christensen (1986) for experimental 
data demonstrating the existence of these efficient materials. 
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Torsion of Cylinders With Shape 
Intrinsic Orthotropy 
Shape intrinsic orthotropy may be thought of as the type of elastic material sym­
metry possessed by the wood tissue of a tree. Each year's new growth rings form a 
laminate around a central core. The axes of material symmetry lie in the directions 
tangent and normal to the growth rings or laminates and along the axis of the 
cylinder. Let Gtz denote the linear elastic orthotropic shear modulus associated with 
the axial and tangential directions, the tangent plane of a laminate. It is shown here 
that, for a certain class of elastic cylinders with shape intrinsic orthotropy, the solu­
tion to the torsion problem is the same as the solution to the torsion problem for the 
isotropic cylinder of the same shape if the isotropic shear modulus G were replaced 
by the orthotropic shear modulus G,z. 

Introduction 

Orthotropic symmetry is characterized by three mutually 
perpendicular planes of mirror symmetry. The normals to 
these three planes form a symmetry coordinate system for or­
thotropic symmetry and, relative to this coordinate system, 
there are only nine distinct orthotropic elastic constants for 
linear elasticity. One set of these nine constants consists of the 
technical elastic constants which include three Young's moduli 
EUE2, and £3, three shear moduli G12, G13, and G23, and six 
Poisson's ratios, only three of which are independent. Cur­
vilinear orthotropy is the term used to describe a material in 
which the orientation of the orthotropic symmetry coordinate 
system is different from point to point. Wood is generally con­
sidered to have curvilinear orthotropic elasticity, and the or­
thotropic symmetry coordinate system for wood is oriented so 
that one axis is coincident with the axis of the grain, one axis is 
tangent to the growth rings, and the third axis is perpendicular 
to the growth rings. The term shape intrinsic orthotropy is in­
troduced here to describe the general situation when the sym­
metry coordinate system for orthotropic symmetry of a 
cylinder is coincident with the long axis of the cylinder, with 
the local tangent and normal to a closed family of curves, one 
of which forms the lateral boundary of the cylinder. The 
closed family of curves also delineate the laminates of the 
cylinder. The types of curvinlinear orthotropy known as cir­
cular (sometimes cylindrical) and elliptic orthotropy are 
special cases of shape intrinsic orthotropy and are associated 
with circular and elliptical cylinders, respectively. Shape in­
trinsic orthotropy is characteristic of cylinders that are formed 
in growth processes like plant and animal tissue or in in­
dustrial lamination processes. In the literature of elasticity 
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curvilinear orthotropy is contrasted with rectilinear or­
thotropy in which the symmetry coordinate system for the 
material is Cartesian. For rectilinear orthotropy the symmetry 
coordinate system is selected so that one axis is coincident with 
the long axis of the cylinder and the other two axes lie in the 
plane of the cross section. The fact that the symmetry coor­
dinate system is Cartesian means that the system at any point 
in the cylinder has axes that are parallel to the axes of the sym­
metry coordinate system at all other points. 

The 327 page paper presented to the French Academy by St. 
Venant (1855) a century and a third ago remains the single 
most outstanding work on the problem of torsion of elastic 
cylinders. In that paper St. Venant reviews the basic equations 
of elasticity for both isotropic materials and rectilinearly or­
thotropic materials. He considers the problems of extension, 
contraction, flexure, and torsion of a cylinder of isotropic and 
rectilinearly orthotropic materials. In particular he solves the 
torsion problem for an isotropic cylinder of elliptic, of rec­
tangular, and of equilateral triangular cross sections as well as 
of many cross sections described by higher order curves with 
which simple names are not associated. His figures illustrating 
his solutions have appeared in most subsequent texts on the 
theory of elasticity. For example, St. Venant's figure il­
lustrating the warping of an elliptical cylinder due to torsion 
(1855, p. 339) is repeated by Love (1944, p. 320), Timoshenko 
and Goodier (1970, p. 298), and Sokolnikoff (1956, p. 123). 
Other warping illustrations derived from St. Venant (1855) ap­
pear in Love (1944, p. 321), Timoshenko and Goodier (1970, 
p. 301), and Sokolnikoff (1956, p. 125 and p. 133). St. Venant 
(1855) introduced a coordinate stretch transformation that 
reduced the problem of torsion of cylinders with rectilinear or­
thotropy to the problem of the torsion of an isotropic 
cylinder. Most subsequent work on elastic torsion, including 
the present contribution, could be considered as footnotes to 
the treatise of St. Venant (1855). 

In this paper it is shown that St. Venant's method of solu­
tion of the isotropic elastic torsion problem for a particular 
cross section also, in many cases, solves the elastic torsion pro­
blem for a cylinder with shape intrinsic orthotropy of the same 
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Fig. 1 An illustration of a cylinder of arbitrary cross section with shape 
intrinsic orthotropy and the rectangular coordinate system employed 

Fig. 2 The arbitrary cross section of the cylinder considered. The fami­
ly of curves of which the lateral boundary is a member is illustrated. The 
local tangent and normal to this family form, along with the axis of the 
cylinder, the local symmetry coordinate system for shape intrinsic 
orthotropy. 

cross section if the isotropic shear modulus G is replaced by 
the orthotropic shear modulus Gtz. 

The torsion of a cylinder of arbitrary cross-sectional shape 
and with shape intrinsic orthotropy is illustrated with the 
Cartesian coordinate system xlt x2, x} in Fig. 1. The local 
coordinate system determined by the tangent and normal to 
one of the family of curves of which the lateral bounding 
curve is a member is shown in Fig. 2. The symmetry coor­
dinate system for the shape intrinsic orthotropy consists of 
unit vectors in the direction of the local tangent and normal to 
the family of curves and a unit vector in the plane perpen­
dicular to the plane of the family of curves. The two shear 
moduli of interest are denoted by Glz and Gnz and are referred 
to this symmetry coordinate system. 

In the following section St. Venant's solution of the torsion 

problem for an isotropic cylinder of arbitrary cross section is 
briefly summarized. In the subsequent section, a condition is 
obtained that determines the class of cylinders with shape in­
trinsic orthotropy for which the solution to the torsion pro­
blem is given by the solution to the torsion problem for an 
isotropic cylinder of the same cross-sectional shape, but with 
the isotropic shear modulus G replaced by the orthotropic 
shear modulus Glz. In the next section, two specific examples 
of the class of cylinders are developed and, in the section 
following that, St. Venant's (1855) solution for the torsion of 
a cylinder with rectilinear orthotropy is reviewed and 
compared with the solutions obtained here. The final section 
contains a discussion of results. 

The Torsion Problem for Isotropic Cylinders 
St. Venant (1855) generalized the solution of Navier to the 

torsion problem for a right circular cylinder of isotropic 
material to the solution for a right cylinder of arbitrary cross 
section. St. Venant's assumption concerning the components 
ux, u2, u3 of the displacement vector in an elastic cylinder of 
arbitrary cross-sectional shape can be expressed as 

ux = -ax2x3, u2 = axlx3, u3 =a<j>(xlt x2), (1) 

relative to the Cartesian coordinate system illustrated in Fig. 
1. The function <j> (x{, x2) is called the warping function and a 
is a constant representing the twist per unit length of the 
cylinder. The only nonzero components of the strain tensor 
are determined from eqution (1) using the strain-displacement 
relations 

a / d4> \ a ( d<j> \ 

r"=aG(i£-+*')' T"=aG(s;-x2)-

(2) 
a / d(j> 

v2 ' 2 \dx{ 

and the only nonzero components of the stress tensor are 
determined from equation (2) using the isotropic form of 
Hooke's law, thus 

The vanishing of all the components of the stress tensor except 
Tn and 7"13 satisfies all the stress equations of equilibrium ex­
cept for the condition 

dT2} dTl3 

(3) 

dx0 dx. 
= 0. (4) 

K2 LM-! 

This condition is satisfied if the warping function <j> (xl, x2) is 
harmonic in the region of the cross section A, 

d2<j> d24> 
V 2 0 = + = 0 in ,4, (5) 

dx2 dx2 

as can be verified by substitution of equation (3) into (4). The 
lateral boundaries of the shaft are assumed to be free of sur­
face tractions. This condition is satisfied if the shearing 
stresses T2} and T13 satisfy the condition 

T23cos\P+Ti3sm\p = 0 (6) 

on the lateral boundary denoted by dA. It is convenient to 
define the quantity A by 

/ d(j> \ / d<t> \ 
A = T23cos\p + Tl3sin\l/= ( x2)sm\l/+[ hxl 1 cosi/-

\dxl / \dx2 / 

where the second equality follows from the first and equation 
(3). The boundary condition (6) then takes the form 

A = 0ond,4. (8) 

The total torque T carried by the shaft is given by 

r-L (xlT2i-x2Tu)dxldx2 (9) 

and can be expressed by the simple formula 
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where 

T=GJa 

f / , , dtj> d<f> \ 
J- \ \x2, + x2+x, x2 )dx,dx2. 

JA V ' 2 ' dXn 2 8X, / ' dx, 

(10) 

(11) 

The method of St. Venant reduces the torsion problem for a 
right cylinder of arbitrary cross-sectional shape and of 
isotropic material to the determination of the warping func­
tion 4> (xl, x2) that is harmonic in A and satisfies the boundary 
condition (8) on dA. 

The Torsion Problem for a Class of Cylinders With 
Shape Intrinsic Orthotropy 

The solution to the torsion problem in the case of shape in­
trinsic or thotropy will closely parallel the solution for the 
isotropic case; the only equations that will be different are 
those expressing Hooke ' s law. In the local tangent coordinate 
system in which the material is or thotropic, the two shear 
moduli of interest are G,z and G„z. The elastic coefficients 
C2323, Ci3,3 , and C23i3 = Ci323 in the Cartesian coordinate 
system are obtained from Gtz and G„z using the fourth rank 
Cartesian tensor t ransformation rule for rotat ion from the n, 
t, z system to the xl,x2, x3 coordinate system, thus 

C2323 = sm2^Gtz + cos2^Gnz, 

C1313 = cos2 \PGtz +sin2 \PG„Z, (12) 

C2313 = sm\Pcoxi*(G„z-Glz). 

The only angle involved in this coordinate transformation is \p, 
as can be seen from Fig. 2. The stresses T2J and T13 are related 
to the strains £^3 and El3 in the Cartesian system by 

T23 = 2C2323E23 + 2C23l3En, • m i 

T13 = 2C23l3E23 + 2Cl3l3El3. 

The assumption (1) of St. Venant is employed in the solu­
tion of the problem with shape intrinsic orthotropy. It follows 
that the strains El3 and E23 are then given by equation (2). 
Substitution of equations (2) and (12) into (13) and subsequent 
use of the definition (7) gives expressions for the stresses r23 

and7 \ , : 

r 2 3 = a G f t ( " & T +Xl)+aA(~Gnz-Glz)COS^, 

T13=aGtz(^- -x2^+aA(Gnz-Glz)smi,. 

(14) 

When these stresses are substituted into the boundary condi­
tion (6), condition (6) is again satisfied if relation (8) is 
satisfied. Observe that if the relation (8) is satisfied not only 
on dA, but also in A , then it can be used as an identity in the 
formulas (14) for the shearing stresses, and ' they reduce to the 
following simple expressions 

dcj> \ „ „ ( d<t> r 2 3 =«G*(^+4 r»=a G*W-4 (15) 

These formulas for the shearing stresses are identical with 
those given by equation (3) for the isotropic case except that 
G,z replaces G. Thus we can conclude that if </> (x{, x2) and the 
family of curves of which the lateral boundary is a member 
satisfy the relation (8) in A as well as on dA, then the solution 
for shape intrinsic or thotropy is the same as the solution for 
the isotropic case for a cylinder of the same shape if the 
isotropic shear modulus G is replaced by the orthotropic shear 
modulus Gtz. The class of cylinders with shape intrinsic or­
thotropy for which this is true are those for which the warping 
function <j> (*, , x2) and the angle ip satisfy the relation 

A = W -X2)sm*+ [-8x7 +*.,H<H0 (16) 

everywhere in the cross section of the cylinder. Observing 
from Fig. 2 that 

dx2 
tarn/' = 

dx. 

the condition (15) may also be expressed in the form 

d<f> 

dx2 
+ x, 

d<t> 

dx, 

dx2 

dx, 

(17) 

(18) 

" * 2 

The left-hand side of this expression represents a property of 
the warping function <j> (xx, x2) for A and the right-hand side 
represents a property of the family of bounding curves of 
which the lateral boundary , dA, is a member. Alternatively, 
from equations (2) and (3) it is easy to see how to express the 
result in terms of the shearing stresses or shearing strains. 

The results presented above apply to the case of hollow 
cylinders for which the interior and exterior bounding curves 
of the lateral cross section are of the same family. It follows 
then that the formulas of Bredt (1896) for the torsion of thin-
walled isotropic cylinders also apply to the torsion of thin-
walled cylinders with shape intrinsic or thotropy if the 
isotropic shear modulus G is replaced by Glz. 

Examples of the Selected Class o f Cylinders With Shape 
Intrinsic Orthotropy 

In this section two examples are given of the class of 
cylinders with shape intrinsic or thotropy for which a solution 
to the torsion problem has been obtained. The examples are of 
a cylinder of elliptic cross section and a cylinder of general 
type considered by St. Venant (1855). For an elliptic cylinder 
made of an isotropic material the warping function </> (*, , x2) 
and family of ellipses of which the lateral boundary is a 
member are given by 

S 2 . 

0(X , ,X 2 ) = 
£ 2 - l 
£2 + l 

©'•( -£) ' - • »<*<'• 

(19) 

(20) 

respectively, where J is the ratio of minor axis length to the 
major axis length. The family of ellipses is obtained by varia­
tion of the major axis a while holding £ fixed. Using equation 
(19) it is easy to see that 

d<j> 

dx2 
+ x, 

- ^ 

d<j> x2 

dx, 

and from equation (20) it follows that 

dx2 %2Xi 
dx. 

(21) 

(22) 
l l x2 

thus, from equation (18), the condition for this isotropic solu­
tion to be a solution for shape intrinsic or thotropy is satisfied. 
It follows that the nonzero strains and stresses in the elliptic 
cylinder with shape intrinsic or thotropy are given by 

^OtX, — r v v , 

El3--E23 = 
l + £2 l + £2 

and 

7V, - 2G„ 
£2a*i 

-2G, 
(XX-, 

l + £ 2 ' u "** \+e 
respectively, and the total applied torque Tby 

(23) 

(24) 
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Fig. 3 The family of curves is given by equation (28), with £ = - 0.1. The 
outermost curve corresponds to a = 1.5446, the next ones to a = 0.9045, 
a = 0.4438, a = 0.1348, and a = 0.0425, respectively, as the closed curves 
tighten on the center of the shaft. 

Fig. 4 The family of curves given by equation (28) with a = 1 and various 
values of £. From the outermost curve to the innermost, £ = - 0.207, 
{ = - 0.1, i = 0.0 (a circle), $ = 0.1, £ = 0.2, \ = 0.3, £ = 0.4, and £ = 0.5. This 
figure is adapted from St. Venant (1855). In a similar plot given by 
Timoshenko and Goodier (1970, Fig. 152, p. 267), the curve corre­
sponding to £= -0.207 above is mislabeled as 1/2 (V2-1)= +0.207. 

£3a 
7T«4G,. (25) 

l + £2 

The shear stress Ttz referred to the symmetry coordinate 
system for shape intrinsic orthotropy is the only nonzero stress 
component in that system. It is related to T23 and Tn in the 
Cartesian system by 

T2i = TlzsiruP, Tn = - rftcosi/-, 

and it follows from equations (24) and (26) that 

2-/xf+xW4 
Gtz<t>. 

(26) 

(27) 
l + £2 

As a second example, a solution for an isotropic cylinder 
described by a fourth order curve given by St. Venant (1855) is 
considered. The warping function 4>(x{, x2) and family of 
curves of which the lateral boundary is a member are given by 

d> = 2ttxlx2(x
2
2-x

2
l) (28) 

and 

x]+xl-^(x\+x\-6x\xl) = a-^ (29) 

respectively, where £ is a parameter of curve shape, and dif­

ferent values of a correspond to different members of the 
family of curves. In order that the curves described by equa­
tion (29) be closed it is necessary to require that 

a>0 , if £ = 0, 

l > 4 ( £ - a ) £ > - l , if £ < 0 , and (30) 

0 > 4 ( £ - a ) £ > - l if £>0 . 

Fig. 3 represents a typical cross section of the shape given by 
equation (29) when £ = —0.1. The curves for the same value of 
£ and different values of a represent the everywhere-dense set 
of local curves which determine the direction of the local sym­
metry coordinate system. When £ rather than a is varied in 
equation (29), different shaped curves are determined, as 
shown in Fig. 4. This figure shows that equation (29) 
represents cross-sectional shapes that vary from almost square 
to circular. Using equation (27) it is easy to show that 

d<t> 

dx7 
+ x. 

- ( l + 2 ? ( 3 x | - x 2 ) ) x 1 

d<t> 

dx. 

d+2£(3x2 -xl))x2 

and from equation (29) it follows that 

dx2 (1+2H3*! x]))x{ 

(31) 

(32) 
dxx ( l+2£(3x 2 -x | ) )x 2 

thus, from equation (18), the condition for this isotropic solu­
tion to a solution for shape intrinsic orthotropy is satisfied. It 
follows that the nonzero strains and stresses in this cylinder 
with shape intrinsic orthotropy are given by 

£2 3 = ax, ( l+2£(3x2-*?)) , 

and 

respectively. 

En= - e a 2 ( l + 2£(3x2 -x\)), 

T23 = 2 0 , ^ , ( 1 + 2 £ ( 3 x 2 - * 2 ) ) , 

Tn=-2Glzax2{\+2^x]-xl)), 

(33) 

(34) 

St. Venant's Solution for an Elliptic Cylinder with Rec­
tilinear Orthotropy 

It is interesting to compare the results obtained here for an 
elliptic cylinder with shape intrinsic or elliptic orthotropy to 
the results obtained by St. Venant (1855) for an elliptic 
cylinder with rectilinear orthotropy. In the case of rectilinear 
orthotropy the shear moduli of significance are G13 and G23. 
These are the orthotropic shear moduli in the rectilinear or-
thotropic symmetry coordinate system whose axes are coinci­
dent with the major and minor axes of the ellipse and the long 
axis of the shaft. This solution is described, for example, by 
Hearmon (1961) or Lekhnitskii (1963). In this case the warp­
ing function </> (xl, x2) is given by 

r G n — G?-» 
<M*,,*2)= " 2 

£2G13 + G23 

and the strains and stresses by 

€2Gl3«*l E2i = 
G23ax2 

?2GI3 + G2: 

and 

^ 2 3 -

2g2Gi3G23o*1 

eon+G. T„ = 

eon+G2 

-2GnG23ax: 
; 13 

23 ?Gn + G: 23 

respectively. The torque Tapplied to the shaft is given by 

013°: £37ra4a 

£2Gn + G: 

(35) 

(36) 

(37) 

(38) 
23 

The results for the elliptic cylinders with rectilinear orthotropy 
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and shape intrinsic or elliptic orthotropy are easily compared. 
The warping functions for these two solutions are given by 
equations (35) and (19), the strains by equations (36) and (23), 
the stresses by equations (37) and (25), and the total torque by 
equations (38) and (25), respectively. The results recorded 
above reduce to the corresponding results for the elliptic shaft 
with shape intrinsic orthotropy if 

• Gr (39) 

Specifically the use of equation (39) reduces equation (35) to 
(19), equation (36) to (23), equation (37) to (24), and equation 
(38) to (25). 

The Case When the Shear Modulus Varies 

In this section the situation in which Gtz is a function of xx 

and x2 is considered. The unit vectors n and t illustrated in 
Figs. 2 and 3 are represented in terms of 4> by 

n = sim/'e1 +cos\l/e2, t= - cos i / ^ + sm\//e2. (40) 

It is shown here that if G/z does not vary in the tangential 
direction, 

t ' V G ( ! = 0, (41) 

then the solution to the torsion problem for shape intrinsic or­
thotropy given above is still applicable even if n • V Glz is not 
zero. Thus Glz can vary in the direction n, or from laminate to 
laminate. To prove this result it is assumed that Gtz is a func­
tion of A:, and x2 and the stresses given by equation (15) are 
substituted into equation (4); then equation (4) is rewritten as 

dGl7 ( d<t> \ 
acostl/G,zV

2<t> + aA—-^- + a{—— -x2)t>VGlz = 0, (42) 
0X2 V oX\ ' 

where the final representation was obtained by use of equa­
tions (40) and (7). The result (42) shows that if t> VGtz and A 
are zero everywhere in the region, then equation (42) reduces 
to (5) and the solution to the torsion problem for shape intrin­
sic orthotropy is recovered even though n - v G f t need no 
longer be zero. 

In the remainder of this section the case when Glz is a func­
tion of xx and x2 satisfying the relation (41) is considered. 
Substitution of the stresses given by equation (15) into (9) 
yields the following formula for the total torque on the shaft: 

shaft with shape intrinsic orthotropy, for which vnz = vlz, has 
the same solution as the same problem for an isotropic 
material, provided the isotropic elastic moduli E and G are 
replaced by Ez and Gtz, respectively, and the condition (18) is 
satisfied. Since the determination of the transverse shear in 
engineering beam theory depends on the axial normal stress, it 
follows that engineering beam theory can be extended from 
beams of isotropic material to beams with shape intrinsic or­
thotropy, for which vnz = vlz, by the same prescription. In 
fact, much of the content of texts on the mechanics of 
materials or strength of materials can be extended from 
isotropic materials to materials with shape intrinsic or­
thotropy, for which vnz = vtz. 

There is an interesting point concerning the expeimental 
evaluation of the shear moduli Gtz and Gnz for shape intrinsic 
orthotropy. For any of the class of solutions obtained here for 
the torsion of a shaft with shape intrinsic orthotropy, the 
shear modulus Gtz can be experimentally determined by a tor­
sion test of the entire shaft. Since Glz is the only elastic cons­
tant involved in the formula relating to angular deflection, on­
ly one test is necessary. For example, if the shaft is circular it 
follows from equation (25), by setting £ equal to one, that 

(45) 
•KU.CT 

T= —— G, 

Thus, by measuring T, a and a in an experiment, one can 
determine Gtz. However, if one takes a small circular torsion 
specimen from a cylinder with shape intrinsic orthotropy, a 
specimen whose axis is parallel to the axis of the shaft but 
which is not concentric with the shaft, the small specimen will 
appear to have rectilinear orthotropy and the relation between 
applied torque and angular deflection will involve both G,z 

and G„z. The formula relating the applied torque T to the 
angle of twist per unit length for a circular shaft with rec­
tilinear orthotropy is given by equation (38) with £ equal to 
one, thus 

2 v G„z + Glz / 

The effective shear modulus of the small specimen is thus seen 
to be a combination of G„, and G,7. 

T= \ aGlz(xu x2)(x]+xl+xl ^ - x 2 -^-)dXldx2 Acknowledgment 
J-4 \ OX-} OX, / _ . . 

(43) 

In the case where the shaft is composed of N laminates with 
different Glz shear moduli, the total torque is given by 

N 

T=<x^G<!zr (44) 

where G"z is the shear modulus Gtz for the nth laminate and J" 
is the J for the nth laminate, the formula for J" being given by 
equation (11) with A set equal to A", the cross-sectional area 
of the nth laminate. 

Discussion 

The advantage of the result presented here is that it extends 
a class of known isotropic solutions for the torsion of a shaft 
to the case of shape intrinsic orthotropy. It can be shown that 
the pure bending and axial extension or compression of a 
(shape intrinsic orthotropic) shaft with vnz = vtz are the same 
as for an isotropic material (shaft) if one replaces the isotropic 
Young's modulus E by the orthotropic axial modulus Ez. 
Thus it has been shown here that the problem of the combined 
torsion, pure bending, and axial extension or compression of a 
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Mehrabadi for helpful comments on an earlier draft. The 
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the preparation of the figures. 
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Poroelastic Solution of a Plane 
Strain Point Displacement 
Discontinuity 
The plane strain fundamental solution of an instantaneous and a continuous point 
displacement discontinuity is presented in this paper. These solutions, together with 
the one of a fluid source, are obtained on the basis of a decomposition technique 
proposed by Biot, which separates the displacement field into a time independent 
part satisfying an elasticity equation, and an irrotationalpart governed by a diffu­
sion equation. We begin the derivation by presenting a continuous edge dislocation. 
The continuous point displacement discontinuity is obtained by differentiating, 
along the direction of the cut, the corresponding edge dislocation solution. The in­
stantaneous influence functions are determined by further differentiating with 
respect to time. The displacement discontinuity and source singularities can be 
distributed on a crack surface to create displacement and flux jumps required for the 
numerical modeling of a fracture in a poroelastic medium. 

Introduction 
Crouch and Starfield (1983) pioneered the displacement 

discontinuity method (DDM) as a means of solving boundary 
value problems in elasticity. It has become a popular 
numerical method in the field of geomechanics, because of its 
ability of handling rock discontinuities and fractures (Crouch 
and Starfield, 1983; Wiles and Curran, 1982; Vandamme, 
1986). The concept of the DDM can be traced back to the 
mathematical theory of dislocations (Bilby, 1968; Dundurs, 
1969; Mura, 1982); in its current implementation, however, we 
view it as a variation of the indirect boundary element 
method, in which a fictitious density of a displacement discon­
tinuity singularity, instead of Kelvin's point force, is 
distributed along the boundary of the elastic domain. A boun­
dary element procedure, which includes boundary discretiza­
tion, polynomial interpolation, etc., is then applied for the 
numerical solution. 

The DDM is particularly appealing for problems involving 
fractures and discontinuities because the fundamental solution 
contains a displacement jump, thus requiring only one layer of 
singularity to be distributed along the crack. In addition, the 
so-called fictitious density of singularity on the crack surface 
has the physical significance of being the actual displacement 
discontinuity associated with the fracture. 
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The DDM is presently limited to solving elastic problems. 
However, many geomechanics problems, such as soil con­
solidation (Cheng and Liggett, 1984), hydraulic fracturing 
(Cleary, 1978), and stabilization of faults (Rudnicki, 1985) are 
dominated by coupled diffusion-deformation effects, and 
should therefore be analyzed within the framework of Biot's 
theory of poroelasticity (Biot, 1941). In order to extend the 
original DDM to poroelasticity, the fundamental solutions of 
an impulse point displacement discontinuity and an impulse 
point source are required. 

The objective of this paper is to derive these solutions. In 
the process, a general methodology for deriving singular solu­
tions in poroelasticity is outlined. 

Poroelasticity 

The theory of linear, isotropic poroelasticity was introduced 
by Biot (1941) for modeling the response of fluid-saturated 
porous solids. As in the original formulation of Biot (see also 
Rice and Cleary, 1976), we choose the basic dynamic variables 
to be the total stress a,y and the pore pressure p. The cor­
responding conjugate kinematic quantities are the solid strain 
ey, derivable from an average solid displacement vector «,-, 
and the variation of fluid volume per unit reference volume, f. 

A consistent set of five material parameters for the linear 
isotropic theory is (Rice and Cleary, 1976): the shear modulus 
G, the drained and undrained Poisson's ratio v and vu, 
Skempton's pore pressure coefficient B (ratio of the induced 
pore pressure over the variation of confining pressure under 
undrained conditions) and the permeability coefficient K 
(which can be expressed as k/fx,, where k is the intrinsic 
permeability and ix the dynamic fluid viscosity). 

The governing equations of linear poroelasticity consist of 
the following (Biot, 1941; Rice and Cleary, 1976): 
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• constitutive relations 

°u = 2GeU + J~27 V ~ a6uP 

2GB(l + pu) 2GB2{\-2v)(\ + vu)
2 

P~ 3(1 -2vu)
 6+ 9(vu-v)(\-2Vu)

 r 

• equilibrium equations 

aU.J=~Fi 

' Darcy's law 

q,= -K(Pj-fi) 

• continuity equation 

at 
• bt •+Qij=y 

(i) 

(2) 

(3) 

(4) 

(5) 

where e = en is the volumetric strain, <?, the specific discharge 
vector, Fj the bulk body force (fluid and solid), / , the fluid 
body force, 7 the volume rate of injection from fluid source, 
and a is the Biot coefficient of effective stress (Biot and Willis, 
1957), defined as 

ot = (6) 
B ( 1 - 2 K ) ( 1 + ^ ) 

The foregoing can be combined to yield a set of field equa­
tions in terms of u, and f. Joining equations (1) through (3) 
gives an elasticity equation with a fluid coupling term 

„ , G 2GB(\ + vu) G v 2 w , + — — - ej „ , / „ ^ f , = -F, 
\-2v„ 

(7) 

(8) 

30 -2vu) 
Combining equations (2), (4), and (5), and also using equation 
(7), produces the following diffusion equation: 

dt 

where 

C_2KB2G(.\-V)(1 + VU)2 

is a generalized consolidation coefficient (Rice and Cleary, 
1976). 

It should be noted that the body force and source terms in 
the above field equations can be used to introduce field 
singularities, such as point force, source, dipole, etc., into the 
solution. 

Decomposition of the Displacement 

Biot (1956) introduced the following decomposition which 
allows further uncoupling of the field equations (7) and (8): 

B(\ + vu) 
U, = Uf+AUi = Ul+—rr_ — * , (10) 

3(1-1-,,) 
If the first part of displacement field is required to satisfy 
Navier's equation of elasticity with undrained coefficients, 

-F, (11) 

then it can be proven, from equation (7), that the potential $ is 
defined by the identity 

r = V 2 $ (12) 

Substituting the preceding expression into equation (8), and 
relaxing a Laplacian leads to a diffusion equation for $ 

9 * 

dt 
-cV2<i> = gl+g2+g3 + \Pl (13) 

v2gi=^1IJFii 

3 ( 1 - 0 
V 2 g 2 = -Kfiti 

V2g3 = 7 

V 2 ^ [ = 0 

(14) 

The completeness of the above solution has been proven by 
Biot (1956). 

It is sometimes more convenient to use an alternate right-
hand side for equation (13), in the form: 

d# , 3 c ( l - v „ ) ( " « - " ) 
dt B(\~v){\-2Vu){\ + vu) 

(15) 

In the above, the body force F, has been eliminated using the 
divergence of equation (11). 

Another useful relation can be obtained from equations (4), 
(5), and (12) 

— np = g2+gi+yp2 (16) 
at 

where 'V2\j/2 = 0. The previous equation leads to an alternate 
definition of $: 

$ = K\iopdt+ j (g2+gi + \!>2)dt (17) 

in which 

The above results suggest that the displacement field can be 
decomposed into an "undrained" part, uf, satisfying an 
elasticity equation with undrained coefficient; and an irrota­
tional part derivable from a potential, $, that is governed by a 
diffusion equation. Although the governing equations, (11) 
and (13), appear to be fully uncoupled, except for a body force 
term, the coupling generally persists through the boundary 
conditions in terms of the new variables. Hence, the "un­
drained" part, uf, is generally time-dependent and cannot be 
solved independently from the variable $. 

However, for problems in infinite domains, such as solu­
tions of free-space Green's function, the above restriction 
does not apply. The undrained part, no longer subjected to a 
transient boundary condition, becomes time-independent; it 
then follows that the time-dependency is completely absorbed 
in the irrotational part. The harmonic functions I^, and \p2 can 
also be dropped. The task of finding the fundamental solu­
tions for poroelasticitiy is thus reduced to seeking the par­
ticular solution of two uncoupled, singular equations. The 
complete poroelastic solution is then the summation of the un­
drained and the transient parts. 

Displacement Discontinuity 

To derive the solution of a plane strain point displacement 
discontinuity, let us start from the solution of a continuous (in 
time) edge dislocation, that is located on the positive xx axis 
(see Fig. 1). Two in-plane dislocation modes are considered, 
namely the slip mode and the normal mode. The displacement 
jump across the cut is characterized by the following 
relationship: 

lim uf- lim uf = H(t)H(xi)di (18) 

where d, is the displacement discontinuity, and H the 
Heaviside unit step function. The superscript ec stands for 
edge dislocation and continuous. 

The instantaneous point displacement discontinuity re­
quired for the DDM can be obtained by differentiating the 
edge dislocation solution with respect to time and along the 
direction of the cut. The following displacement jump is then 
observed 
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Fig. 1 Edge dislocation 

lim uf- lim uf = 5(t)8(xl)di (19) 

in which 5 is the one-dimensional Dirac delta function and 
where the superscript cli denotes displacement discontinuity 
and instantaneous. The above instantaneous displacement 
discontinuity can be integrated along a segment of fracture 
and over an interval of time using certain shape functions, to 
create the desired displacement discontinuity element needed 
in the numerical method. 

The two-dimensional, poroelastic solution of a continuous 
edge dislocation can be obtained using the following pro­
cedure. First, it is recognized that, at the instant of loading, a 
poroelastic material behaves as an elastic one with undrained 
material coefficients. Therefore, in the decomposition, the un­
drained displacement part, uf, is required to fully absorb the 
initial value and to be time-independent. This ensures that 
equation (11) is satisfied. Secondly, the irrotational part, $, 
must satisfy equation (13) with zero initial condition. As a side 
condition one must also check that the time-dependent 
displacement field, obtained by differentiating <fr, is con­
tinuous and does not contain any additional displacement 
discontinuity. The displacement jump condition, equation 
(18), is then satisfied at all times. 

Consequently, the initial displacement field is given by the 
classical elastic solution (Dundurs, 1969), with undrained 
coefficients: 

("fi)° = 
1 

4 T ( 1 - * „ ) 
H ( O [ 2 ( l - ^ ) 0 + r , r 2 ] 

( « ! S ) ° = -
1 

(«!S)0=-

(«S)° = 

4 x 0 - 1 0 

1 

4TT(1-*'„) 

1 

4ir( l -*H) 

H{t)[(.l-2vu)ln r + ryj 

H ( 0 [ ( l - 2 . „ ) l n / - + /- |2r2] (20) 

H(.t)l2{l-Va)e-rtlrA\ 

where r is the radial distance from the origin; r , = x,/r\ and, 8 
is the polar angle, which has a branch cut along the positive xx 

axis (0 < 6 < 2-TT), see Fig. 1. Note that the first subscript of 
displacement denotes the displacement component, while the 
second subscript is reserved for the dislocation mode (1 for 
slip, 2 for normal mode). 

The presence of an edge dislocation is equivalent to the in­
troduction of a singular body force FiJt to the right-hand side 
of equation (11) (the second index again refers to the edge 
dislocation mode). The body force in turn becomes a forcing 

function in the diffusion equation (13) or (15). Substituting 
equation (20) into (15) and arbitrarily setting 

g2=£3 = ̂ i = 0 yields: 

3*f 
- c V 2 * f = -

3 C ( V B - J » ) 
U(t)eu(\nr)j (21) 

27^8(1-»)(! + " J 
where the subscript for $ denotes the dislocation mode, and e^ 
is the two-dimensional permutation symbol, (i.e., eu = e22

 = 

0 and e, = 1). 
The physical significance of the preceding equation becomes 

clear after applying the Laplacian operator: 

c V 2 f f = H(0e,v<5(x) (22) 

in which 8(x) = b(x,)5(x2) is the two-dimensional Dirac delta 
function. The time-dependent part of the poroelastic edge 
dislocation is thus created by the spatial derivative of a fluid 
volume source, which is also known as a dipole (opposing 
source and sink). In the above, the dipole is in the positive x2 

and negative x^ direction, for slip and normal dislocation 
modes, respectively. As pointed out by Rudnicki (1987) the 
orientation of the dipole enforces a no-flux boundary condi­
tion across the dislocation line for the normal mode, and a 
constant (zero) pressure condition for the slip mode. 

To solve equation (21), we first begin with the solution of a 
continuous source in a poroelastic medium (see Appendix) and 
then differentiate the expression. After some algebra, we 
obtain 

* f =-
X?«-v) 

8TTB(1 + VU)(1-P) 
evrrjlEdft + t-Hl-e-*2)] (23) 

where £ = Vr2/4rt. From equation (10) the time-dependent 
displacement field for the edge dislocation is then given by: 

Awff = 
" 8 T T ( 1 • 

ejd(&ik 

-2v>)£-2 ( l -e- s 2 ) + M?,(£2)] (24) 

Once again, the second subscript of the displacement denotes 
the edge dislocation mode. The foregoing field is continuous 
across the positive xl axis, as required in the original 
postulate. 

The influence function for the stress field, offk, is deduced 
from equation (24) using the strain displacement relations 
and the constitutive relations, (1) and (2). As before, the solu­
tion can be separated into an undrained part, (a^k)°, and an 
evolving part, ACT?* 

G 1 
(offk)°= H ( 0 « « (Si/r : ,Jk 27r(l-K„) *' r " 'J 

+ 8jir,i-&ur,t-2r_irJrj) 

An' Uf 
G(vu-v) 1 2 

•«M l2(.r.ir,jr,t-&Ur.l)e 

27r ( l - ,0 ( l -x„) " r 

+ (5,/, j + V , ; + sur,t~4r,ir, jrM 2(1 - e"{2)] 

(25) 

(26) 

where the last subscript of the influence function refers to the 
dislocation mode. It is of interest to remark that by setting k 
= 1 in equations (25) and (26), a solution identical to the slip 
dislocation solution derived by Rice and Cleary (1976), using 
Muskhelishvili's complex variable technique, is obtained. 

The aim here is to derive the fundamental solution of an in­
stantaneous point displacement discontinuity. Before pre­
senting such solutions, however, it is instructive to examine 
the limiting behavior of a continuous point displacement 
discontinuity. Differentiating equations (20) and (24) with 
respect to x,, the following set of equations is obtained 
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(uff)° = - 1 K(t)—[(l-2uu)(8iJra 
4TT(1-C„) r 

+ Si2rj-8j2r:i)+2riirjr%2] 

v„-v 1 

continuous source solution (given in the Appendix) with 
respect to time, which yields the following: 

(27) 

Au^ = — 
" 4TT(1-PU)(1-V) r 

[2(r/',/',2-'5/2'\;)e~f 

+ Qar.j + V , ; + V . 2 - 4r,,r / , 2 ) f "2(1 ~ e" f )1 (28) 
The asymptotic behavior of the combined displacement field is 
such that 

1 1 
lim « * = - - _ — _ [(l-2j>)(8„r2 

-0or» 47T(l-c) r 

+ bar,j-5j2r.i)+2r,irJr,2] 

6ir(l-i/„) r • 

•»-^SL>-^>"--,,> 
2 f l » 0 ( l - , ) ( l + ,,,)* 1 2 

9ir(\-Vu)(vu-v) r2 

(29) ., 2c 1 

77 9 T = — — rtfe-P 

(38) 

(39) 

(40) 

(41) 

where v = c„ as t —• 0, and, j> = c as ? — oo. Thus, as ex­
pected, the poroelastic medium responds to the loading 
generated by a displacement discontinuity as an undrained 
material at t = 0 + and as a drained material as t -> oo. Note 
that the above expression is identical to the solution of an 
elastic point displacement discontinuity obtained by Wiles and 
Curran (1982) with the appropriate Poisson's ratio 
substituted. 

Finally, we differentiate with respect to time to obtain the 
instantaneous displacement discontinuity solutions: 

Discussion 

« ) c 1 8(t) [ ( l -2K I 1 ) (5 < / r 2 +fi a r ; 
4Tr(l-e„) r 

-8J2rti)+2riirJri2\ 

c{vu-v) 1 
[2 (8y 2 r / - r / r / i 2 ) f 4 e *p-t* 

(30) 

(31) 

A «#' =. 
U'J T d - V j d - K ) Z-3 

- ( « a r j + bj2rti + 6 y . 2 - 4 r , r / ,2)(1 - e ^ 2 -^e^2)} 

^ ) 0 = T 7 1 7 8W-2rl*rS,Jr*r* - War S, j + W * ) 
^ir(.l — v„; r 

- ($ik&j2 + V5i2 ~~ M ^ ) ] (32) 

-12(5y/-|/t/-i2 + 5^ r ,v y ) 

- 3(8*6/, + V5/2 - 3«(,8«)][1 - (1 + £ > " f 2 ] 

- [12r , r / > i t r 2 - 6(St2r ,r y + 8,yr>itr 2) 

-25,.^2-25y,5,.2+45,y5Jt2]?4e-*2 

- [ 4 r , / , / , , r , 2 - 4 ( 5 , y V , 2 + 5K/-,,r y) +45,y5/t2)]?6e-52 j (33) 

( p f ) . - ^ /
(

i
1 + y J 5 ( 0 ^ ( ^ - 2 , , , , ) (34) 

The influence functions of an instantaneous displacement 
discontinuity and source can be distributed on the locus of a 
fracture to generate a desirable solution field. In particular, 
the following integral equations can be exploited for the 
numerical solution of a boundary value problem 

ff*(x;0 = L L dk(X,T)atjk(x-x\t-T)dr(x)dr 

+ j f l J r %x,T)Gtj(x-x,t-T)dr{x)dr (42) 

P(x;t) = j o j r d,(x\T)pt{*-x\t-r)dr(x)dT 

+ j Q j r 9{x\r)p*{x-x\t-T)dV(x)dT (43) 

in which 9 is the normal flux discontinuity, x is the field point 
where the stress or the pressure is evaluated, and x is a point 
on the fracture; both x and x are referred to a global coor­
dinate system (see Fig. 2). The influence functions, denoted by 
an asterisk (*) in equations (42) and (43), are defined as 
follows: 

°ijk ~WjmOfrnkiX-'U—T) 

pf=pf(x';t-T) 

(44) 

Apf = 

3TT(1 -»„ ) 

ABGc{\ + vu) 1 
[5,.2^e-«2 + 2(/- , , r2-5 ; 2)^ e-52] (35) 

p*=psi(x';t~r) 

where ty = £„ (x) are the directional cosines between the local 
(crack) and the global coordinate system, and x ' the field 
point in the local coordinate system (see Fig. 2). Transforma­
tion between the two coordinate systems is done according to 

3 T T ( 1 - ^ ) r4 

3c(y„-y) W M 1 

+ 5j2
rJ + 8Ur,2-4r,irJr,2) (36) 

A^U = - J n H " l n l , , -TlWnr.j + V . 2 " 3 V , / ) ^ ^ 
TTB(1-V)(1 + PU) r5 

(37) 

In problems involving fluid flow in the fracture, it is also ex­
pected that there will be a flux jump across the crack surface. 
To account for this flux discontinuity, sources need to be 
distributed along the surface. The instantaneous source solu­
tion for poroelastic medium is obtained by differentiating the 

Xi 

*2 
Crack S. _ _\_ A x V 7 A 

1 • 

! x i ! 

x2 

Fig. 2 Global and local crack coordinate systems 
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x;=iji(Xj-Xj) (45) 

Equations (42) and (43) can be discretized, numerically in­
tegrated in both time and spatial coordinates, and collocated 
for the known stress and pressure boundary conditions along 
the crack surface. These operations result in the formulation 
of a linear system of algebraic equations which need to be 
solved for the displacement and flux jumps at each time step. 
The influence functions defined in equations (30) through (37) 
are then used to evaluate quantities such as displacement, 
stress, pressure, and flux in the poroelastic medium. The 
details of the numerical implementation and also the applica­
tions to hydraulic fracturing problems will be separately 
reported (Detournay et al., 1987; Vandamme et al., 1987). 

Conclusion 

The fundamental plane strain solutions of a point displace­
ment discontinuity and a point source in a poroelastic medium 
have been derived. The methodology is based on the decom­
position technique proposed by Biot (1956). This procedure 
offers a systematic approach for finding Green's functions for 
poroelasticity. In addition to the displacement discontinuity 
and fluid source solutions provided herein, other types of 
Green's functions, such as point force and fluid dilatation, 
can also be derived (Cheng and Predeleanu, 1987). 

The influence functions presented here can be used in a 
boundary element procedure to solve general boundary value 
problems governed by poroelasticity. This numerical tech­
nique would be particularly appealing for solving problems in­
volving fractures and discontinuities. 
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A P P E N D I X 

The governing equation for a two-dimensional continuous 
fluid source of constant injection rate Q is given by: 

M-l) 

Solution of the above is well-known (Carslaw and Jaeger, 
1959), i.e., 

4-7TC 
(4-2) 

where £ = \lr2/Act\ and E^ is the exponential integral (Abram­
owitz and Stegun, 1972) 

EM)=\ * U-3) 

Because of axial symmetry, the scalar potential $ can be ob­
tained by integrating equation (12) in the radial direction, and 

Q 
$ 

16-7TC 
r2[(l + r2)£,tt2) + r2(2 1n/-e-^] (A-4) 

According to equation (10), the poroelastic displacement field 
due to a continuous source is given by 

"• "M n N " \ , [£ 1 « 2 ) + r 2 ( l - e - * / ) ] 
247TC(l-eu) 

The pressure and flux expressions are the following 

4lTK 

qf=— '-e « 
2v r 

G4-5) 

i.A-6) 

G4-7) 
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Wave Propagation Through Fluid 
Saturated Porous Rooks 
A sedimentary rock is modeled by a random packing of identical spherical particles. 
The connected pore space is filled with an inviscid, compressible fluid. A low-
frequency expansion technique is used to calculate the effective wave speeds explicit­
ly in terms of the microstructural properties of the rock considered. The effect of 
both the pore fluid and the initial confining pressure to which the rock is subjected 
can be included in the calculations. 

1 Introduction 

In the present paper we derive the basic equations for wave 
propagation in a fluid saturated rock having connected pore 
space. Here, as in Biot's work (1956), the rock will always be 
elastically isotropic and homogeneous over lengths large com­
pared with a typical grain diameter. We also consider the case 
in which the pore space is filled with an inviscid, compressible 
fluid. We derive the basic equations of motion for the medium 
when a steady state disturbance, whose amplitude is small 
compared with the contact radius of the contacting grains, 
propagates through the medium. The equations first derived 
by Biot (1956) to study this problem have long been regarded 
as standard. They may be written in the form 

Nv 

and 

! < u > + V[(A+N)V-<u> +QV'<v>] 

= - a ) 2 [ p u < U > + p 1 2 < V > ] 

V [ Q V « < u > + i ? V - < v > ] 

= - o ) 2 [ p 1 2 < u > + p 2 2 < v > ] 

(1) 

In equation (1) above, and for the special case of a dry 
porous rock, the constitutive coefficients N and A may be in­
terpreted as the effective Lame coefficients for the dry rock 
framework. Explicit expressions for the effective Lame coeffi­
cients of an initially hydrostatically stressed dry granular rock, 
modeled by a random packing of contacting, identical 
spherical particles, have been obtained by Digby (1981) and 
Walton (in press). The coefficients p u , p22, and p12 in equa­
tion (1) above describe the coupling between the motion of the 
fluid and that of the solid. The components of the average 
solid and fluid displacement vectors, < u > and < v > , cor­
responds to solid and fluid displacements, averaged, in some 
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sense, over regions whose dimensions are large compared with 
a typical grain diameter but small compared with lengths over 
which the macroscopic processes are occurring. Similar 
remarks apply to the other relevant field quantities appearing 
in a number of other equations derived in Biot's paper. 

The application of Biot's theory to the study of diffusion 
and wave propagation processes in fluid saturated, poro-
elastic rocks is, of course, a subject of considerable impor­
tance. A number of equally plausible interpretations, on both 
the method of averaging the various field quantities and the 
physical meanings of the coefficients which appear in Biot's 
paper have, therefore, been advanced by both Biot himself 
and a large number of subsequent writers. Despite this con­
siderable effort, however, we believe that with the exception 
of a few special cases, considerable ambiguity still exists here. 
We believe that some progress towards a solution of the pro­
blem described above was first made by Burridge and Keller 
(1981) and Walton (1977). 

Burridge and Keller (1981), in their elegant application of 
the two-space method of homogenization, related the coeffi­
cients in equations (1) above to the microstructural properties 
of the rock considered. 

Walton (1977), on the other hand, performed the same exer­
cise rigorously by a rather different method. A low-frequency 
expansion technique was used. In its original form, Walton's 
work (1977) deals only with the propagation of longitudinal 
waves through an initially stressed fluid saturated rock whose 
framework is modeled by a simple cubic packing of identical, 
contacting spherical particles, and is, of course, far less 
general than Burridge and Keller's work. However, the results 
obtained are more directly applicable to the study of wave pro­
pagation through initially stressed, fluid saturated rocks in 
which the dominant mode of deformation of the rock 
framework is by grain contact deformation. In addition, 
Walton's work (1977) allows a more explicit interpretation of 
Biot's dynamic coupling coefficients pn, p22, and p12, which 
appear in equations (1) above. 

In the present paper we will therefore generalize Walton's 
original work (1977). The propagation of both longitudinal 
and transverse steady state disturbances through fluid 
saturated rocks will be studied. 

788/Vol. 54, DECEMBER 1987 Transactions of the ASME 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2 The Low Frequency Expansion Technique and 
Averaging Procedure 

(a) The Governing Microstructural Equations. The mo­
tion of the fluid arid solid components will be assumed small 
enough to be governed by the linearized equations of fluid 
mechanics and elasticity. Then with the e~'w time dependence 
suppressed (steady state disturbance of frequency co), the 
equations of motion governing vibrations about an 
equilibrium state are 

and 

in the solid grains 

o^UijU^+iiiUjj + Ujj) 

p,i=pfu>2vi 

in the inviscid pore fluid 

P=-*fVk,k 

(2) 

y o ) 

In equations (2) and (3) above and throughout the re­
mainder of this paper, standard suffix notation will be used, 
with 5,y denoting the usual Kronecker delta symbol. ps, A, and 
H denote the density and Lame coefficients for the solid grains 
(assumed elastically isotropic and homogeneous), pj and Kf 
denote the density and bulk modulus of the pore fluid compo­
nent (assumed inviscid and compressible), ay and w,- denote 
the increments in the Cartesian components of the Cauchy 
stress tensor and displacement vector, respectively, for the 
solid component. Similar remarks apply to the fluid displace­
ment vector v for the fluid component. Across the fluid-solid 
boundaries we also require continuity of the traction and nor­
mal displacements, that is, 

and 
-Pi,-

(4) 

where, in equation (4), «,- denotes a component of the unit 
normal to the fluid-solid boundary pointing out of the solid, 
that is, into the pore fluid. 

(b) Low-Frequency Power Series Expansion Tech­
nique. We follow the approach of Walton (1977). Thus we 
write each field quantity appearing in equations (2)-(4), for 
example oy, in the form 

oij = oW+<1)oW + a2off+ (5) 

This power series expansion is supposed to be valid only for 
those values of the frequency OJ for which the effective 
wavelength of a wave travelling in an infinite medium made of 
the fluid saturated granular material would be much larger 
than the grain radius, R. In equation (5), the superscripts 
denote the order of approximation used. Strictly speaking, 
one should make equations (2)-(4) dimensionless, introduce a 
dimensionless frequency, and expand all quantities in powers 
of this. For convenience, however, all of our equations will be 
expressed in terms of the physical frequency o>. 

(c) The Averaging Procedure. Our ultimate aim is to ob­
tain equations expressed in terms of "averaged" field and 
physical quantities. We will again follow Walton's approach 
(1977), but with one major difference. Our representative 
volume element will now contain many spheres (grains) in the 
medium. The average of any field quantity, for example ay(y) 
is denoted by a,-,(x) = < oy > and is defined by the equation 

=-y\v°ij (y)avy (6) 

(the representative volume), centered on the point x. Vdenotes 
its total volume. Vf and Vs denote those parts of V occupied 
by the fluid and solid components, respectively. Throughout 
this paper, the porosity -q of the rock considered is defined to 
be the ratio of the volume of fluid V/ contained in the 
representative element to its total volume V. Remarks 
analogous to those made above apply to quantities defined on­
ly in the fluid part of the representative element. We shall also 
make frequent use of equations of the type 

-\s.."iinJdSy (7) 
3 < Oy > 

dx, V J ssw 

which follow directly from equation (6). In equation (7), ^(x) 
denotes the external bounding surface of the representative 
volume intersected by the solid grains, having a unit normal tij 
and an element of area dSy. In equation (7), and throughout 
this paper, differentiation of averaged field quantities is taken 
with respect to the coordinates of the centroid of the represen­
tative volume element. 

3 Some Basic Equations Derived from the Low Fre­
quency Expansion Technique 

(a) Some General Considerations. We first present some 
basic equations which may be derived independently of any 
expansion technique. We first note that one immediate conse­
quence of the microstructural equations (3) is that the fluid 
motion is irrotational, that is 

curlv = 0 (8) 
Hence, (at every order of approximation in equation (5)) there 
exists a displacement potential 4> defined by the equation 

v = V 0 (9) 

To obtain further equations, we note that by direct application 
of the averaging procedure described in Section 2(c) of this 
paper and the first of the boundary conditions (4) to the se­
cond of equations (2) and (3) gives 

<akk> <p> I f . . . 1 

3/c, 

:p> r I f 
i — = — ukkdV+— vkkdV 
Kf Vivs

 Kk ViVf k-k 

< Uj >,j+< Vj > ,j (10) 

Similarly, from the first of equations (2) and (3) and the se­
cond of the boundary conditions (4), one obtains 

< ay >,j-<p>„= -psw
2 <Uj>- PfW2 < Vj > (11) 

Equations (10) and (11) above correspond to equations (55) 
and (61), respectively, in Walton (1977). They are also valid at 
every order of approximation in the power series representa­
tion (5). 

(b) Further Equations Obtained from the Low Frequency 
Expansion Technique. These equations are all obtained by 
first substituting the power series expansions (5) into the basic 
microstructural equations (2)-(4) and then equating coeffi­
cients of like powers of the frequency co. We then derive the 
following equations: 

Zeroth Order Motion. In the solid we have 

o-W- = 0 
(12) 

The integral in equation (6) is now taken over a large volume 

af=^uf]+ufj) + \byuf\ 

and in the fluid we have 

V/7(0, = 0 (13) 

Hence p(0) = constant (which we take as zero), therefore 

p(°»=0 (throughout the fluid) (14) 

Also from boundary conditions (4) 

of = 0 (on the solid-fluid interface) (15) 

Journal of Applied Mechanics DECEMBER 1987, Vol. 54/789 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



We also suppose that the zeroth order motion corresponds 
to zero solid stress, that is, 

of = 0 (throughout the solid) (16) 

From equations (3), (5), and (14) it follows that 

V • v(0) = 0 (throughout the fluid) (17) 

From equations (8), (9), (17), 

curlv<°>=0 

v(0)= V0(O) 

V2</><°>=0 

and on the inner boundaries (the solid-fluid interface), 

u^nk = vfnk 

(18) 

(19) 

The zeroth order motion considered here, therefore, con­
sists of a solid motion which, from equations (12) and (16), is 
that of a rigid body translation (since there is zero stress and 
the displacement is bounded at infinity), and a fluid motion 
which has zero accompanying pressure. Thus, with a zero 
superscript denoting zeroth order, we have also 

u(0) = constant (throughout the solid) (20) 

First Order Motion. In the solid we have 

<j(!). = 0 "IJJ
 u 

and in the fluid, 

Vp<» = 0 

that is, />(1) = constant throughout the fluid 

Also, V'\w= -pil)/Kf 

Again, from equations (8) and (9) we have 

curlv">=0 

v(i) = V 0 ( 1 ) 

Then, V24>(1) = -pm/nf 

Also, on the inner boundaries, we have 

nkuk» = nkvP 

(21) 

(22) 

and UU J -nip1 ,(D 

(23) 

(24) 

where from equation (22), p (1) in equation (24) is constant. 

Second Order Motion. Here, it will be necessary to con­
sider only the fluid motion in the subsequent sections of this 
paper. Thus, to this order, we need only consider (from equa­
tion (18)), the equation 

Vjp
(2)=p/v(°>=p/V<A(0) (25) 

We then obtain 

pP) = p^C) + constant (26) 

4 The Complete System of Equations for Wave Pro­
pagation Through a Fluid Saturated Granular Rock 

(«) Fluid Motion. It will be seen that the fluid motion 
will, to the lowest order, be completely determined by the 
function $(0) appearing in equations (18) above for the zeroth 
order fluid motion. To satisfy equations (18) above for </>(0), 
subject to the boundary conditions (19) on the inner boun­
daries, we first consider a potential function <£(0) of the form 

<£«» = (<|> _ u(o>). * + u«>). r (27) 

In equation (27) u(0) is a constant vector determined from 
the zeroth order solid motion (equation (20)), and $ is also a 

constant vector. The vector potential function ^(r) , depending 
only on the geometry of the medium considered, satisfies the 
following conditions: 

V 2 * = 0 in the fluid ") 
\ (28) 

and (n»V)^f = 0 on the inner boundaries J 

These conditions are of course insufficient to determine 
either *(r) or </>(0> uniquely, since the boundary conditions on 
the external surface of the representative volume element are 
unknown. However, the form of the potential function for 
0<O) given in equations (27), (28) may be regarded as a par­
ticular integral to the original problem described by equations 
(18) and (19). By applying the averaging procedure described 
in Section 2(c) of this paper, it then follows from equations 
(18) and (26)-(28) that 

<vf>> = ' _ ' + ($.-uf>)- I d¥: 

dx. 
'-dV (29) 

(!->>) 
and 

<p< 2 >>„= P / < </>«»>„. 

= " V - I T +p'<*j-uF>y\S/*Jn>dS> (30) 

We now use equation (30) to provide the required additional 
constraint on the values taken by the function ¥(x) on the ex­
ternal boundary Sf of the representative volume element. 
Thus, we postulate that the averaged pressure, <pi2> > should 
be linear in x, that is, </?(2) > is of the form A»x where A is a 
constant vector. This, from equations (27) and (30), is 
equivalent to supposing that we must find a particular integral 
of equations (28), such that for a statistically isotropic 
medium, 

-1 V J. 
•%jnidSy=r)bij (3D 

>/ 
A reasonable choice is to take ^ = Xj on Sf. From equations 
(29) and (30) we then have 

v<uf> 
<y(°>> 

In which 

(l->?) 
]pf=K„{ <P< ™>,j- VPf <uf>> 

(1-r?) 
] (32) 

^ " - - F L 
d* 

dx. 
j-dV (33) 

In particular, if the medium is stastistically isotropic, Ky = 
dyK where K is a scalar depending only on the geometrical 
properties of the packing used to model the rock we are con­
sidering. Hence K can, in principle, be determined numerical­
ly. Also, in this case, equation (32) reduces to 

<Pm>,; = 
VPf <w<0)> 

-P/X <vf> V <uf>-

Where, in equation (34), x=K~x. From equations (5), 
(22), and (34) we then obtain, to the lowest order, 

<p>,j = ui2<p' ( 2 ) -

= p /u
2 \x<Vi> + 

rl{\-x)<Ui>-

(i-v) -

(34) 

(14), 

(35) 

Equation (35) is equivalent to equation (58) in Walton's work 
(1977) for the case of a simple cubic packing. 

It is very unlikely that the quantity xi-K1) in equations 
(33)-(35) above could ever be determined analytically, in a 
general case. However, an upper bound on the scalar K can be 
obtained from the following considerations. 

The scalar K, for a statistically isotropic medium, is defined 
in terms of the vector potential function *(x) through equa­
tion (33). We note that in addition to equations (28), each 
component ^ ( x ) now also satisfies the condition that 
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tyj(x) = Xj on the external boundary of the representative 
volume element. Suppose now that y*(x) is any other func­
tion, not necessarily satisfying equations (28) but is such that 
V*(x) = Xj on the same external boundary. We consider the 
volume integral 

f lv(*/-*y)IW>0. 

We can then easily show that 

( l v * ; i W > [ \v%\2dV. 

We then have, 

f I V * ; I W > ( \vVj\2dV 
j Vf J Vf 

= \s
xj",'7*JdS 

dV, 
'-dV 

iyf dxJ 

= VjKjj (no sum over./'!) 

VjK 

Hence, 

K< ( \v*f\2dV 
Vrivf ' f>yf 

Since ¥* is any function satisfying ¥*=Xj on the external 
boundary, we now take ^*=Xj throughout the fluid volume 
Vj and we have 

K<\ 

that is x 5:1 

Our required lower bound for the numerical factor x-

(36) 

(b) Solid Motion. We now derive the constitutive equa­
tion for the fluid saturated rock framework. We consider the 
problem for the solid component defined by equations (21) 
and the second of equations (24) for the first order motion. To 
complete the specification of this problem, conditions on the 
external boundary of the representative volume intersected by 
the solid grains are now required. Here, following our earlier 
work (Digby, 1981; Walton, in press), we suppose that the 
displacement u(1) will be linear on this external boundary, that 
is, we write 

uW^e^Xj (37) 

where in equation (37) we write 

# ) = I F L C ^ + ^ X ^ (38) 

We now consider the displacement field wj1' + (P ( 1 )X,/3KS), 
denoted by w\l\ and the associated stress field o^' + 5ypm, 
denoted by rjj'. This displacement field and stress field 
satisfies the following boundary value problem: 

T«). : 
'llJ 

• 0 

in the solid grains 

^xfyHft+^wfM.V) 

(39) 

T^ rij = 0 on the inner boundaries 

w<» = / pw5--\ 
>(i> = \Aj) + IJ jxj on the external boundary 

(40) 

We note that the problem defined by equations (39) and (40) 
corresponds to the problem which would arise when we 
calculate the effective elastic Lame coefficients for a dry pack­
ing. Thus T}]' and wj" will be related through the effective 
Lame coefficients for the dry packing. Denoting these by X* 
and n* we then have 

Tl^dv-^)+^)+xM^+IB (41) 

That is, from equation (38) 

= 7F^) - ( < W ' ; ) > ' ; + <«i1)>„) + -^y5 , y <4 1 ) > . , (42) 

Hence, from equations (5), (16), (20), and (42), our required 
constitutive equations are, to the lowest order in co, 

/ K* \ <p> „ 

(1 -1) 
(<W,>,,+ <«,•>„) + 

X* 

(l->?) 
&ij <uk>>k (43) 

(c) Summary of the Full System of Equations. Col­
lecting together equations (10), (11), (35), and (43), we now 
have the required full system of equations which will be used 
in Section 5 of this paper to relate the various coefficients ap­
pearing in Biot's equations (1) to the micro-structural proper­
ties of the rock we are considering. This full system of equa­
tions is as follows: 

<°kk> <P> 
3K. Kf 

< " • ; , • > , 

<p>,i=pf0l- {x<Vj 

/ KS*\ <p: 
<ffJ/> + ( l - 1 ? — ' - ) & „ — 

> + 

2 < U; > - PfW2 < 

rj(l-x)<Ui>-

(1 -1 ) 

(44) 

(45) 

(46) 

(1-1) 
i<Ui>,j+<UJ>,i) + 

(1 -1 ) 
<"*>>* (47) 

The only "unknown" quantities appearing in the above 
system of equations are x (or equivalently, K) and the effective 
Lame frame elastic coefficients X* and /x*. Now the effective 
Lame coefficients X* and fx* are known for dry packings. 
However, it must be remembered that the above equations ap­
ply to the case in which fluid is present, but it is still a relative­
ly straight-forward matter to apply our earlier results (Digby, 
1981; Walton, in press) here since the only effect of a uniform 
fluid pressure is to create a hydrostatic compression 
everywhere. 

The quantity Ky appearing in equation (33) could be deter­
mined numerically for a granular rock modeled by a spatially 
periodic packing of spherical particles (see, for example, the 
case of the simple cubic packing treated by Walton, 1977). In 
principle, it should also be possible to perform the same exer­
cise for K or equivalently x for random packings. We have 
also obtained a lower bound for the numerical factor x, name­
ly x 2:1. It will be seen in the following section that this result 
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has important physical implications on the final results ob­
tained from our full system of equations (44)-(47). 

5 Results Obtained 

(a) Comparison with Biot's Equations. From our basic 
equations (44)-(47) summarized in Section 4, we have, in par­
ticular, from equations (44), (47) 

r ( K , ( l - i ? ) - 0 , 
<p> 

( l - i?) 

+ /e,V»<v> 

- V - < u > 

Where, in equation (48), Kf, denotes the usual Reuss averaged 
effective bulk modulus \/KR = (?)/K /) + ((1 -TI)/KS). From 
equations (47), (48) one then obtains 

< a*> =7r^) {<Ui>,j+<Uj>,i) + -
( l- i?) 

-<uk>, 

(K2
S - KRKS*) 

From equations (46) and (48) one then obtains 

r (K , (1 - !? ) -«*) ~) 1)KRKJ 

J (Ki-KRK* 

(49) 

( l- i?) 

r , ( l - X ) < u > 
-^1 (!_,) +*<V>] (50) 

Also, from equations (45), (46), and (49), we obtain 

/x*V 2 <u> (X*+/**) 
v v « < 

<- K,(l-i?) (1-1?) 

K R K * ( K * ( 1 - ' > ? ) - 0 

(1-1?) (1-1?) 

. < u > + W < v > R 7 f ^ -

= -co2[(ps + n
 (

( ^ ~ 1
)

) p / ) < u > + p / ( l - x ) < v > ] (51) 

Regarded as two equations in the two unknown 
displacements u and (1- r ; )<v>/ i7 , equations (50) and (51) 
will in fact be identical to Biot's equations (1), discussed in the 
introduction to this paper, provided we make the following 
identifications: 

(KS-KRKs) 

VKRKs(Ks(l-ri)-Ks*) 

U-

R-

From which 

and 

Pn = 

Pn~-

Pn~-

{K\-KRK*) 

y2KRK2
s 

(K2-KRKS*) 

A=\* + (Q2/R) 

= (l-i?)p s + i ) (x- l ) i° / 

= i?(l - x)pf 

= nxpf 

(52) 

(53) 

Following Biot's notation (1956) we now also write, from 
equations (52) 

P=A+2N=\*+2ix* + (Q2/R) 

H=P + R + 2Q = \* + 2^* + {{Q + R)2/R). 

ff„ =P/H, al2 = Q/H, a22=R/H 

(54) 

ffn +07.?. + 20\: 

from which 

and from equations (53), 

Pi2=i? ( l -x )P /=-p„ 

Pi=0-y)ps 

Pi = VP/ 

P=Pl+P2 

Til =Pll/p. J\2=Pl2/P> 722 =Pll/'P 

(55) 

from which 

7l l+722+ 2 7l2=l 

We note that our explicit expressions for Biot's constitutive 
coefficients in terms of the microstructural properties of the 
rock we are considering (equations (52)) are all positive. Our 
explicit expressions for Biot's dynamic coupling coefficients 
(equation (53)) also all have the correct sign since we have 
shown earlier that the numerical factor x always satisfies the 
inequality x £ 1. It is also easy to show that our expressions for 
Biot's coefficients, an <jl2 <J22 and yn yl2 y22 (equations (54) 
and (55)) also satisfy the inequalities an o22 - o\2>Q and 
7ll722 -712^0 . 

(b) The Longitudinal Wave Speeds. We have shown 
above that our averaged equations of motion (equations (50), 
(51)) are in fact identical to Biot's equations (1) discussed in 
the introduction to this paper, provided the identifications 
defined by equations (52)-(55) are made. All of Biot's analysis 
(1956) for the determination of the properties of the elastic 
waves and their propagation speeds may therefore be applied 
unchanged. Only a brief discussion will, therefore, be given 
here. 

For the longitudinal wave speeds, for example, we write 
( < u > , < v > ) = (U,V)e'1'-x where (V,\) = k(U,V). That is, 
the displacement amplitudes are parallel to the wave vector k. 
One can show, for example, exactly as in Biot's work (1956), 
that in general there are exactly two real P-wave speeds 
a = w/k (k= Ik I), whose values are determined from the 
quartic equation 

(<jncr22 - a
2
n)- (a22yn + any22 -2onyn)(ot/Vc)

2 

+ (7n722 -y2
2)(.a/VcY = 0 (56) 

In equation (56), V2 =H/p. All of the coefficients appear­
ing in equation (56) are determined explicitly in terms of the 
microstructural properties of the rock we are considering 
through our equations (52)-(55). One can also obtain other 
results in Biot's original paper, but now expressed more ex­
plicitly. For example, by taking (7=({l- i ) ) / i j )Fwe can ob­
tain a more explicit form of Biot's so-called "dynamic com­
patibility condition" in which 

a2= V2=H/p = {QK* + 2iL*)/-p) + ({Q + R)2/R-p) (57) 

Also, by putting p/ = 0 in equations (52)-(56), we obtain just 
one "effective wave speed," in which 

«* = F? = (X*+2/t*)/p5(l-ij) (58) 
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(c) The Shear Wave Speeds. Here, as earlier, we write 
( < u > , < v > ) = (U,V)e /k ,\ but now with (U, V) = (£/, V)kx, 
where ku is perpendicular to the wave vector k. From equa­
tions (50) one then obtains 

V= ,, \ (59) 

Since 0<rj< 1 and from Section 4 we have shown that x & l , 
the fluid and solid displacement amplitudes in equation (59) 
are similarly directed. It then follows directly from equation 
(51) that there is always exactly one real S-wave speed /3 = u/k 
given by 

>?P/(x-l)" 
P2 = H*llPstt-ri) + - i ^ -J (60) 

6 Conclusions 

In this paper, equations have been derived in which both the 
constitutive coefficients and the dynamic coupling coefficients 
appearing in Biot's equations (1956), and hence also the effec­
tive longitudinal and shear wave speeds have been related ex­
plicitly to the microstructural properties of a fluid saturated 
rock. The rock was modeled by a random packing of identical, 
contacting spherical particles. The connected pore space was 
filled with an inviscid, compressible fluid. The constitutive 
coefficients are also expressed explicitly in terms of the bulk 
modulus of the pore fluid and the effective elastic moduli of 
the rock framework whose values are known from our earlier 

work (Digby, 1981; Walton, in press). The effect of the initial 
confining pressure to which the rock is subjected, as well as 
the effect of the nature of the contact regions between adja­
cent particles in the rock, can therefore also be included in our 
calculations. We believe that the work presented in this paper 
will provide a good theoretical basis for the study of more 
realistic problems in which finite frictional forces are also ex­
erted across contact regions and the pore fluid is both com­
pressible and viscous. Direct comparison of results from a 
study of this type with experiments should then be possible. 
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Steady Flow in Porous, Elastically 
Deformable Materials 
The steady, one-dimensional flow of an incompressible fluid through a deformable 
porous material is studied theoretically and experimentally. The theoretical model is 
essentially that of Biot. Assuming that the stiffness and permeability of the matrix 
are functions of the local strain gradient, the governing equations can be solved and 
analytical solutions are presented for several simple constitutive relationships. The 
stiffness and permeability properties of one particular foam are measured and then 
used to predict the rate of fluid flow and the distortion of the matrix as a function of 
the applied pressure difference across the material. Comparison of the predictions 
of the model with experimental observations indicates good qualitative agreement. 

1 Introduction 

When fluid flows through a porous, deformable medium 
there is coupling between the flow and the deformation of the 
medium which may lead to various interesting phenomena. 
For example, the strain distribution in a porous, deformable 
matrix under steady mechanical compression is uniform, but 
if the strain is produced by fluid flow, the strain distribution 
can be highly nonuniform (Caro et al. 1984) as can be seen in 
Fig. 1. In general, the nature of the flow and the resultant 
strain distribution depend upon the properties of the porous 
matrix and the fluid and their interactions as well as the 
boundary conditions: geometry, applied pressure, etc. In 
order to assess some of these effects, we have analyzed the 
behavior of the simple system: steady, one-dimensional flow 
through a slab of porous deformable material restrained at the 
downstream end by a freely draining rigid support. The results 
of this analysis have been compared with experimental results 
obtained for the flow of a glycerine-water mixture through a 
polyurethane foam. 

The first theories of flow in porous, deformable materials 
were developed to explain the consolidation phenomena in soil 
mechanics (Terzaghi, 1925) culminating in the equations pro­
posed by Biot (1955) which are widely accepted and used to ex­
plain observed behavior in geological materials. The fun­
damental basis of this theory has been studied both from the 
viewpoint of the thermodynamic theory of mixtures (Crochet 
and Naghdi, 1966); Rice and Cleary, 1976; and Kenyon, 
1976a, 1976b) and from a two-scale analysis of the Navier-
Stokes equations (Burridge and Keller, 1981). More recently, 
interest in flow in porous, deformable materials has been 
stimulated by problems in biomechanics. Both the response of 
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articular cartilage to loading (Lai and Mow, 1980; Lai et al. 
1981) and the flux of water through arterial tissue (Kenyon, 
1979; Jayaraman, 1983) have been analyzed in these terms. 

2 Mathematical Model 

(a) Basic Equations. As the starting point of this analysis 
we shall take the consolidation equations of Biot (1955) with 
the definitions and interpretations of Kenyon (1976a, 1976b), 
who has derived these equations as a special case of his theory 
of isothermal solid-fluid mixtures. In this continuum ap­
proach the solid matrix and the fluid coexist, both the solid 
stress and the fluid pressure are continuous properties 
representing some "pore averaged" value, and the fluid 
velocity is measured relative to the solid matrix. The solid is 
described by constitutive equations which relate the stiffness, 
A, and porosity, K, of the matrix to the local strain gradient, 
R. For one-dimensional problems, the balance of forces and 
Darcy's law lead to the dimensionless equations 

d(\R) 

dx 
dp 
dx 

w (2.1) 

The height, stiffness, and permeability of the matrix in the 
reference state have been chosen as characteristic values so 
that X = AC is the dimensionless stiffness, k=K/Kc the dimen­
sionless permeability, p = P/Ac the dimensionless pressure, 
and w = \iHc W/KCAC is the dimensionless fluid velocity where 
H is the fluid viscosity. For an incompressible solid-fluid mix­
ture vv= —dR/dt where t=TKcAc/nHc

2 is the dimensionless 
time. Here and throughout, capital letters refer to dimensional 
parameters, small letters refer to the corresponding dimen­
sionless parameters and the subscript c refers to characteristic 
dimensional values. Combining these equations gives the 
familiar diffusion equation for the local strain gradient 

d 

~dx (km±(m*))) = dR 
(2.2) 

(fi) Boundary Conditions. In the following, we will con­
sider the simplest case of a homogeneous matrix of unde-
formed thickness H0 restrained at x=0 by a rigid grid which 
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Fig. 1 Strain distribution in a porous, deformable matrix under dif.
ferent conditions: (a) no load, no flow, showing the foam in its relaxed
slate; (b) mechanical compression with no flow, showing uniform strain
distribution; (c) the nonuniform strain distribution resulting from flow

(2.4)

(2.3)

Fig. 2 w versus P1 calculated for constant permeability and exponen·
tial stiffness, equation (3.6), with b = 1 and various values of a. The
curves for a = 0.01 and 0.1 exhibit the hysteresis resulting from the
multi·valued nature of the assumed stress·straln law. The limiting case,
a = 1, is the solution for constant stiffness and permeability, equation
(3.8).

(3.4)
(3.5)

(1 +P I 12)-1
Pl(1+P I 12)

h
w

For the rest of this section, we will assume that Si = 0, Le.,
there is no contact stress at the top of the matrix, and explore
the nature of the solutions with flow.

(b) Constant Permeability: k =1. If the permeability of
the matrix does not vary as the matrix is distorted, k = 1. For
this case equations (2.1) and (2.3) have the solution

AR=Pl(1-x/h) (3.2)

and w=PI/h. The thickness of the matrix is determined from
the matching condition,

h=l+ LRdr1 (3.3)

where y = x/h is the distance scaled by the deformed matrix
thickness.

(i) Constant Stiffness. For the special case of constant
matrix stiffness, A= 1, and the solution becomes

This solution corresponds to the incompressible case discussed
by Keynon (1978) and is shown as the limiting case, a = 1, in
Fig. 2.

(ii) Exponential Stiffness. Consider the exponential stiff­
ness law

does not impede the flow. We will assume the pressure in the
fluid at x= 0 is maintained at a constant level which, without
loss of generality, we will take to be zero. At the top of the
matrix, x = h, we will assume that both the pressure in the fluid
and the contact stress on the solid matrix are prescribed. The
dimensionless boundary conditions are

x = 0: AR=Si +Pl
x = h: AR=SI

where Pi =P1IAc and Sj = SilAc are the pressure and the con­
tact stress applied at the top of the matrix. The location of the
top of the matrix is, of course, not known a priori and the
calculation of h under different conditions is one of the
primary goals of the analysis. From the definition of strain,
however, we have the "matching" condition

): Rdx= I-h

These equations together with an initial condition describe a
well posed, free boundary problem for the local strain, R.

(c) Steady State. If the applied stresses, Pi and Sl' are
constant, then the problem is steady and equations (2.1), (2.3),
and (2.4) are sufficient to determine the constants wand hand
the distribution of strain R (x) as a function of the applied
stresses PI and Sl'

3 Results

In principle, solutions are possible for any sufficiently well­
behaved functions of permeability and stiffness, k (R) and
A(R); but in practice, analytical solutions are obtainable only
for relatively simple constitutive relations. In order to explore
some of the interesting phenomena of flow in deform­
able, porous matrices, we will look at the solutions of these
equations for several simple relationships, in the knowledge
that in real materials both k and A can be quite complex func­
tions of the local distortion.

(a) Zero Flow. IfPI = 0, then R =Sl' is a solution of equa­
tions (2.1) and (2.3). Substituting into equation (2.4) and in­
tegrating we obtain

h=(I+s1/A)-i (3.1)

In its dimensional form, this solution implies that the strain is
uniform throughout the matrix thus providing a convenient
way of measuring A(R) experimentally. By applying different
loads, Sl' and measuring the resultant height of the matrix,
A= S11R can easily be calculated since for constant strain,
R= (Ho-H)/H.
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Fig. 3 iv versus p-\ calculated for constant stiffness and linear 
permeability, equation (3.11), for different values of the critical strain R. 
The curves have a maximum value R(1 + R/3)/2 at p1 = R. The limiting 
case, ft = oo, is the solution for constant stiffness and permeability. 

Fig. 4 w versus p1 calculated for constant stiffness and the exponen­
tial permeability, equation (3.16), for different values of c. The curves are 
monotonic with the asymptote (1 +c)/c2. The limiting case, c = 0. is the 
solution for constant stiffness and permeability. 

A = a + ( l - a ) e x p ( - M ) (3.6) 

where a is the limiting stiffness at large compaction. From the 
boundary conditions, the strain varies from 0 at the top of the 
matrix to R0 at the bottom, where RQ is the solution of 
R0\(R0) =Pi- For values of a< (e2 + l ) - 1 care must be taken 
because there is a range of pressures for which there is more 
than one solution for R0. Such behavior could give rise to a 
sudden "collapse" of the matrix as the pressure is increased 
beyond some critical value. It could also lead to hysteresis 
since the collapsed matrix would not recover as the pressure is 
lowered until another, lower, critical pressure was reached. 

The integral in equation (3.3) has the solution 

Jo p, lb2 \RQ ) b \ R0 J 

+ <i~-r)] (3.7) 

The resultant velocity is plotted as a function of px for dif­
ferent values of a in Fig. 2. The effect of the hysteresis is seen 
at the two lowest values of a. 

(c) Constant Stiffness: X = l . The results in the previous 
section were calculated for the special case of constant 
permeability. We now relax that condition and calculate the 
effect of nonconstant permeability under the simplifying 
assumption of constant stiffness, X= 1. For this case we must 
solve 

k(R) 
dR 

~~dx 

x=0,R=Pi 

(3.8) 

(3.9) 

x = h,R = 0 (3.10) 

(/') Constant Permeability. This case was discussed above 
with h and w given by equations (3.4) and (3.5), respectively. 
The predicted flow as a function of the applied pressure is 
shown as the limiting behavior in Fig. 2. 

(ii) Linear Permeability. Assume that the permeability 
varies linearly with local strain, 

k(R) = l-R/R (3.11) 

for R < R, the critical strain at which the permeability becomes 
zero. The solution for this case is, 

2wh / v \ \ 1/2 

* - 4 - 0 - T T ( ' - T ) ) ] "• 12) 

>=Pi(l + 
2R 

-JL) 
37? / 

and 

w V 2R ) 

(3.13) 

(3.14) 
w \ 2R 

The fluid velocity for this case is shown in Fig. 3. One of the 
interesting features of this solution is that the fluid velocity 
goes through a maximum as the pressure is increased. The 
maximum velocity depends upon the critical strain, R, 

wmix=R(\+R/3)/2 (3.15) 

and occurs at p]=R. As the pressure is increased further, the 
velocity decreases, eventually reaching zero. This limit is prob­
ably not very realistic since real materials will deviate from the 
linear permeability law at large deformation. However, the 
flow limitation properties implied by the maximum are more 
realistic since they occur at lower levels of distortion of the 
matrix where the linear variation of permeability with distor­
tion may be a reasonable model of the behavior of the matrix. 

(Hi) Exponential Permeability. A constitutive relation 
for the permeability which avoids the problem of a critical 
strain at which the material becomes impermeable is the ex­
ponential relation 

k = exp(-cR) (3.16) 

This is the law proposed by Lai et al. (1981) for the flow of 
synovial fluid through articular cartilage. With this law, the 
solutionis, 

— \a{\-cwh{\-x/h)\ (3.17) R=-

where 

and 

(1+c) 
( l - exp( - cp)) - ^ exp( - cp) (3.18) 

h -[• 
c+\ jo,exp(-cp) 

(3.19) 

where 

1 - exp( - cp). 

The variation of fluid velocity with pressure is shown in Fig. 
4. In this case the curves are monotonic but approach an 
asymptotic maximum 

1 + c 
w „ = — r - (3-20) 

4 Experimental Measurements 

The porous, elastically deformable material used in the ex-

796/Vol. 54, DECEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



±^§Z 

{p. to vacuu 

M H 
micro­
processor 

Fig. 5 A sketch of the experimental apparatus: (1) upstream reservoir; 
(2) test section; (3) downstream reservoir; (a) polyurethane foam; (6) 
plastic clay gasket; (c) wire mesh; (d) freely draining rigid grid 

periments was a highly flexible, open-celled polyurethane 
foam marketed by Declon, England. The foam had a nominal 
pore distribution of 100 pores per linear inch with a corre­
sponding nominal pore diameter of 150 /im. The void fraction 
of the foam was about 0.97 and it had a bulk density of 27 
kg/m3. When observed under a dissecting microscope, the 
structure of the foam was seen to be lattice-like with 
polyurethane fibres as the members of the lattice and no free 
fibre ends internal to the structure. This foam was chosen as 
matrix material because it showed acceptable variations in its 
poroelastic properties from sample to sample. Although in-
homogeneous, it was more uniformly porous than other can­
didate materials. An 80:20 glycerine-water mixture at room 
temperature was used as the fluid medium. The viscosity of 
this medium was 40 to 50 times higher than the viscosity of 
water at the same temperature. As a result, we were able to in­
duce relatively large drag in the foam at much lower flow rates 
while operating in the Darcy flow regime. In this regime, the 
pore Reynolds number (that is, the Reynolds number based 
upon a typical pore dimension) is less than 1. 

A schematic diagram of the experimental apparatus is 
shown in Fig. 5. A 650 cm3 Perspex cylinder served as the feed 
reservoir which was connected to the test section by 9 mm ID 
Tygon tubing. The test section, Fig. 5 inset, was a 12 cm high 
Perspex cylinder 5.1 cm in diameter. It retained the 
polyurethane foam on a perforated plate having 7 mm 
diameter perforations on a 1 cm triangular pitch. In order to 
prevent any bulging of the foam through the perforations, an 
ordinary wire mesh, 2 mm square mesh size, was placed be­
tween the foam and the perforated plate. The pressure drop 
across the mesh and the plate was negligible compared to that 
across the foam itself under experimental conditions. Pressure 
taps were installed 1 cm above the upstream face and 1 cm 
below the downstream face of the uncompressed foam whose 
height was 7.6 cm. The diameter of the holes used for the taps 
was 6 mm. The taps were connected by Tygon tubing to a 175 
mbar differential pressure transducer (Druck Ltd, England). 
The feed solution entered the test section at the same level as 
the upper pressure tap and left it at the same level as the lower 
pressure tap through 6 mm ID plastic tubes. The Reynolds 
number based on the test section diameter was less than 1 
under experimental conditions and no entrance or exit effects 
were expected. On the one hand it was essential to minimize 
friction between the foam and the test section and on the other 
hand it was important to minimize flow around the sides of 
the foam. After careful experimentation, we used a slightly 
undersized foam and reduced the amount of flow around the 
foam to an acceptable minimum by placing a plastic clay 
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Fig. 6 Results of uniaxial compression tests on the polyurethane foam 
plotted as stress versus height. Broken line corresponds to data for 
similar polyurethane foams obtained by Beavers et al. (1981b). 

gasket, 3 mm in width, at the downstream face of the foam 
(Fig. 5). The effluent liquid from the test section was collected 
in a 5000 cm3 glass bottle which served as the downstream 
reservoir. The glass bottle was connected via a variable leak to 
a vacuum pump so that the downstream pressure could be ad­
justed to the desired level. 

The feed flow rate or its equivalent, the rate of change of 
the height of the feed solution in the upper reservoir, was 
monitored by measuring the pressure at the base of the reser­
voir with another 175 mbar differential pressure transducer. 
The outputs from the two pressure transducers were passed 
through signal conditioning modules to a BBC microprocessor 
for on-line data collection. Signals were sampled every 100 
msec and displayed simultaneously on the screen. For a given 
experiment, 180 such samples were collected for each signal 
and stored. The stored data were processed later to obtain the 
corresponding pressure drop, AP, and flow rate, Q. 

Preliminary tests indicated that when a new foam was used, 
its poroelastic properties varied with the number of times it 
had been compressed. After it had been compressed several 
times, however, its properties became independent of its 
history reflecting a mature, unchanging state. Similar findings 
were reported by Beavers et al. (1981b). We have used such a 
well conditioned foam in all our experiments to eliminate 
history dependence. Three different sets of experiments were 
performed to characterize the foam and test the mathematical 
model. These were (1) measurement of stiffness, A, as a func­
tion of strain, R; (2) measurement of permeability, k, as a 
function of strain; and (3) experiments concerned with the 
steady behavior of the foam involving measurements of flow 
rate, Q, and overall compaction, H/Hc as a function of 
pressure drop, AP. The principal features of each set of ex­
periments are described below. 

(a) Stress Versus Strain. The foam was placed in the test 
section and immersed in the test fluid. In order to ensure that 
the matrix was air-free, the air filled test section together with 
the foam was placed under vacuum and the degassed glycerine 
solution was then allowed to rise slowly through the foam. 
Once the foam was completely filled with the solution, the 
vacuum was released and care was taken not to expose the 
foam to air. A rigid grid was placed on the top of the foam 
and the deflection of the foam under different loads was 
measured. The poroelastic nature of the system was reflected 
by the finding that the deflection for a fixed load increased 
slowly to its equilibrium value over a very long period of time 
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Fig. 9 The predicted flow versus applied pressure. The symbols repre­
sent experimental data; solid line corresponds to prediction for ex­
perimental stiffness and broken line corresponds to prediction for 
hypothetical stiffness (equation (6.1)). 

Fig. 7 The uniaxial compression data of Fig. 6 plotted as stiffness ver­
sus strain. The solid line is the fitted curve used in the numerical 
calculations (equation (5.1)). 

K 

(>im2 ) 

Fig. 8 The measured permeability of the polyurethane foam used in 
the experiments versus strain. The solid line is the fitted curve used in 
the numerical calculations (equation (5.2)). 

even though it increased quite rapidly in the initial period after 
loading. We found that at least .80 percent of the equilibrium 
deflection was achieved within the first four hours. The stress 
versus height data shown in Fig. 6 correspond to values at the 
end of that four hour period. The stress values are accurate to 
within ±2 percent and the heights to within ± 1 percent. Also 
included in the figure are data reported by Beavers et al. 
(1981b) for a similar foam in water. The same data are shown 
in Fig. 7 in the form A versus R along with the fitted curve 

Fig. 10 The predicted height of the matrix versus applied pressure. The 
symbols represent experimental data; solid line corresponds to predic­
tion for experimental stiffness and broken line corresponds to predic­
tion for hypothetical stiffness (equation (6.1)). 

which was used in the related numerical solution of equation 
(3.1). 

(b) Permeability Versus Strain. The measurement of the 
permeability of the foam involved constraining the foam be­
tween two porous grids at the desired strain and measuring the 
flow rate as a function of the pressure drop across the foam. 
Since the flow induced a nonuniform distribution of local 
strain within the foam matrix even at small pressure drops, 
measurements were made at several different pressure drops 
and the permeability was calculated from the initial slope of 
the measured flow rate versus the pressure drop curve. The 
permeability measured thus was accurate to within ±6 per­
cent. The results, plotted as a function of the imposed strain, 
are shown in Fig. 8 in the form K versus R along with the fitted 
curve which was used in the numerical calculations. 

(c) Steady State Behavior. The steady state behavior of 
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the foam, constrained only at the bottom end, was studied at 
different flow rates. The flow rate was varied by changing the 
pressure at the downstream end by applying a suitable 
vacuum. The height of the foam as well as the flow rate and 
pressure drop were continuously monitored until steady state 
conditions were attained. At least two pore volumes of solu­
tion were allowed to flow through the foam before data collec­
tion was begun. The measured steady flow rate for several 
pressure drops is plotted in Fig. 9 in nondimensional coor­
dinates. The corresponding steady state height is shown 
against the applied pressure drop in Fig. 10. 

5 Theoretical Predictions 

Both the stiffness, A, and permeability, K, had strong and 
complex dependence on the strain as shown in Figs. 7 and 8. 
Therefore, an analytical solution of equations (3.1) - (3.3) 
was not possible and appropriate analytical expressions were 
fitted to the poroelastic properties data for use in the 
numerical solution. Polynominals were fitted to the stress-
strain data over three piecewise continuous ranges of strain: 

0<i?<0.065, X = 18.87/AC 

0.065<i?<7, X = (0.2R2-0.1R+1.23)/(i?Ac) (5.1) 
1<R, X = (1.44R2-17.52R + 62.41)/(i?Ac) 

The following expression was fitted to the permeability data: 

k(R)=(3W3/Kc) exp(-1.289jfl) (5.2) 

The undeformed height of the matrix, HQ, was used as the 
characteristic length. For better accuracy, Ac and Kc were 
chosen to correspond to their values at R = 1 (Ac = 1.33 kPa, 
ATC = 855 fim2). The model equations were then solved 
numerically using a second order Runge-Kutta integration 
scheme. Since it was a free boundary problem, solutions were 
found by iterating on height until all the boundary conditions 
were satisfied. 

The solid lines in Figs. 9 and 10, respectively, represent the 
predicted fluid velocity and predicted matrix height while the 
symbols represent experimental data. 

6 Discussion 

The agreement between experiments and theoretical predic­
tions of fluid velocity is good considering the fact that there 
are no free parameters in the theory. On the other hand, the 
predicted height of the matrix is as much as 35 percent below 
the experimental measurements. This may be an experimental 
artifact or could be an indication of the limitation of the pro­
posed theory. This point merits more discussion. 

It is possible that the pressure-flow relationship was 
dominated by the most compressed region of the foam very 
near to its constrained end while the overall height of the 
matrix was largely determined by the less strained upper sec­
tion within which a nonuniform distribution of strain existed. 
Since the stress-strain curve for this foam shows a wide 
plateau from R = 0.065 to about R = 3.000, a small discrepan­
cy in local stress would correspond to a large error in 
estimated R. The cumulative error over the entire matrix 
height could well account for the extent of disagreement with 
the experimental results. To test this hypothesis, we changed 
the stress-strain curve in the plateau region and beyond to the 
following: 

0.065<i?<7, X = 0.2(0.2R2-0.1R+1.23)/(7?AC) (6.1) 
7<R , X = 0.2(1.44R2-17.52R + 62.41)/(/?Ac) 

The resultant prediction of matrix height, shown by the 
broken line in Fig. 10, is in close agreement with the ex­
perimental results. The corresponding predicted fluid velocity, 
however, is much higher than the experimental result. Ap­
parently, it is difficult to reconcile theory and experiments 

completely. We speculate that incorporation of the strain gra­
dient, dR/dX, as an additional independent parameter might 
shed more light on the complex interaction of matrix and flow 
seen in the present experiments. 

There are few previous studies with which this work can be 
compared. Manins and Roberts (1975) used a similar model 
with a power law for the permeability to calculate numerical 
solutions for the unsteady, two-dimensional problem of a 
Hookean elastic matrix confined in a rectangular box with one 
porous side. They studied the case of loading from the top 
with no through flow which makes comparison to this work 
difficult. More directly comparable are the studies of Beavers 
et al. (1975, 1981a, 1981b) who investigated the flow of air and 
of water through polyurethane foams. Our results for the 
elastic properties of the foam in the glycerine solution are very 
similar to their results on "conditioned" foams in water. They 
also observed that the polyurethane foams they used tended to 
undergo reduction in cross-sectional area with increasing com­
pression. We did not detect such behavior in our experiments. 
The major difference between our study and theirs is in the 
modelling and analysis. They assumed a nonlinear Darcy law 
in which the pressure drop had a quadratic dependence on the 
fluid velocity and included a threshold pressure gradient below 
which no flow could occur. We have assumed a linear Darcy 
law without any threshold pressure gradient and yet our model 
is able to predict the nonlinear pressure flow relationship of 
the flexible polyurethane foam very well. 

7 Concluding Remarks 

The simple model presented in this paper is essentially Biot's 
theory (Biot, 1955) in Kenyon's formalism (Kenyon, 1976a, 
1976b) and it appears to provide a reasonable description of 
the pressure-flow relationship in porous, deformable media. 
The model prediction of overall strain in the medium lacks 
quantitative accuracy although it is qualitatively consistent 
with experimental observations. 

The present findings suggest that depending on the 
kinematic properties of the fluid and the poroelastic properties 
of the deformable matrix, the system can be used to perform 
some useful tasks. For example, the nonuniform distribution 
of strain and permeability within the matrix could be useful in 
some separation processes, perhaps using the flexibility of the 
matrix material to modify the filtration properties or to allow 
for more efficient cleaning of the filter medium. The 
analytical solutions presented in Section 3 also suggest useful 
flow-control applications such as flow limitation and, given 
suitable stress-strain properties, the possibility of hysteresis in 
the pressure-flow relationship. Finally, fluid drag may not 
always lead to compaction. If the solid matrix is prestressed by 
constraining it between two freely draining rigid grids, the 
porous structure will expand on the upstream end and be fur­
ther compressed downstream when a flow passes through the 
matrix. This suggests yet another useful application of the 
drag induced behavior of a porous, deformable medium. 
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Shear Flows of Rapidly Flowing 
Granular Materials 
Shear flows of granular materials are studied in an open channel. The wall shear is 
calculated from an open channel momentum equation which includes the density 
variations in the flow. An experimental technique was developed that allowed the 
measurement of the average density of the flow at different longitudinal locations in 
the channel. Two sizes of glass beads are examined and results show the variations in 
the wall shear as a function of various dimensionless parameters. 

I Introduction 
In both industrial and commercial applications, large 

amounts of material are transported in granular form. This in­
cludes the handling of such substances as coal, metal ores, 
shale, dry chemicals, and grain. In addition, flowing granular 
streams are being considered for some advanced concepts for 
solar power plants and fusion reactor chambers. In order to 
design the equipment for these varied applications in an effec­
tive and economical way, it is necessary to obtain a thorough 
understanding of the flow characteristics of granular 
materials. These design needs have already motivated exten­
sive analytical and experimental investigations of granular 
flows. At this time, however, there is still no clear under­
standing of the constitutive relations that govern the motion 
of granular materials. The general field is still in a stage of 
development comparable to that of fluid mechanics before the 
advent of the Navier-Stokes relations. The present work was 
designed to contribute information which may prove helpful 
in the eventual formulation of a constitutive law. The data 
also provides practical information on the friction due to the 
flow of granular materials over a smooth wall. 

II Review of Related Work 

R. A. Bagnold is credited with the development of the 
modern research in granular material flows with his ex­
periments and theories dating to the early 1950's (Bagnold, 
1954, 1956, 1966). Recent progress has been described in an 
excellent review by Savage (1984). The reader is referred to 
this work and no attempt will be made here to offer any exten-
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sive account of the background material. For our purposes, 
perhaps the most pertinent recent work is that performed by 
Savage (1979, 1983), Sayed and Savage (1983), Hanes and In-
mann (1985), Craig et al. (1986), and Bailard (1978) all of 
whom used Couette flow devices or open channels to ex­
perimentally study the shear of granular materials. With the 
aid of Couette flow devices, the behavior of the shear stress as 
a function of the shear rate, the normal pressure, and the par­
ticle size and density was studied. Sayed and Savage (1983), 
Augenstein and Hogg (1974, 1978), and Bailard (1978) were 
able to compute velocity and density profiles for the flow 
along an inclined chute based on certain constitutive assump­
tions. Also applicable is the work by Campbell et al. (1985a) 
on granular flow in an inclined chute. This experimental work 
yielded some preliminary results on the shear stress in open 
channel flows; however, their study did not account for the 
density changes of the flow in the channel. The present study 
shows that these density changes play an important role in 
adequately describing a granular material flow. The computa­
tional work carried out by Campbell (1982), and Campbell 
and Brennen (1985b), involved a statistical analysis of an 
assembly of particles flowing down a chute. The results give 
some indication of the magnitude and distribution of velocity 
and density, as well as the fluctuational components of the 
flow field, and may serve as background information for the 
eventual formulation of the constitutive laws. 

Ill Experimental Installation 

The present investigation was designed to obtain further in­
formation on the parameters that influence the shear in a 
flowing granular material. For simplicity of analysis, an open 
channel was proposed as the test section. With this purpose in 
mind, a large installation was constructed which would allow 
for continuous flow in a relatively wide open channel. A wide 
channel was selected so that the effect of the side walls could 
be minimized and a continuous operating loop allowed proper 
adjustment of the flow as well as more accurate measurements 
of the flow quantities by eliminating the time constraints on 
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the measurements. An installation was built consisting of a 3 
m long, 150 mm wide channel which could be placed at angles 
up to 40 deg from the horizontal position. A high-speed 
mechanical conveyor delivers the material to an upper hopper 
from which the material flows into the channel. The discharge 
from the channel is collected in a lower hopper which feeds the 
material to the conveyor (See Fig. 1). 

The measurements taken were the mass flow rate, profiles 
of the depth of the flowing stream, and the local density. The 
mass flow rate was determined by monitoring the rate of 
depletion of the upper feed hopper through a graduated 
transparent panel. Some confirmation of these flow rates were 
obtained by collecting and weighing the material discharging 
from the chute in a given amount of time. The depth of the 
flow in the channel was measured at several points along the 
chute by means of point depth probes identical to those com­
monly used in open-channel hydraulics. A simple yet effective 
method was developed to measure an average density of the 
flowing material. A device consisting of two plates connected 

Variable High Speed Elevator 

Upper Feed Hopper 

Chute Intake Hopper 

Chute Rotat ion Axle 

Flow Control Gate 

^F low Control Gate 

- C o l l e c t i o n Hopper 

Fig. 1 Schematic of the experimental facility 

by a handle was suddenly pushed into the flow thereby trap­
ping the flowing material in the space between the plates. The 
trapped material was then collected and weighed, and the 
average density of the original stream was computed from this 
weight, the measured depth of the original stream, and the 
dimensions of the trap. For any given flow, this procedure 
could be repeated at different locations along the channel 
which allowed the density gradients to be evaluated in the 
direction of flow. From such density measurements, mean­
ingful average velocities and densities could be computed. The 
ability to obtain an indication of the average density in this 
way was an important factor in allowing a more realistic inter­
pretation of the data for open channel granular material 
flows. A drawing of the channel, point probes, and density 
device may be seen in Fig. 2. 

IV Computation of Shear 

In addition to the flow quantities just mentioned, the shear 
on the bottom of the channel was determined by means of the 
following considerations. First the momentum equation was 
written for the flow in the channel. The flow was assumed to 
be steady and one-dimensional and the pressure distribution 
was taken to be hydrostatic. It should be noted, however, that 
the density is a variable and these density changes must be ac­
counted for in the momentum equation. With these assump­
tions the resulting equation may be written as: 

T„P 

ppvghcosd 
= tan0 + 

dh 
~dx 

(Fr2-1) + 
h dv 
v dx 

(Fr2-l /2) 

(1) 

where rw represents the shear at the channel bottom, pp the 
particle density, v the solid fraction, h the depth of flow, 6* the 
channel inclination, x the distance along the channel, and g is 
the gravitational acceleration. The Froude number, Fr, was 
defined as U/(ghcosd)in, where t/is the average velocity. The 
first term on the right-hand side corresponds to the compo­
nent of the gravitational force in the direction of flow. The 
last two terms account for the acceleration of the flow and de­
pend on the gradient of the depth of flow, (dh/dx), and on the 
gradient of the density, (dv/dx). The accuracy of this equation 
could be improved by the inclusion of profile parameters 
which depend on the shape of the velocity and density profiles 
over the depth of flow. However, in the absence of this infor­
mation, these profile parameters are assumed to be unity. The 
factor P on the left-hand side accounts for the friction effect 
of the side walls and may be expressed as 

Supply Hopper 
Alternative Locations of Capture Gates 

Point Probes 

Chute Base 

Mass Flow Rate 
Measurement 

Cross Section 

Fig. 2 Schematic of the test channel and density device 
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Fig. 3 The variation of the solid fraction, v, as a function of the 
characteristic number of particle layers in the flow, N, for both sizes of 
glass beads 
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Fig. 4 The variation of the friction coefficient, /(, as a function of 
Froude Number Fr2. (Both 3 mm and 0.3 mm glass beads are shown.) 

Table 1 Material properties 

Average size of small glass beads 0.26 mm 
Average size of large glass beads 2.94 mm 
Bulk specific gravity (both sizes) 1.5 
Wall friction angle against aluminum (both sizes) 15 to 18 deg 
Internal friction angle (both sizes) 18 to 26 deg 

P=(l + Ph/b) 
where b is the width of the channel, h is the flow depth, and /3 
is a constant which is selected as discussed below. Once this 
selection has been made, the shear rw (or the ratio of TW to the 
normal stress ppvghcosd) may be computed from measured 
quantities h(x), v(x) and the total mass flow rate. The ratio 
Tw/ppvghcos8 is called the friction coefficient, /t. 

The accuracy of the determination of T„ from equation (1) 
depends on the accuracy with which the variables can be 
measured. Perhaps the largest source of uncertainty comes 
from the measurement of h, particularly for flows of very low 
densities. This measurement in turn influences the values of 
the density v. Under these conditions we have allowed for er­
rors as high as ±30 percent. Fortunately, the product vh, 
which enters the computation of TW, is obtained directly from 
the trapped material and this quantity is, therefore, more ac­
curately assessed than either v or h alone. The terms involving 
the derivatives dh/dx and dv/dx were, in all cases, small com­
pared to the body force term, and did not materially con­
tribute to errors in the computation of TW . 

A comment should be added regarding the constant /3. A 
value of /3 = 2 results from the assumption that the shear 
against the side walls is equal to that at the channel bottom. A 
value of /3 = 0, on the other hand, represents frictionless side 
walls. For the granular materials tested, the data suggest a 
value for /3 somewhere in between. Furthermore, at very low 

velocities, one would expect the shear to correspond to that 
produced by Coulomb friction between two solids. With this 
consideration in mind, /3 was selected to be unity. Fortunately 
the selection of /3 is not critical to the determination of the 
shear TW, since the chute was designed to be sufficiently wide 
with the express purpose of minimizing the wall friction effect. 

V Experimental Results 
A large number of experiments were conducted using two 

sizes of glass beads measuring 0.3 mm and 3.0 mm in 
diameter. The material properties of these glass beads are 
given in Table 1. For each material the channel was set at a 
number of different angles and for each angle a range of mass 
flow rates and flow depths were covered. The flow was con­
trolled by gates at the inlet section and in some cases also at 
the discharge section of the channel. 

The experimental results may be presented in terms of a 
number of possible dimensionless parameters. The two 
parameters which seem to be particularly suitable are the fric­
tion coefficient (rw/ppvghcosd) and the Froude number 
U/(ghcosd)'/2. Additional parameters, such as h/d, may be 
considered when results for different sizes of particles are 
compared. 

Before considering the variations in the friction coefficient 
with various parameters, it is useful to examine the effects of 
the density on the flow characteristics. To obtain further in­
sight into the relation between the density and the flow 
characteristics, one may define a quantity 

vh 

One may think of N as the number of particle layers in the 
flow. By plotting N against v, one can examine the extent to 
which the dilation of the material depends on the number of 
layers of particles in the flow. Fig. 3 is such a graph and con­
tains the data for both the 0.3 and 3 mm glass beads. Note that 
for both sizes, the depth-averaged solids fraction, v, is essen­
tially constant for flows with N greater than approximately 
four. On the other hand, when N decreases below 4 the 
material dilates substantially. These data appear to be almost 
independent of shear rate. 

The relationship between the friction coefficient, ^, and the 
Froude number is shown in Fig. 4. The data for both sizes of 
glass beads indicate that the friction coefficient remains fairly 
constant up to a certain Froude number. Beyond that, the data 
shows a rapid increase in /x with a further increase in the 
Froude number. Even though the individual points may be 
subject to large errors, as pointed out earlier, the measured in­
crease in friction coefficient is so large as to leave no doubt 
about the reality of this sudden rise. The deviation from this 
constant value occurs at different Froude numbers for the two 
sizes. The smaller glass beads show a more gradual increase 
with Froude number than the larger glass beads, but it is ap­
parent that a definite deviation from the Coulomb friction 
coefficient occurs. For both sizes of beads the value of the 
friction coefficient at low Froude numbers is essentially equal 
to the Coulomb friction coefficient for glass beads against 
aluminum, which implies Coulomb friction governs these 
flows in this range. At higher flow velocities, the increase in 
the friction coefficient represents a deviation from this simple 
Coulomb behavior. This behavior of the friction coefficient 
has an interesting consequence. It implies that a solid material 
in granular form may reach uniform flow (non-accelerating 
flow) at various chute angles. 

The question arises as to the mechanism responsible for the 
increase in the friction coefficient at high Froude numbers. At 
these high Froude numbers it is observed that the particles are 
highly agitated and contact with the wall consists of collisions 
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Fig. 6 The variation of the friction coefficient, p, as a function of i(h/d). 
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rather than sliding. These different means for the exchange of 
momentum might explain the deviation from Coulomb fric­
tion seen in these flows. The precise mechanism responsible 
for an increase in the effective friction angle, however, is 
unclear. The interaction between the granules and the channel 
surface is likely to be quite complex and may depend on addi­
tional parameters including the size of the particles, the 
thickness of the channel bottom, the materials involved and 
the condition of the surfaces. 

As we have already observed, the experimental data of the 
friction coefficient for the two different sizes of beads fall on 
two different curves when plotted as a function of the Froude 
number. This fact seems to indicate that a geometrical factor 
such as h/d is influencing the results. In an attempt to include 
this factor in a simple way, a modified Froude number is in­
troduced. 

Fr'=Fr(rf/7t) 
The results for both sizes of glass beads are shown in Fig. 5 in 
which the friction coefficient is plotted against this new 
Froude number. The two sets of data appear to fall on approx­
imately the same curve. The generalization of this result will 
depend on future experiments with a greater variety of sizes 
and materials. Nevertheless, the data in Fig. 5 indicate the 
possibility of obtaining reasonable correlations by means of 
simple modified parameters. 

So far the friction coefficient, /«, has been presented as a 
function of the Froude numbers. One might also consider the 
average density v as a parameter. In order to account also for 
the factor h/d, several combinations of v and h/d were tried 
and a rather acceptable correlation was established between v 
and v(h/d), as shown in Fig. 6. In general, low densities coin­

cide with high Froude numbers. Therefore, the friction coeffi­
cient reaches its largest values as v(h/d) becomes small. 

VI Implications for the Constitutive Relations 

In a model originally proposed by Bagnold (1954, 1956, 
1966) and further developed by Lun et al. (1984), Jenkins and 
Savage (1983), as well as others, the stresses in a rapidly flow­
ing granular material may be expressed in the form so that 

ou=PpFu(v)dHdu/dy)2 (2) 
where the functions Fy depend only on the solid fraction v. 
The available experimental data do not allow accurate com­
putations or local determinations of these functions. 
However, since the formulation of stresses in terms of the 
functions Fu represents a very fundamental aspect in the 
understanding of granular flows, an attempt to obtain some 
rough estimates of those functions seems justified. Therefore, 
since details of the velocity profile and any possible slip at the 
wall have not been measured, the velocity gradient du/dy will 
be characterized by U/h where t/is the average velocity and h 
the depth of flow. The stress ayy and axy are taken to be the 
pressure and shear on the channel bottom and the corre­
sponding density functions are given the symbols Fyy and Fxy. 

The function Fxy computed in this way for the present study 
is shown in Fig. 7. The data for the two sizes of glass beads fall 
essentially on the same curve. The data from the experiments 
by Bagnold (1954, 1956, 1966) and by Savage and Sayed 
(1982) are shown which were taken using Couette flow 
devices. Considering the rough approximations used in the 
computation of Fxy, the data from these experiments correlate 
rather well with the present results and adds further support to 
the significance of Bagnold's original formulation. The data 
for the normal stress function Fyy are shown in Fig. 8 together 
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with those of Bagnold and Savage. The same conclusions may 
be drawn about the normal stress function. 

It should be mentioned that values for the functions Fxy and 
Fyy may also be derived from the computational work of 
Campbell (1982) and others. The values derived by Campbell, 
although showing the same trends, are numerically higher 
than those derived experimentally. These computational 
works, however, are based on a number of assumptions con­
cerning the details of the collision mechanics which, at this 
time, cannot be compared to the actual physical conditions. 
The data developed by Campbell (1982) for the density func­
tions, Fxy and Fyy, are also shown in Figs. 7 and 8. 

VIII Summary and Conclusions 

An extensive experimental study of the flow of granular 
materials in an open channel was performed. The materials in­
volved in the study were glass beads of two different sizes. A 
technique was developed which allowed the measurement of 
the average density of the flowing material. The results clearly 
show that for the materials studied in this work the friction 
coefficient, /x, is not a constant as in the case of two solids in 
sliding contact but rather that the friction coefficient increases 
with increases in the Froude number. This result implies that 
for the flows of granular materials in open channels, it may be 
possible to obtain uniform flow for a range of different angles 
of channel inclination. 

The experimental data was also used to assess the validity of 
the analytic expressions proposed by Bagnold for the stresses 
developed in a granular material flow. In particular, 
Bagnold's expressions for the shear and normal force, which 
define the functions Fxy and Fyy as functions of only the den­
sity, were tested. The results support such a relationship and 
are in qualitative agreement with other experimental and 
theoretical works for simple shear flows of granular materials. 
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Analytical Characterization of 
Shear Localization in 
Thermoviscoplastic Materials 
Critical conditions for shear localization in thermoviscoplastic materials are ob­
tained in closed form for idealized models of simple shearing deformations. The 
idealizations, which include the neglect of heat conduction, inertia, and elasticity, 
are viewed as quite acceptable for many applications in which shear bands occur. 
Explicit results obtained for the idealized, but fully nonlinear problem show the 
roles of strain-rate sensitivity, thermal softening, strain hardening, and initial im­
perfection on the localization behavior. Numerical solutions for two steels are 
shown to exhibit the principal features reported for torsional Kolsky bar ex­
periments on these steels. Mathematically exact critical conditions obtained for the 
fully nonlinear problem are compared with critical conditions obtained by means of 
linear perturbation analysis. Use of relative changes instead of absolute changes in 
the linear perturbation analysis gives better agreement with predictions of the fully 
nonlinear analysis. 

1 Introduction 

Shear instabilities in the form of shear bands are commonly 
observed in metals and polymers subjected to large deforma­
tions. The formation of a shear band is often an immediate 
precursor to rupture of the material. Even when rupture does 
not occur, the development of shear bands generally reduces 
the performance of the material. Thus, improved under­
standing of shear band formation is critical to the develop­
ment of improved materials and components made from these 
materials. 

Shear bands can be divided into two types: those in which 
thermal softening plays a negligible role in their formation and 
those in which thermal softening plays a primary role. In the 
former case the shear bands, sometimes called isothermal 
shear bands, form as a result of strain softening due, for ex­
ample, to material damage, to the development of soft tex­
tures, or to phase transformations. In the latter case the shear 
bands, often called adiabatic shear bands, form as a result of 
an autocatalytic process: an increase in strain rate in a weaker 
zone causes a local increase in temperature which in turn, for a 
thermal softening material, causes a further increase in strain 
rate. 

In this paper we consider both types of shear bands. We 
limit our attention to simple shearing deformations. Two fun-
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damental questions regarding the critical conditions for shear 
band formation are addressed. 

1. For a given constitutive law, will shear localization 
occur for a sufficiently large shear? 

2. If so, what is the nominal critical shear for which the 
catastrophic process occurs? 

As background for this study we note that an analysis of the 
stability of homogeneous simple shearing deformations has 
been presented by Clifton (1978) for a quasi-static deforma­
tions and Bai (1982) for dynamic deformations. They used a 
classical, linear perturbation analysis in which the coefficients 
in the linear differential equations for the perturbations were 
assumed to vary sufficiently slowly that these variations could 
be neglected in estimating the rate of growth or decay of fluc­
tuations from the homogeneous solution. This procedure 
determines a critical strain at which fluctuations begin to 
grow; however, this initial growth may or may not lead to in-
stablity depending on the neglected effects of the time 
dependence of the coefficients and the nonlinearity of the 
complete system of equations. Molinari and Clifton (1983) 
and Molinari (1984, 1985) have presented some analytical 
solutions of the fully nonlinear problem under quasi-static and 
adiabatic (no heat conduction) conditions. With these solu­
tions available for measuring the reliability of more simple ap­
proaches for determining the onset of instability, Molinari 
(1985) and Fressengeas and Molinari (1987) developed a so-
called relative linear perturbation analysis that accounts, in 
part, for the nonsteadiness of the homogeneous solution by 
linearizing in the relative perturbation defined as the perturba­
tion divided by the corresponding unperturbed quantity. This 
approach has been shown to give predictions, as to whether or 
not shear bands will form, that are more in agreement with the 
fully nonlinear theory than are predictions based on classical 
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Fig. 1 Specimen geometry and loading condition 

linear perturbation analysis. Dafermos and Hsiao (1983) ob­
tained a priori estimates of the asymptotic behavior of the 
solution of the nonlinear problem (including inertia, but not 
heat conduction) for the case of the Newtonian fluid with 
temperature-dependent viscosity. Tzavaras (1984) extended 
these results to the case of non-Newtonian fluids with 
temperature-dependent viscosities. 

Numerical solutions of the fully nonlinear system of equa­
tions have been presented by several authors: Shawki et al. 
(1983), Shawki (1986), Wright and Batra (1985), and Molinari 
(1985). From these solutions one can conclude that dynamical 
effects and heat conduction are relatively unimportant for 
steel specimens, with lengths of 5-10 mm, subjected to shear­
ing rates of 103s~' as in the torsional Kolsky bar experiments 
of Costin et al. (1979) and Hartley (1986). Thus, in this paper 
we neglect dynamical effects and heat conduction in order to 
present an analytical approach to the fully nonlinear problem 
of thermoviscoplastic localization in simple shear. Our aim is 
to obtain simple analytical formulae for determining whether 
or not a shear strain localization instability will occur and, if 
so, the critical strain yc at which the localization becomes 
catastrophic. The boundary conditions will, in some cases, be 
general whereas in others they will be restricted to a constant 
imposed shear stress or a constant imposed velocity. Isother­
mal shear bands are considered in Section 2 and adiabatic 
shear bands are considered in Sections 3 and 4. 

2 Isothermal Problem 

We consider a simple shearing deformation of strain 
hardening material with strain-rate sensitivity. For illustra­
tions, we consider the following constitutive law: 

r=f (y)ym (m>0) (1) 

where T is the shear stress, y is the shear strain, and y is the 
shear rate. The function f(y) takes account of the strain 
hardening. This function is not necessarily monotonicaly in­
creasing in order to account for possible strain softening. 

Suppose that, for a constant applied strain rate y, the shear 
stress T passes through a maximum. Will strain localization oc­
cur? By localization we mean that in some narrow region, the 
strain becomes much larger than elsewhere. More precisely, 
we define localization as follows: 

^-Localization. If for every point A different from B, the 
ratio 7^/7,1 tends to infinity with increasing time, then 
/^-localization of the deformation at the point B is said to 
occur. 

The analysis of localization in this section is performed in 
two different ways. First we derive an analytical solution of 
the fully nonlinear problem. Then an absolute and a relative 
linear perturbation analysis are performed and the correspon­
ding predictions are compared with the exact solution. 

2.1 The Nonlinear Theory. We consider a slab with a 
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Table 1 Influence of strain rate sensitivity on the asymptotic 
behavior of plastic flow (geometrical defect: tB/iA = 0.99) 

m 

(7fl/7/i)oo 

0.2 

1.052 

0.1 

1.106 

0.01 

2.732 

0.006 

7.464 

0.001 

2.316X104 

geometrical defect. The width H(y) is nonuniform as shown in 
Fig. 1. Using the same approach as Hutchinson and Neale 
(1977) for the uniaxial tension of a bar, we get from the 
equilibrium equation written at two different points A and B: 

eATA =tJ{iA) (%4)"' =tBrB = tBf(yB) (yB)m- (2) 
Taking the power \/m of each term, we get after integration: 

{ 7/1 f Yfl 

0 (f(t)w"'d{=PB
/m\ 0 (/(f))1/mrff (3) 

J A J 7 f i 

where y°A and y% are the initial strains at points A and B. If 
(/(f))1/m is integrable at infinity, then the values of the in­
tegrals are finite. While maintaining the equality (3), let yB 

and yA be increased until the strain becomes infinite at one of 
the two points, say B. Then there exists a finite strain yA for 
which equation (3) is satisfied. Hence, we have 
La -localization of strain if and only if the function (f( f))1/ra is 
integrable at infinity. 

Assume that /(f) has power law behavior at infinity of the 
form 

/ ( 0 ~ a r p a s f - a o (4) 
where a and p are positive constants. Then, from the in-
tegrability condition (3), the deformation exhibits Z,„ localiza­
tion if and only if 

-p + m<0 (5) 

This condition illustrates the stabilizing effect of the strain-
rate sensitivity for m > 0. Even if the material is strain soften­
ing (p>0), localization will occur only if m is sufficiently 
small (m<p). For m—p>0, L^-localization does not occur. 
Indeed, for m>p it is readily shown that (Molinari and Clif­
ton, 1986) 

lim {yB/yA) = (tA/lB)u(m~p) (6) 
7 / 1 - 0 ° 

so that yB/yA remains bounded as yA —• °°. 
To appreciate the strong stabilizing effect of strain rate sen­

sitivity, consider a material with no strain hardening at large 
strains (i.e., p = 0) and with a 1 percent geometrical defect 
(i.e., lB/tA =0.99). Values of (7^/7^)0. = ( V f l ) 1 / m are given 
in Table 1 for different values of m. A value m = 0.01 is suffi­
cient to prevent pronounced localization as 7—00. The 
stabilizing effect of strain-rate sensitivity has been shown by 
Pan (1983) using a similar approach. 

2.2 Linear Perturbation Analysis. For comparison of 
the results of the fully nonlinear theory to the predictions of a 
linear stability analysis, consider a block of uniform thickness 
^00 = 4 undergoing homogeneous simple shearing deforma­
tion y0(t). Let the perturbation by be the difference yiy, 
t)-y0{t) where y(y, t) is the shear strain for the same block 
subjected to the same boundary conditions, but having a fluc­
tuation in strain and strain rate beginning at some time t0. Let 
the relative perturbation A7 be defined as 

A 7 = — • (7) 
y0 

Using the constitutive law (1) and considering the problem as 
quasistatic (i.e., <5T = 0) we obtain: 
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Ay 

by 

8y 

8y 

f'(y0) y0 

/(To) m 

Ay by r-(-To 

To/'(To) 
mf(y0) 

+ 1 
To 

To 

(8) 

(9) 

when the respective perturbations are sufficiently small. Equa­
tion (8) shows that, at least initially, the strain difference by 
grows when / ' (7 )<0 , i.e., when strain softening occurs. The 
relative perturbation A7 tends to grow more slowly than the 
absolute perturbation 87 and may even decay as the perturba­
tion grows. If/(70) has the behavior (4) for large values of y0, 
then as y0 —• 00 the relative perturbation A7 continues to grow 
for — p + m<0 and decays for — p + m>0. These conditions 
are, respectively, the same as the critical conditions for 
La,-localization to occcur or not. This parallellism between 
predictions of the linear relative perturbation analysis and the 
exact results for the nonlinear theory suggests that linear 
relative perturbation analysis may be more widely useful in 
predicting the stability of deformations than is commonly 
used linear perturbation analysis represented by equation (8). 
However, we emphasize that the localization analysis in the 
nonlinear theory and the linear relative perturbation analysis 
address different problems and there is not a priori reason to 
expect that the critical conditions for L„-localization are, in 
general, the same as the critical conditions for predicted un­
bounded growth of a relative perturbation. 

3 Adiabatic Case 

We consider next the influence of temperature on localiza­
tion. As discussed in the introduction, the deformation is 
assumed to be adiabatic and quasistatic. We consider the con­
stitutive equation 

T = T ( T , 7, 0), 

the equation of equilibrium 

l(y)T{y,t)=l(h)T(h,t), 

the compatibility equation 

. dv 
y-- dy ' 

and the energy equation 

„ d0 
pC-— = $ry. 

at 

(10) 

(11) 

(12) 

(13) 

In these equations p is the mass density, C is the heat capacity 
per unit mass, 6 is the absolute temperature, v is the particle 
velocity, and /3 is the Taylor-Quinney coefficient which 
characterizes the fraction of plastic work that is converted into 
heat; usually /3 is taken constant and equal to 0.9. Equations 
(10)-(13) constitute four equations in the four unknowns 7, 6, 
T, v. With elasiticity effects neglected these equations are ap­
plicable to arbitrarily large deformations in simple shear. 

In the following, we present a discussion of localization for 
different constitutive laws and different boundary conditions. 
We consider the cases of constant velocity boundary condi­
tions: 

v(0, 0 = 0 

v{h,t)=vB (14) 

or constant stress boundary conditions 

l(h)T(h, t) = I (0)T(0 , 0 = const. (15) 

3.1 Materials Without Strain-Hardening. An exact solu­
tion of the fully nonlinear problem has been presented by 
Molinari and Clifton (1983) for the case in which the material 
is not strain hardening and equation (10) has the form 

Table 2 Localization results for visco-plastic, thermal 
softening materials without strain hardening (m>0, j i o >0 , 
a>0) 

Lx 

L2 

^ 

L4 

Constitutive law 

r = no0"7'" 

T = n0exp/(-a&)ym 

T = sup(a + b6, 0)7'" 

T = n0exp(-a/8)ym 

La -Localization 

v + m<Q 

a > 0 

b<0 

never exhibits 
L„-localization 

T = lx{e)y>». (16) 

In order to obtain this exact solution we write equations (11) 
and (13) at two different points A and B. Substitutions of 
equation (16) into (11) and use of equation (13) to eliminate 
T/I /TB gives 

^m+iymii(eA)l/'"deA =^"+" / '>(0B) 1 /" ' r f0B (17) 

which, after integration, becomes 

p{m+l)/m [ o ^(f)1/mrff=4",+1)/'" (o Mn1/mtfr (is) 

where 8A and 6B are the initial temperatures at points A and B. 
From equation (18) it appears that Z,„-localization of 

temperature occurs at B if, and only if, n(d)Wl" is integrable at 
infinity. Localization will occur at the point B where the 
following quantity, defined for each point M of the slab, 

(19) 

is a minimum. At localization the temperature 6C
A at any point 

A is given by 

£jf+ 1)/m ( t ^)Vmdt=^x)lm\"0 ^)Umdl (20) 
J6A J0B 

It is easy to show that La -localization of temperature tends 
to result in strain localization. Indeed, from the equilibrium 
condition (11) and the constitutive law (16), we have 

^ M M T 2 = V ( 0 B ) T ; ? . 

Then, assuming temperature localization, we get 

im (JA-) = lim (Ji!^iL) Vm 
lim 

eA~eA 
= +OO 

since limc/*(0B)=O from the integrability condition. This 
eA ~eA 

L„-localization of the strain rate essentially ensures 
L„ -localization of the strain although various pathological 
cases must be excluded in a rigorous analysis. We henceforth 
consider constitutive equations and loading conditions for 
which such pathological cases are excluded. 

Localization results obtained from the integrability condi­
tion are summarized in Table 2 for several constitutive laws. 

3.1.1 Calculation of the Critical Strain. In this section 
we obtain explicit results for the critical strain at localization. 
We illustrate the approach by considering the constitutive law 
L2. Substituting this law in equation (18), we obtain the 
following expression for the temperature at a point B as a 
function of the temperature at a point A 

m 
,= log m (l+m)/m 

exp(-adA/m) + C, (21) 

where 
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C,=exp(-a0g/ /K) "(-f) 
(\+m)/m 

exp(-aOA/m). (22) 

From equation (21), a necessary condition for localization 
to occur is Q < 0 since for C, > 0 the logarithm cannot tend to 
infinity. Let us identify the point B as the point where the 
quantity lB

{m+1)/mexp(- adB/m) is a minimum. Then, if the 
initial temperature (or width I) is nonuniform, C, is strictly 
negative. 

For thermal softening material, i.e., a > 0 , the quantity exp 
( — aBA/m) decreases to zero as dA-~a>. For some critical 
temperature 6A, the temperature 6B will become infinite. From 
equation (22), this value is 

-log [-(-£)' 
e x p ( - a ( 0 g - 0 ; a )/«)]• (23) 

Indeed, for sufficiently 

( - l - m ) / c t -i 

that !,„,-localization is impossible, 
large dA, the difference 

0 f l-0^1og[(-|-) 

becomes small compared to the absolute temperature, say dA. 
To calculate the critical strain from the critical temperature 

we consider first the case in which a constant stress T is applied 
at the boundary. Then, from the energy equation (13), 0 can 
be calculated as a function of the strain y 

/3r 
6 = —-y + d°. (24) 

pC 

The critical strain, yA, at A is obtained by substituting the 
critical temperature 6A given by equation (23) into (24) to ob­
tain 

TA = — 
pCm 

Ct@T 
logX 

where 

x = i- exp(-a(dB-6A)/m) 

(25) 

(26) 

is a defect parameter that includes both geometrical and 
temperature defects. The stabilizing effects of increased strain 
rate sensitivity (i.e., larger m) and decreased thermal softening 
(i.e., smaller a) are evident in this expression. The critical, 
nominal strain at which the temperature becomes infinite at B 
is obtained from the integration of the critical strain 
yc(yA)=yA over the height of the block. Thus, the critical, 
nominal strain is 

t<=T\lYly*)dyA- (27) 

Numerical integration of equation (27) is straightforward as 
long as the thickness 2(yA) varies sufficiently slowly near the 
point (s) B at which the strain becomes infinite. 

We consider next the calculation of the critical strain for the 
case of the velocity boundary conditions (14). An exact solu­
tion does not appear to be possible in this case. However, a 
good approximate solution can be obtained for the case of 
weak strain-rate sensitivity (i.e., w « 1). Such weak strain rate 
sensitivity is commonly observed in metals at room 
temperature for strain rates up to 103 s ~ ' . Typical values of m 
are of the order of m = 0.01. In order to obtain an approx­
imate solution for small m we introduce the mean constant 
strain rate 

y0 = V/h (28) 

For small values of m we can approximate the stress T by 
(Molinari and Clifton, 1986) 

T^,xoexp(-a0)Y2'. (29) 

Substitution of the approximate stress (29) into the energy 
equation (13) leads to 

30 
pC—r = Pv.0exp(-a8)y'2y. 

at 
(30) 

This equation can be integrated by separation of the variables 
6 and y to give 

1 «ft*07? 
0 ( 7 ) = 0 ° + — log[ l+ - e x p ( - a 0 ° ) 7 | . (31) 

where 0° is the initial temperature. 
With the relationship between 0 and y given by equation 

(31), the critical strain, yA, at A can be obtained by integra­
tion of the equilibrium equation (11). Such integration gives 

If the material is thermal hardening, i.e., a < 0 , then the term 
exp(-adA/m) grows and, from equation (21), it is obvious (]/• 

("TV 

T 
Jo 

exp( - ctdA (7) /m) dy 

Hi 
= **m\o 

exp(-otdB(y)/m)dy (32) 

with 6A {y) and 6B (y) given by equation (31). At localization, 
yB becomes infinite and the critical strain yc

A at point A 
becomes, for m <sc 1, 

yCA=^{[l-(-TrY/m 

zxp(-cx{\.-m)(dB-60
A)/m) ] - m / ( l - m ) -, 

(33) 

where 

T°A=lx0y'^xp{-aeA) 

is the shear stress at A in an isothermal deformation at the 
same strain rate. If i and 6° are both uniform, then equation 
(33) implies that yA is infinite and localization does not occur. 
The critical strain decreases as {lB/2A) decreases and 0g— 6A 

increases. The energy measure, r°AyA, of the critical strain in­
creases with increasing strain rate sensitivity (i.e., increasing 
rri) and decreasing thermal softening (i.e., decreasing a). 
Again, the nominal critical strain is obtained by the substitu­
tion of equations (33) into (27). Comparison of equation (33) 
and (25) indicates that, for m<K 1, the defect parameter x of 
equation (26) again characterizes the effects of both 
temperature and geometric defects. 

Identical calculations can be performed for a power law 
dependence of the flow stress on the temperature. Analogous 
results for the constitutive law Lx of Table 2 are 

l+m if + m 

. pCe* f r, i ee 
i -r m v^ III in 

(34a) 

for constant stress boundary conditions, and 

PC6°A 

(1-10/373 

j< + m ( i - p ) ( l - K ) m 

for constant velocity boundary conditions; equation (34Z>) 
holds only for m « l . 
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3.2 Materials With Strain Hardening. Strain hardening 
cannot be ignored for most materials. In this section we derive 
analytical localization criteria for constitutive laws of the form 

T = V(6) (y + y°)"y>" 05) 

where y" is the initial strain. The approach is similar to that 
used in Section 3.1. 

3.2.1 Stress Boundary Condition. Elimination of y be­
tween the constitutive law (35) and the energy equation (13) 
leads to 

d9 

~~dT PC 
»(0)~i/m(y + y°)- (36) 

We write equation (36) at two different points A and B, take 
account of the equilibrium equation (11), use equation (24) to 
eliminate y, and integrate to obtain 

IA 

--1* 

-?»A ,, / PC \n/m 

(37) 

" ( • * « ./ / pC \n/m 

L(n'*((r-*)j -+7i) *t. 
Equation (37) is a generalization of equation (18) to strain 
hardening materials. Analysis of equation (37) analogous to 
that of (18), shows that L„-localization occurs if and only if 
the function 

fl-M(O)1 ' ( ( * - 9°y Pc - + y ')' 

(38) 

(39) 

is integrable at infinity. For the constitutive law 

r = p,0 ' (7 + T°)7m 

Z,„ -localization occurs if and only if 

v + n + m<0. 

The inequality (39) provides a good illustration of the com­
petition between the stabilizing effects of strain hardening 
(n>0) and positive strain-rate sensitivity (m>0), and the 
destabilizing effects of thermal softening (v<0). The localiza­
tion criteria (39), obtained by Molinari and Clifton (1983), has 
also been obtained by Fressengeas and Molinari (1986) as the 
criterion for the initial growth of a fluctuation based on a 
linear relative perturbation analysis. The inequality (39) dif­
fers from the condition 

v + n<Q (40) 

that must be satisfied for the initial growth of a fluctuation ac­
cording to absolute linear perturbation' analysis. The dif­
ference between the conditions (39) and (40) illustrates the 
tendency for absolute linear perturbation analysis to predict 
growth of fluctuations under some conditions for which the 
full nonlinear analysis predicts that localization will not occur. 

For the constitutive law 

T = ix0e-«\y + y°)"y" (41) 

a similar analysis shows that Lx -localization occurs if and on­
ly if a > o (thermal softening). For this constitutive equation 
the critical strain yc

A at A when the strain at point B becomes 
infinite is obtained by the substitution of equation (41) into 
(37) to obtain, after a change of variable, 

KA\-0 
"dv "dv (42) 

Yk> 
affr 

mpC (yA+y0A),y0A=- mpC -yA 

KA=!A m 

with A replaced by B for yB and KB. Localization will occur at 
the point B, where the quantity on the right side of equation 
(42) is a minimum. Equation (42) has the same form as that 
obtained by Hutchinson and Neale (1977) in the study of the 
rupture of a viscoplastic bar in tension although the physical 
effects being modeled are different—their analysis included 
necking, but did not include the thermal softening which is in­
cluded here. 

3.2.2 Velocity Boundary Conditions. As in Section 3.1 
we consider constant velocity boundary conditions and 
assume that the strain rate sensitivity of the material is small 
(i.e., / w « l ) . To calculate the temperature from the energy 
equation (13) we replace y by y0 = V/h in the constitutive 
equation (35) and integrate to obtain 

Jo" n (f) pCO 
^ T 7 ( ( 7 + 7 0 ) " + 1 - ( 7 0 ) " + 1 ) -«+1) \ / 

(43) 

Substitution into equation (43) of functions jt(0) that model 
the temperature dependence of the flow stress gives the re­
quired relationship between the temperature 6 and the shear 
strain 7. For fi(6) =/J.16" we obtain 

8(y)=d°\l+(l-v ft»i7? 
pC^n+lW)1-

1 

[(7 + 7°)" + 1 - ( 7 ° ) " + 1]] ' " ' 

andfor/*(0)=/ioe~°* we obtain 

((7 + 7°)" + 1-(7°)" + 1)]-

(44) 

(45) 

These equations provide an approximate relationship between 
the temperature and the strain at each position as long as the 
exponent m is sufficiently small for the dependence of the 
shear stress on strain rate to be represented by 7™, where y0 is 
the nominal strain rate, instead of by ym, where 7 is the local 
strain rate. 

In order to investigate the critical conditions for localiza­
tion, we substitute the functions d(y) obtained from equa­
tions (44) or (45) into the equation 

ft" 'Jo /*(^(f)) , / M(r+73)" / , B* 

MMm1/m(r+7S)"/",rff. 
o 

(46) 

where 

As before, L„-localization occurs if, and only if, the integral 
on the right side of equation (46) remains bounded as yB — 00. 
For 0(7) given by equation (44), the condition for 
L „ -localization becomes 

v + n + m{l-v)<0 (47) 

for 0 < m «. 1, and v < 1. This condition is slightly more 
restrictive than the condition (39) obtained for stress boundary 
conditions. That is, the tendency for localization is slightly 
stronger for stress boundary conditions than for velocity 
boundary conditions in that the localization condition (39) is 
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Table 3 Thermomechanical properties of CRS 1018 and 
HRS 1020 steels 

Steel 
Parmeter 

CRS 1018 HRS 1020 

n 
m 
P 
C 
Mi 

-0.38 
0.015 
0.019 

7800 kg/m3 

500 J/kg K 
3579 x lO r S.I. 

-0.51 
0.12 
0.0133 

7800 kg/m3 

500 J/kg K 
7587xlOeS.I. 

C 

c 
_o 
"6 
N 

o 
_o 
"o 
c 

HRS 1020 

0.0 I I ' I ' l l i l l ' I I i ' l ' il ' I • I • I • I •! 11 > | ' I I ' i ' l ' l l l i ' I r ; N i l 

10"6 10"5 10"4 10~3 10~2 10" 
Defect parameter E 

Fig. 
tion 

2 Dependence of the nominal critical strain on the initial imperfec-
for CRS 1018 and HRS 1020 

satisfied by all v, m, and n which satisfy (47); however, for 
m <K 1, the terms involving m in both equations (39) and (47) 
are often so small that, effectively, the localization conditions 
(39) and (47) are the same. For 0(7) given by equation (45) the 
condition for L„-localization is satisfied for all a > 0 provided 
that m, n satisfy m>0, n> - 1. 

4 Numerical Example 

Dynamic torsion experiments for investigating shear 
localization have been performed by Hartley et al. (1986) on 
two different types of steel: CRS 1018 and HRS 1020. At the 
strain rates (103 s ~') and temperatures (6° = 300 K) of these ex­
periments the behavior of these materials can be represented 
reasonably well by a constitutive equation of the form (38). 
Numerical values of the various parameters in the model are 
given in Table 3 (Shawki, 1986). The strain y" is taken to have 
the value 0.01 for both steels. More detailed fitting of the 
plastic response of these steels has been presented by Klepac-
zko (1986). The length h of the specimens is 2.5 mm. 

Variations t(y) in the wall thickness of the specimens were 
not reported by Hartley (1986). Subsequently, Duffy (1986) 
has sectioned specimens used in such experiments to determine 
the variation in wall thickness, both along the length of the 
specimen and around its circumference. For CRS 1018 the 
wall thickness is relatively uniform around the circumference, 
but strong variation—up to 10 percent—occurs along the 
length of the specimen. For the purpose of this numerical 
example we take the geometrical factor (lB/lA) in the 
preceding analysis to be a parameter that varies from 0.9 to 
0.999999. In order to' relate the critical strains yA to the 
nominal strain yc at localization (see equation (27)), the varia­
tion in wall thickness iA = t(yA) must be prescribed over the 
entire length of the specimen. Based on the general appearance 
of the sectioned specimens we take this variation to have the 
form 

2 

D 
0) 

-C 

0.0 0.1 0.2 0.3 0.4 

Spatial position 
Fig. 3 Strain distribution at localization for CRS 1018 (( =0.02) 

0 
u_ 
2 
w 
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CD 

<-tn 
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£=0.04 

s^^^T" \ ^ 
i 

CRS 1018 • HRS 1020 \ 

1 1 1 I ' ' 

0.0 0.5 1.0 

Nominal shear strain 
1.5 

Fig. 4 Nominal stress-strain curve for simple shear of CRS 1018 and 
HRS 1020 

t(y) 
= 1+- - ( c o s - ^ - l ) (48) 

where e is a geometrical parameter that is taken to vary from 
10 ' to 10"6 to give the range of values of 0.9 to 0.999999 for 
IB'?A-

Boundary conditions for the dynamic torsion ("torsional 
Kolsky bar") experiment are effectively those of imposed con­
stant velocity a the ends of the specimen. Hence, we use the 
solution for velocity boundary conditions given by equations 
(44) and (46). The restriction to m<K. 1 that is required in ob­
taining equation (44) is well satisfied by the values m = 0.019 
for the CRS and m = 0.0133 for the HRS. Evaluation of 
yc(yA) from equation (46) and integration over the length of 
the specimen, according to equation (27), gives the 
dependence of the critical nominal strain yc on the geometrical 
imperfection parameter e that is shown in Fig. 2. For small e 
the nominal critical strain varies approximately as log e, as 
predicted for the local critical strain by equation (25); the cor­
responding equation, equation (33), for constant velocity 
boundary conditions also gives the logarithmic dependence for 
0 < e « O T « l (Molinari and Clifton, 1986). The insert pro­
vides an expanded scale of the region of primary interest in the 
interpretation of torsional Kolsky bar experiments. For one 
value of e(e = 0.02), the strain distribution at localization for 
CRS 1018 is shown in Fig. 3. The width of the band of intense 
shear (say, the region for which 7 ( / ) > 37(0)) is approximate­
ly 20 percent of the length of the specimen. Such relatively 
wide bands are observed in CRS 1018 (Hartely et al., 1985). 
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The predicted nominal stress-strain curves for the two steels, 
with the geometrical imperfection parameter e equal to 0.02, 
are shown in Fig. 4; a corresponding curve for e = 0.04 is in­
cluded for HRS 1020. The general features of the curves in­
clude a slowly rising segment during which the shearing is 
quite uniform, a slowly falling segment during which a broad 
band of enhanced shearing develops, and a sharply falling seg­
ment during which the shearing becomes intensely localized in 
a band. These general features are characteristic of the ex­
perimental records obtained in such experiments (Hartley et 
al., 1986). Numerical values for the strain at the peak of the 
stress-strain curve and the strain at the beginning of the sharp 
decline in stress are comparable to values obtained in ex­
periments. However, the predicted rate of sharp decline is 
greater than normally measured. This rate of decline is af­
fected by the detailed geometry of the initial imperfection 
which probably was not modeled adequately by the generic 
form (48). Other difficulties with comparisons between theory 
and experiment for the steeply falling part of the curve in­
clude: (/) the inadequacy of the assumption that the stress ob­
tained using the nominal strain rate can be used in calculating 
the local rate of energy dissipation; (//) the likelihood that the 
final localization varies so strongly around the circumference 
of the specimen that a one-dimensional analysis is inap­
propriate; and (Hi) the lack of constant velocity boundary con­
ditions when the stress decreases strongly in torsional Kolsky 
bar experiments. 

5 Conclusions 

By assuming the deformation to be adiabatic and quasi-
static, and by neglecting elasticity effects, we have character­
ized, analytically, the critical conditions for shear strain 
localization in simple shear. The assumed conditions are good 
approximations for the specimen sizes and strain rates that are 
commonly used in torsional Kolsky bar experiments on shear 
band formation in steels. 

We assume the existance of initial inhomogeneities which 
are either geometrical defects or nonuniform fields of initial 
temperature or strain. The localization strain is obtained as a 
function of these defects, the material parameters and the 
boundary conditions. Two types of boundary conditions have 
been considered: 

-constant applied stress, 
-constant applied velocity. 

In the latter case, the analytical results are restricted to 
materials with weak strain rate sensitivity. 

The results are particularly simple for materials without 
strain hardening. In this case, explicit expressions are obtained 
for the dependence of the critical strain on a defect parameter 
that characterizes the geometrical defect and the nonuniformi-
ty of the intial temperature. For materials with weak strain 
rate sensitivity the critical strain depends weakly (essentially 
logarithmically) on the amplitude of the imperfection for 
small imperfections. 

Comparison of predictions of the theory with experimental 
results for a cold-rolled steel shows good agreement in the 
qualitative features of the response.Quantitative comparisons 
require detailed descriptions of the geometrical defects of the 
specimens used in the experiments. Preliminary comparisons 
based on approximate representations of the geometrical im­
perfections of the specimens suggest that good quantitative 

agreement may be obtained once the defects are modeled 
accurately. 
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Thermal Conditions for Inhibition 
of Stress Induced Slip in Zinc-
Blende Crystals in Czochralski 
Growth Configuration 
The methodology for calculation of thermal conditions required for control of ther­
mal stresses at below the plasticity limit during Czochralski growth of crystals with 
the zinc-blende structure is developed, and quantitative results are obtained for 
GaAs as the model crystal. 

Introduction 
Increased performance and yield of electronic devices based 

on compound semiconductors such as Gallium Arsenide 
(GaAs), and Indium Phosphide (InP), require improvement of 
the chemical and crystalline perfection of the presently 
available substrate materials. The primary crystalline defect in 
III-V compound semiconductors is the presence of a large den­
sity of dislocation networks which are associated with ex­
cessive thermal stresses experienced by the solid during 
growth. Whereas quantitative study of the plastic deformation 
mechanism of compound semiconductor crystals relating the 
absolute levels of thermal stresses in the growing solid and the 
observed dislocation densities requires a (presently 
unavailable) model for plastic strain release mechanism in 
compound semiconductors, modelling (Jordan et al., 1980); 
Kobayashi et al., 1985; Motakef and Witt, 1987; and 
Motakef, 1987b) and experimental (Seki et al., 1978; Uemura 
et al., 1981; and Jordan et al., 1984) results indicate that the 
stresses in III-V crystals grown by the liquid encapsulated 
Czochralski (LEC) technique significantly exceed the plasticity 
limit of the matrix. 

Thermoelastic study of GaAs crystals grown by the LEC 
technique in conventional furnaces was first pioneered by Jor­
dan (1980) and later improved and modified by Kobayashi and 
Iwaki (1985) through the exact solution of the thermoelastic 
equations and by Motakef and Witt (1987) and Motakef 
(1987a) by identification of the influence of the encapsulant 
on thermal stresses in the growing solid. 

The present study is concerned with the development of a 
methodology for calculation of thermal conditions required 
for control of stresses in crystals with preferred orientations 
for plastic deformation. Results are obtained for GaAs 
crystals, characterized by the primary slip system {111] 
< 110 >, grown by the LEC technique. The numerical calcula-
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tions are conducted for a 75 mm (3 in.) diameter crystal with 
uniform thermal and elastic properties (Table 1). 

Problem Formulation 
The growing solid is modelled as an axisymmetric cylinder 

of uniform radius rc with shoulder and growth interface 
geometries S„ (r,z) and S,(r,z), respectively (Fig. 1(a)). 

The temperature distribution in the crystal, used as the in­
put to the thermoelastic equations, is obtained by the solution 
of the Fourier equation, 
boundary conditions: 

dQ/dr = 0. 

V29 = 0, subject to the following 

a t r=0 

dQ/dr = qs(z) a t r = l 

dQ/dn = q„ 

0 = 1 

atS„ 

at S„ 

0) 
(2) 

(3) 

(4) 

where the length scales are nondimensionalized by the crystal 
radius, 9 is the nondimensional temperature variable T/Tf 
(Tf is the freezing point temperature of the matrix), and q is 
the nondimensional heat flux variable = qrc/kcTj- (the 
superscript ~ denotes a dimensional quantity). 

The stress distribution associated with the axial and radial 
temperature gradients in the crystal is obtained by solution of 
the thermoelastic equations. The radial and axial displacement 
components, u and w, respectively, in an axisymmetric and 
isotropic body with constant thermoelastic properties are 
(Boley and Weiner, 1960): 

Table 1 Listing of thermoelastic parameters 

GaAs 

Thermal Conductivity (W/cm K) 0.08 
Surface Emissivity 0.5 
Isotropic Thermoelastic Constant (aE/l — v) 
(Dynes/cm2-K) 1.1 xlO7 

CRSS (Dynes/cm2 - K) 10<5-83 + 1382/T) 

Encapsulant (Boric Oxide) 

Thermal Conductivity (W/cm K) 1 . 9 x l 0 - 2 
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Fig. 1 Geometric model of (a) axisymmetric crystal including the cone 
and growth interface morphologies, and (b) cylindrical model of the 
crystal 

d2U 1 

dr2 ' r 

d2w 1 

dr2 ' r 

8u 

dr 

dw 

dr 

u d2u 1 

r2 + dz2 ' 1 - 2 . 

2(i + . ) de 
= 1 - 2 , a ? > 9r 

32w 1 3e 

dz2 1 - 2 , dz 

2(1 + , ) 90 

de 

dr 

(5) 

1 - 2 , 3z 
(6) 

where , is the Poisson rat io, a is the thermal expansion coeffi­
cient of the crystal, and e is the dilatation parameter: 

du u dw 

dr r dz 
(7) 

The thermal stress tensor, T, for the geometry under con­
sideration is: 

0 rn 

ov 0 

0 a, 

(8) 

The elements of T are calculated from Hooke's strain-stress 
relationship: 

and growth interface geometries is retained by the introduc­
tion of a radially nonuniform heat flux distribution, qT(r), at 
the cylinder top, a radially nonuniform temperature distribu­
tion, QB(r), at the cylinder's bottom, and radially 
nonuniform traction boundary conditions X r ( r ) and XB(r) 
at the cylinder's top and bottom. Thus, the thermal and trac­
tion boundary conditions for the cylindrical model of the 
crystal are: 

de/dr = 0, 

de/dr = qs(z), 

e=eB(r), 
dQ/dz = qT(r), 

u = 0 

X = X f l(r) 

at r = 0 (13) 

a t r = l (14) 

a t z = 0 (15) 

X = X r ( r ) at z = L (16) 

The above boundary conditions indicate that the stress field 
in the crystal is controlled by: (1) the heat flux distribution at 
the crystal periphery, equation (14); (2) growth interface mor­
phology, equation (15); and (3) the shoulder geometry, equa­
tion (16). Although the primary influence of the shoulder and 
growth interface geometries on the stress levels in the crystal is 
restricted to the areas close to the two regions, generation of 
excessive stresses at these areas can significantly influence the 
crystalline perfection of the growing solid independent of the 
following stresses generated by the heat loss at the crystal 
periphery: (a) plastic deformation of the crystal shoulder 
results in generation of dislocations that penetrate into the 
crystal core, and (£>) the low values of CRSS close to the 
growth interface provide the potential for plastic deformation 
of the crystal at low stress levels. Therefore, equations 
(14)-(16) suggest that the results of thermoelastic studies of 
crystals which exclude the thermal and traction boundary con­
ditions of equations (15) and (16) are inaccurate close to the 
growth interface and the shoulder area. 

The present study is concerned with maintaining the thermal 
stresses in the growing solid at below the plasticity limit 
through control of heat losses from the crystal periphery and, 
thus, the influences of the shoulder and interface mor­
phologies on the stress distribution in the crystal are excluded. 
Therefore, the thermal and elastic boundary conditions, equa­
tions (14)-(17), are modified to exclusively reflect the in­
fluence of heat loss from the crystal periphery (Fig. 1(b)): the 
crystal top and bottom are assumed to be flat and traction 
free, the growth interface is taken to be at the freezing point, 
and the heat flux at the crystal top is radially uniform (a 
radially uniform heat flux at the cylinder's top results in a con­
stant axial temperature gradient in the solid which, ignoring 
variations in the thermoelastic properties of the matrix with 
temperature, does not result in generation of thermal stresses 
in the crystal). 
The new boundary conditions are: 

s'=lTv[ 

^ i M 

du 
~dr~ 

dw 

~d~Z~ 

1 - 2 , 

1 - 2 , 

1 + , "1 

1 + , 1 

1 + , "1 

(9) 

(10) 

(11) 

de/dr = 0, 

de/dr = qs(z), 

9 = 1 , 

dQ/dz = qT, 

Solutions 

u = 0 

Oz=Trz=0 

5Z = ?rz = ° 

at r = 0 

at r=\ 

a t z = 0 

ztz = L 

(19) 

(20) 

(21) 

(22) 

f dw du \ 

V dr +~dz~) 2(1 + ,) V dr ' dz i ( 1 2 ) 

In the above E is the Young's modulus of the crystal. Equa­
tions (9)-(12) are subject to the boundary conditions of trac­
tion free surfaces and zero radial displacement at the 
center line. 

The geometry of the crystal is reduced to a cylinder with flat 
top and bottom surfaces while the influence of the shoulder 

The locus of thermal boundary conditions resulting in 
generation of stresses smaller than the plasticity limit of the 
crystal is obtained, for the geometry defined in the previous 
section, through calculation of the maximum allowable heat 
fluxes at the crystal periphery, qs(z). Characterization of the 
permissible thermal boundary conditions in terms of qs (z), as 
opposed to the calculation of allowable axial temperature 
distribution at the crystal's surface (Ts(z)), is advantageous 
for two reasons. First, qs(z) respresents radial temperature 
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gradients at the crystal periphery and, thus, is directly related 
to thermal stresses in the crystal providing for significant 
simplification of the solution methodoly. Second, calculation 
of allowable families of Ts(z) rquires Taylor expansion of 
Ts(z) to quantify the nonlinear axial variation of the crystal 
surface temperature which significantly increases the complex­
ity of the solution scheme. 

Thermal stresses in the growing solid are generated by axial 
and radial temperature gradients and, ignoring variations of 
thermoelastic properties of the crystal with temperature, are 
not affected by the absolute levels of temperature in the 
crystal. Furthermore, as linear axial temperature gradients do 
not generate thermal stresses, the stresses are invariant with 
respect to the magnitude of a radially uniform heat flux at the 
crystal top, qT. Therefore, the temperature distribution re­
quired for the calculation of thermal stresses in the crystal is 
obtained by imposing adiabatic boundary conditions at the 
solid's top, qT = 0: 

»=1-9«,E 
I0(a„r) sin {anz)[L qs(z) . , _ 

sin (a„z)dz 
OL„L J " Qso 

/ i («J 

where 

(2n+ l )7 r 
Ct„ = — « = 0,1 1L 

1 f i 

T ] qs(z)dz, 

(21) 

(22) 

(23) 

and /,• is the modified Bessel function of the first kind of order 
/'. The temperature distribution in the crystal may be succinctly 
written as: 

Q = l-qsJ(r,z;L,qs(z)/qS0). 

Plastic deformation in GaAs is presently considered to be 
associated with glide in the (111 j < 110> slip system which 
has twelve permissible operations. Once the resolved shear 
stress in each of the twelve slip systems exceeds a critical value, 
the so-called critical resolved shear stress (CRSS), plastic 
deformation of the crystal is to be expected. The resolved 
shear stress in each of the slip operations, a'rs, is obtained by 
projection of the principal stresses onto the appropriate 
crystallographic planes and, thus, it is a linear combination of 
the principal stresses: 

oi
rs=Li(5r,dt,5z,frz) /= 1,12, (25) 

where Lt is the linear operator associated with the rth slip 
operation. The thermal stress tensor is obtained by the solu­
tion of the thermoelastic equations in conjunction with the 
calculated temperature distribution, equation (24). As the 
thermoelastic equations are linear in temperature (for a cons­
tant property system) the resovled shear stress for each slip 
direction in the crystal can be written as: 

\-v 
L{H{Q) 1,12 (26) 

In the above H(Q) represents the linear operation associated 
with the solution of the thermoelastic equations which yields 
the thermal stress tensor T. Equation (26) suggests nondimen-
sionalization of the stresses as a = a/P and P is the property 
parameter aET^/(l — v). Using equation (24) and recognizing 
that a uniform temperature field does not result in generation 
of thermal stresses ( / / (9 = 1) = 0), equation (26) becomes: 

ai
rs=-qsoLiH{f{r,z:L,qs(z)/qso)) i=1.12, (27) 

where ^ is the azimuthal direction in the radial plane of the 

crystal and reflects the anisotropy of the slip system. Thus, the 
resolved shear stress distribution in the crystal is uniquely 
defined by the solid's aspect ratio L, the periphereal heat flux 
distribution qs (z), and the property of parameter P. 

The maximum allowable heat flux at the crystal periphery, 
q*(z), may be calculated by constraining the magnitude of 
resolved shear stress in each of the twelve slip operations to be 
less than the plasticity limit aY. This large number of con­
straints can be reduced to one by an averaging approximation 
whereby the sum of the absolute values of the resolved shear 
stresses at each location, oy, is less than 12<xy: 

°T= D lff'„l=12ffj. (28) 

In certain locations in the crystal where the resolved shear 
stress exceeds the plasticity limit in some of, but not in all of, 
the 12 slip operations, the above averaging approximation 
underestimates the actual driving forces for plastic deforma­
tion of the crystal. Therefore, equation (28) will result in the 
overestimation of maximum allowable heat fluxes at the 
crystal periphery. 

In the radial plane the maximum value of aT occurs at the 
periphery of the solid ( r = l ) , and (for the <100> growth 
direction) at the angle <f>0 = nir/2, « = 0 - 3 . The requirement 
for maintaining the stress levels in the crystal to below the 
plasticity limit is satisfied by constraining the maximum 
stresses in the radial plane (occuring at r = 1, <p = 0) to be less 
that 12ay: 

oT(r= l,z,<p = 0)< 12<Ty (29) 

The heat flux distribution q*(z) is related to the plasticity 
limit by combining equations (26), (28), and (29): 

••\2oY/F, 

(24) where 

F= £ \LiHif(r,z,<p;L,qs*(z)/qt0))\ r=l, v = 0 

(30) 

(31) 

Calculation of q* (z) requires quantification of the plasticity 
limit. Presently two different types of plasticity limits are con­
sidered: (1) an athermal constraint where at all axial locations 
oT(r= l,z, <j> = 0) is restrained to be equal to a constant value, 
and (2) a temperature-dependent constraint where aT(r= \,z, 
<p = 0)at each axial location is contained by the local magnitude 
of the temperature-dependent plasticity limit. The 
temperature-dependent values of CRSS (Jordan, 1980) are 
used as the temperature-dependent plasticity limit, and the 
minimum values of CRSS (occurring at the melting point of 
the matrix) is chosen as the athermal constraints (CRSS values 
are nondimensionalized, similar to the stresses, by the proper­
ty parameter P). As CRSS is a decreasing function of 
temperature the athermal constraint underestimates the 
resistance of the crystal to plastic deformation at locations 
away from the growth interface and results in the calculation 
of a lower bound to q* (z) (denoted as q** (z)) . The choice of 
the two plasticity limits has significant implications for the 
practical implementation of the calculated heat fluxes and is 
later discussed. 

It must be noted that although the presented methodology is 
for a plasticity model based on glide in the slip system, any 
criterion for nucleation of dislocations which is a linear func­
tion of the principal thermal stresses can be used to arrive at a 
formulation similar to equations (30) and (31). 

Calculation of q**(z). The heat flux distribution q**(z) 
is obtained by contraining aT(r= \,z, <p = 0) at all axial loca­
tions to be equal to ECRSS (Effective CRSS=12CRSS) 
evaluated at the freezing point of the matrix: 
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Fig. 2 The profiles of q£ *(z) for a GaAs crystal at aspect ratios 1,2, and 
4 

ff7.(r=l)V = 0,z) = ECRSS(e=l) Vz (32) 

As constraint (32) is independent of the temperature distribu­
tion in the crystal it is (similar to the thermal stress distribution 
in the crystal) invariant with respect to the magnitude of the' 
radially-uniform heat loss at the crystal top {qT). Therefore, 
considering equations (30) and (31), q**(z) is, for a given 
material, only a function of the crystal's aspect ratio. 

The calculation of q**(z) is achieved by the simultaneous 
solution of equations (30) and (31) in conjunction with equa­
tions (21) and (32), where the function F is calculated by the 
numerical solution of the thermoelastic equations and the ten­
sor transformations relating resolved shear stresses to the prin­
cipal stresses. 

The axial distribution of q** (z) for various aspect ratios of 
a GaAs crystal growing in the < 100> direction is presented in 
Fig. 2. The results indicate that the influence of the end effects 
persists up to approximately one-half of the crystal radius 
and, thus, for crystals with aspect ratio of less than two the 
growth interface and the cone morphologies control the stress 
levels in the crystal. The increase of q**(z) in the direction 
towards the growth interface reflects the assumed conditions 
of a flat growth interface (d9/9r = X B = 0 at z = 0), and sug­
gests that if such conditions can be maintained (during 
growth) the maximum values of q**{z) occur close to the 
growth interface. In practice, however, as a result of the ther­
mal coupling between the solid and the melt large heat losses 
from the crystal surface at z ~ 0 result in a nonplanar growth 
morphology and the assumed boundary conditions (planar 
solidification interface) can not be sustained. Therefore, the 
observed increase in q* * (jz) towards z ~ 0 in an artifact of the 
assumed boundary conditions and suggests that the accurate 
calculation of q**(z) close to the solidification front requires 
incorporation of the growth interface morphology in the 
geometric model of the crystal. Towards the crystal top 
q**(z) also increases to a large value. Nevertheless, 
q**(z = L) < q**(z = 0) reflecting the difference in the im­
posed thermal boundary conditions at the solid's two ends: the 
assumed uniform temperature distribution at the crystal bot­
tom results in zero radial temperature gradients and an 
associated reduction of local thermal stresses whereas the im­
posed condition of uniform heat flux at the crystal top does 

permit presence of radial thermal gradients (generated by the 
peripheral heat losses) in that region. The calculation results 
also indicate that, consistent with the imposed constraint of 
uniform total resolved shear stress at the crystal periphery, 
q** (z) away from the two ends of the crystal is approximately 
constant. 

Calculation of q*(z). The maximum allowable heat flux at 
the crystal periphery, q*(z), is calculated by requiring 
aT(r= l,z, ¥> = 0) at every axial location along the crystal be 
equal to ECRSS evaluated at the local temperature: 

oT(r=l, <p = 0,z) =ECRSS(G(r=l,z)) (33) 

The above constraint is directly tied to the absolute levels of 
temperature in the crystal and is, therefore, influenced by the 
magnitude of heat loss at the crystal top. The temperature 
distribution in the solid subject to the thermal boundary con­
ditions of equations (17)-(20) (qT = 0) is obtained by the super­
position of a linear axial temperature drop onto equation (21): 

»=l-9IOE[-
•I„(ct„r) sin (q„z) 

sin (anz)dz -QTZ (34) 

In order to closely relate the calculations in this work to the 
Czochralski growth conditions, the crystal top is taken to 
radiate to a black environment at temperature Bf-: 

qT = Rnc(Q/-Qf4) (35) 

where 9 r is the average temperature at the crystal top: 

9 / = [ Q\r,z=L) 2rdr (36) 

and 

Rn=- •n f'c (37) 

In equation (37), a* is the Stefan-Boltzmann constant and e is 
the surface emissivity of the crystal. The heat flux at the 
crystal top, equation (35), is, consistent with the thermal 
boundary conditions of equation (21), radially uniform. By 
considering the parameters which influence the temperature 
distribution in the crystal, equation, (30) is reformulated into 
the following form: 

q;0=ECRSS[e[r=l,z;L,q*(z)/q:0,e*T,Rnc)]}/F (38) 

The above indicates that q*{z) is parametrically dependent 
on, in addition to the crystal aspect ratio L and the property 
parameter P (implicit in the ECRSS term), the magnitude of 
heat loss for the crystal top. 

Calculation of q* (z) is achieved by the iterative solution of 
equations (31), (34), and (38) in conjunction with the 
temperature-dependent plasticity limit for GaAs: 

CRSS = [10<5-83 + -92/e>]/P (39) 

The calculated profiles of q* (z) for 3 crystal aspect ratios 
of 1, 2, and 4 over a range of Bj- are presented in Figs. 3-5. 
Beyond the zone of influence of the end effect at the crystal 
bottom the magnitude of q* (z) increases towards the crystal 
top, indicating that as the temperature along the crystal 
decreases (increasing ECRSS) the maximum magnitude of 
heat flux that can be removed from the crystal surface while 
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Fig. 3 The profiles of q£(z) for a GaAs crystal with L = 1 at different 
values of Of 

0.02 

Fig. 4 The profiles of q£{z) for a GaAs crystal with L -
values of Of-

0.04 

2 at different 

maintaining the peripheral stresses at the plasticity limit in­
creases. The increase in q* (z) above its lower bound, q**(z), 
essentially reflects the temperature dependence of CRSS and is 
a function of the environmental temperature that the crystal 
top radiates to. It can be readily observed that a reduction in 
6 j leads to an overall reduction of the crystal temperature 
resulting in lower values of ECRSS and q* (z). The reduction 
in the rate of increase of q* (z) with decreasing values of Gf 
reflects the nonlinear dependence of qT on Gf (equation (35)) 
which asymptotically becomes independent of Gf- as Gf- — 0. 

The relative magntiude of heat loss at the crystal top to that 
at the crystal periphery is investigated in Fig. 6, where the ratio 

- , « H CT) CO 

0.01 0.02 0.03 0.04 

Fig. 5 The profiles of qs*(z) for a GaAs crystal with L = 4 at different 
values of Of 

0.2 0.3 0.4 0.5 0. 

dj 

0.7 0.8 0.9 

Fig. 6 The ratio of heat loss from the crystal top to the heat loss from 
its periphery for different lengths of GaAs crystal versus Of 

of the heat loss at the crystal top to the peripheral losses, p = 
\lqT2 rdr/\lq*(z)2 dz, is plotted versus Gf-. The results in­
dicate that during the early stages of growth the primary heat 
loss mechanisms from the crystal is from its top. Therefore, 
reduction of the temperature to which the crystal top radiates 
is an important factor in maximization of total heat loss from 
the crystal. Under such conditions the temperature distribu­
tion in the crystal is essentially determined by the magnitude 
of heat loss at its top. It must be noted, however, that the axial 
variation of the crystal diameter in the cone area results in 
generation of temperature gradients and associated thermal 
stresses in that region which limits the maximum rate of heat 
transfer at the crystal top. At L = 1, the centerline temperature 
of a crystal radiating to Of-= 0.2 exhibits a linear axial varia­
tion (Fig. 7) indicating that the temperature distribution in the 
crystal is one-dimensional and determined by the magnitude 
of radiative losses at its top. The effect of heat loss at the 
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Fig. 7 The axial distribution of the centerline temperature in a GaAs 
crystal at aspect ratios of 1, 2, and Of = 0.2 

0.04 

Fig. 8 The axial distribution of q£(z) for a GaAs crystal at aspect ratios 
of 1,2, and 4, Of = 0.2 

crystal periphery on the temperature distribution at L = 2 ap­
pears as slight deviations of the centerline temperature from 
linearity, and at L = 4 the axial variation of the centerline 
temperature does not exhibit a linear variation; thus, only as 
the crystal length approaches 4 radii the peripheral heat losses 
influence the overall temperature distribution in the solid. 
During LEC growth of GaAs the crystal top radiates to 
temperatures which are significantly higher than 0.2 indicating 
that the deviation of the heat transfer in the crystal from quasi 
one-dimensional to two-dimensional occurs at crystal lengths 
smaller than 4 radii. With increasing crystal length the conduc­
tive path to the crystal top increases and the solid's 
temperature at fixed axial positions increases (Fig. 7), 
resulting in the reduction of local values of ECRSS and q* (z). 
The axial variations of q*(z), plotted for the three crystal 

X 
o 

0.025 

0.02 -

0.015 

0.01 -

0.005 

Fig. 9 
1986) 

Temperature dependence of CRSS for GaAs (Motakef and Witt, 

aspect ratios (at dj- = 0.2) in Fig. 8, demonstrate that at fixed 
axial positions the magnitude of maximum allowable heat flux 
from the crystal surface decreases with increasing crystal 
length. 

The large calculated values of q*(z) (as well as those of 
q**(z)) close to the solidification interface is a result of the 
assumed planarity of the growth interface. In practice, 
however, removal of such large fluxes close to the solidifica­
tion interface can be expected to lead to a concave growth in­
terface and an associated generation of stresses in that region. 
Nevertheless, the heat flux from the periphery of the crystal 
constitutes a minor portion of the total heat transfer for 
crystals with L < A (Fig. 7) and for L = 4 the heat transfer 
from the crystal's lower one-eighth does not influence the 
temperature distribution in the crystal significantly. In order 
to investigate the influence of the large calculated fluxes at 
z~0 on the temperature distribution in the crystal, and conse­
quently on the magnitude of q* (z) beyond z = 0 through the 
temperature dependance of CRSS, the temperature distribu­
tion in the solid and q* (z) were recalculated (for the 3 crystal 
aspect ratios of 1, 2, and 4) by constraining the heat flux close 
to the growth interface to be a constant value and equal to 
0.005 (a representative value of q*(z) beyond z = 0). The 
results indicate that the reduction of heat losses from the 
crystal at z~0 does not appreciably alter the temperature 
distribution in the crystal and the calculated profiles of q* (z) 
are essentially unchanged. Therefore, it can be concluded that 
the assumed condition of planar growth interface does not in­
fluence the magnitude of calculated maximum allowable heat 
fluxes beyond z~0. 

Critical Crystal Length 
The temperature dependence of CRSS for GaAs, Fig. 9, in­

dicates that CRSS is relatively constant at temperatures close 
to the melting point of the matrix and increases exponentially 
with decreasing temperature for 6 < 0.6. Beyond a critical 
length of the crystal, Lc, the temperature of the upper portion 
of the solid enters the region of rapid variation of CRSS with 
temperature and, thus, as the crystal length exceeds Lc the 
calculated magnitude of q*(z), associated with the local 
values of CRSS, increases significantly. Such a behavior sug­
gests that beyond Lc control of heat transfer from the crystal 
is not required and that the growing solid can be safely 
allowed to thermally interact with the walls of the growth 
furnace. 
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Fig. 11 The regions of operation in the qs— z plane 

The magnitude of the critical crystal length is determined by 
the heat loss at the solid's periphery and top. As the maximum 
allowable heat transfer at the periphery of the crystal (q* (z)) 
is a function of the temperature to which the crystal top 
radiates (equation (38)), the critical crystal length is uniquely 
determined by GJ-. The calculated locus of (Lc, 9£)) is shown 
in Fig. 10 as curve /. The results indicate that the smallest 
critical length is about 4.1 (corresponding to the minimum 
value of Gj- = 0.2) and Lc increases with Gf (decreasing heat 
transfer at the crystal top). 

Radiative cooling of the crystal requires that the average 
temperature at the crystal top (Gr) be larger than the en­
vironmental temperature to which it is radiating (Gf). 
Therefore, the envionmental temperature Gf must be always 
smaller than the value of QT calculated for a crystal with an 
adiabatic top and experiencing a heat transfer rate of q* (z) at 
its periphery. The locus of (L,Q$) associated with the 
calculated profiles of q*(z) is shown as curve II in Fig. 10. As 
L — 6 curves / and 77 intersect indicating that the crystal has 

reached such a length that with no heat transfer at its top (6f 
= Gr) it is sufficiently cooled so that there are no upper limits 
on the heat transfer from its periphery. The region bounded 
by curves I, //and the two axes (region 1 in Fig. 10) is the locus 
of L — Gf- where the reduction of the stress levels in the crystal 
requires control of heat transfer at the solid's periphery. The 
region to the right of curve / and below curved / / (region 2 in 
Fig. 13) respresent the locus of L — G| where the heat transfer 
from the crystal does not need to be controlled. For example, 
at an environmental temperature of Gf = 0.5 control of heat 
transfer at the crystal periphery must be maintained only for 
the first 5 radii of the crystal; as the crystal aspect ratio ex­
ceeds 5 the growing solid may be safely allowed to interact 
with the environment at any temperature. In the region curve 
/ / (region 3 in Fig. 10) the crystal is radiatively heated by the 
environment (Gf >G r) and is, therefore, in a nonoptimal 
region of operation. 

Regions of Operation 
During growth of semiconductor crystals, maximization of 

total heat transfer from the crystal surface, subject to the ther­
mal stress constraints, is advantageous from the point of view 
of increased growth rate as well as decreased interaction and 
clustering of point defects through reduction of the time-
temperature integral of the growing matrix. Therefore, the 
heat flux distribution at the crystal periphery must be main­
tained at the calculated values of q* (z) and dynamically con­
trolled as the crystal length increases. However, during growth 
the establishment and dynamic control of such distributions 
may be impractical and deviations from the prescribed profiles 
of q*(z) appear unavoidable. In this section the effect of 
deviations from the calculated profiles of q*{z) on thermal 
stresses in the crystal will be investigated. 

For a crystal subject to some heat flux distribution (qs (z)) 
at its periphery, the two heat flux distributions q*(z) and 
q**(z) define, for each value of L and Qj-, three possible 
regions of operation, (Fig. 11): 

Region I; 0<qs(z)<q**(z) 

Region II: qs*"(z)<qs(z)<q*(z) 

Region III: q*(z)<qs(z) 

The first two regions define the families of allowable heat flux 
distributions and operation in the third region must be 
avoided. The heat flux distribution q* (z) is calculated using a 
temperature-dependent plasticity limit (i.e., local values of 
CRSS) and, therefore, its values at any axial location along the 
crystal is dependent on the temperature distribution in the 
solid, and consequently on the entire axial profile of q*(z). 
Thus, an imposed heat flux distribution in region II which 
deviates from the calculated profile of q*(z) will result in a 
higher temperature and lower CRSS distribution in the crystal 
than the one associated with q*(z), and the plasticity limit in 
the crystal may be reduced to below the prevailing stress levels 
in the crystal resulting in generation of dislocations. In this 
context, the hypothetical distribution q"(z) located in region 
II of Fig. 11 (which is smaller than q*(z) close to the 
solidification interface and approaches it towards the crystal 
top) results in a temperature distribution in the crystal which 
at all locations is higher than the one associated with q*(z), 
leading to lower values of ECRSS throughout the solid; close 
to the crystal top as q"(z) approaches q*(z), the generated 
thermal stresses exceed the local values of ECRSS. On the 
other hand, the heat flux distribution q**(z) is calculated 
subject to an athermal plasticity limit (CRSS evaluated at the 
melting point of the matrix) and is invariant with respect to the 
absolute levels of temperature in the crystal. Stresses 
generated in a crystal experiencing any heat flux distribution 
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less than q**(z) (i.e., located in region I, such as q%(z) in 
Fig. 11) are everywhere smaller than the local plasticity limit. 
Hence, a significant distinction between operation in regions I 
and II exists: in region I any heat flux distribution can be safe­
ly removed from the crystal surface, whereas operation in 
region II is contingent on the availability of the necessary con­
trol hardware to closely emulate the calculated axial variations 
of q*(z). The complete definition of the characteristics of 
allowable families of qs(z) in region II, where the total heat 
transfer from the crystal is not maximized but the stress levels 
are maintained below the plasticity limit, is complicated by the 
nonlinear dependence of CRSS on temperature. However, as a 
broad guideline it may be noted that a heat flux distribution 
that is lower than q* (z) over some length of the crystal cannot 
be equal to it at other axial locations. 

Discussion 

The present study provides the dynamic conditions 
necessary for inhibition of plastic deformation in crystals with 
the [111] < l lO> slip system in general and GaAs in par­
ticular from after shouldering to the critical crystal length, 
beyond which control of heat transfer from the growing solid 
is not required. Results indicate that the morphologies of the 
cone, during the early stages of growth, and the solidification 
front, at all stages of growth, strongly influence the crystalline 
quality of the growing solid. Thus, reduction of the 
temperature gradients associated with the nonplanarity of the 
growth interface appears as a primary control objective; iden­
tification of the optimum cone geometry cannot be, however, 
readily deduced from the present analysis. In this context it 
must be noted that in the early stages of growth the cone in­
fluences, through controlling the radial distribution of heat 
transfer from the crystal top, the morphology of the growth 
interface. Furthermore, whereas results of the thermoelastic 
analysis of Szabo (Szabo, 1985), conducted for a crystal with a 
planar growth interface, suggest that the tendency for plastic 
deformation at the early stages of growth (z < 0.2) are largest 
at the crystal centerline and not at its periphery, the observed 
nonplanar geometry of the solidification interface in grown 
crystals indicates that identification of the mechanism of 
dislocation generation and the necessary conditions for 
minimization of stresses in this region require calculation of 
the growth interface morphology. Therefore, complete 
characterization of the optimum thermal environment for 
Czochralski growth of dislocation-free crystals mandates 
development of a macroscopic thermal model of the growth 
furnace, whereby accurate calculation of the heat transfer 
from the crystal cone and the shape of the solid-liquid inter­
face can be achieved (Motakef, 1987b). 

During growth, heat transfer from the crystal surface and 
top is controlled by the thermal coupling of the crystal 
(radiative in low pressure systems and radiative and convective 
in high pressure systems) to the crucible, encapsulant and melt 
surfaces, and the furnace walls. In conventional growth fur­
naces three primary controllers are available: (i) the crystal 
pull rate, (ii) the power input to the heater, and (Hi) the loca­
tion of the crucible containing the charge inside the heater. Of 
these the last two may be adjusted to control the "en­
vironmental" temperature distribution of the crystal, and the 
first to control the crystal radius during growth. Calculation 
of the required dynamic control trajectory of the crucible posi­
tion and the heater power to insure operation in regions 1 or 2 
of Fig. 11 is complicated by the transient (batch) nature of the 
growth process, the physical complexity of the growth fur­
nace, and the need for accurate quantification of the evolution 
(during growth) of thermophysical properties such as the 
emissivity of the interacting surfaces, and transparency of the 
liquid encapsulant to infrared radiation. There are no indica­
tions at present to suggest that dynamic control of heater 

power and crucible position is sufficient to provide for control 
of thermal stresses at below the plasticity limit of the matrix: 
as of yet such a parameter space has not been empirically iden­
tified and modelling results (Motakef, 1987b) suggest that the 
optimum thermal conditions cannot be achieved by the adjust­
ment of heater power. Elimination of the transient 
characteristics of the growth environment and the thermal 
coupling of the crystal with its environment can be achieved by 
isolation of the crystal from the crucible and furnace walls 
through installation of a coaxial heat exchange system around 
the growing solid. The calculation results indicate that the 
temperature distribution of the inner surface of such a system 
must be dynamically controlled with increasing crystal length. 
Furthermore, in addition to controlling the heat transfer from 
the crystal periphery, heat losses from the crystal top must be 
enhanced. In this context use of conical heat-reflectors, placed 
on top of the crystal, is not an optimal approach, for the heat 
transfer from both the side and top of the crystal is reduced. 
The calculated narrow operating range suggests that use of 
heat reflectors or uniform-temperature after heaters cannot 
provide the required spatial and temporal controllability of 
the growth process, and new approaches to heat transfer con­
trol during LEC growth of GaAs must be considered. 

The reported thermoelastic analysis of GaAs in the 
literature [Jordan et al., 1980, 1984; Kobayahsi and Iwaki, 
1985; and Szabo, 1985) are based on characterization of the 
growth furnace with a uniform Biot number and/or uniform 
temperature. Whereas such studies do provide qualitatively 
correct indications of the extent of the plastic deformation 
driving forces, protraction of such results to the calculation of 
thermal conditions necessary for inhibition of slip in the grow­
ing crystal requires more accurate thermal characterization of 
the growth furnace. For example, Jordan at al. (1984) have 
calculated a uniform environmental temperature distribution 
which would result in inhibition of plastic deformation of the 
growing GaAs crystal. These results are based on models of 
heat tranfer mechanisms from the crystal to its environment (a 
uniform environmental temperature, thermally transparent 
encapasulant, and grossly inaccurate natural convection heat 
transfer from the crystal to the encapsulant) which have been 
shown to be incorret (Motakef and Witt, 1987; Motakef, 
1987a; Ostogorsky, 1987). Calculation of an "environmental 
temperature" based on the present results of maximum 
allowable heat transfer rates requires quantification of the 
thermal coupling between the crystal and the so-called "en­
vironment" which, considering the complex geometry of the 
growth system and the transient nature of the growth process, 
cannot be readily identified. 

The present results are based on an averaging approxima­
tion of the resolved shear stresses in the growing solid which 
overestimates the maximum allowable heat transfer rates at 
the crystal periphery. An alternative approach to calculation 
of q* (z) and q** (z) is to restrict the maximum resolved shear 
stress at each location to be smaller than the plasticity limit. 
Extension of the present study to an analysis based on this 
criterion is in progress. 

This analysis is based on the currently accepted, but as of 
yet unquantified, relationship between excess stress, onset of 
plastic deformation, and dislocation generation in GaAs. 
Although the methodology developed in this paper is not 
restricted to glide in the slip system and can be extended to 
other plastic deformation mechanisms, the calculated values 
of maximum allowable heat fluxes at the crystal periphery are 
based on the magnitudes of CRSS and other thermophysical 
properties cited in the literature. Therefore, further investiga­
tions into the mechanisms of dislocation generation in GaAs is 
essential for enhanced interaction between experimental and 
modelling efforts aimed at improvement of the LEC growth 
process. 
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A Micromechanical Theory of High 
Temperature Creep 
Based on the mechanism of dislocation climb-plus-glide, a micromechanical theory 
is developed for the high-temperature creep of poly crystals. This model assumes that 
dislocation climb is responsible for the release of dislocations and whose subsequent 
glide provides the only significant contribution to the overall creep strain. Taking in­
to consideration the forces acting on both dislocation climb and dislocation glide, a 
microconstitutive equation is introduced to describe the transient and steady-state 
creep of slip systems. Together with the self-consistent relation, the creep property 
of a polycrystal is determined by an averaging process over the behavior of its con­
stituent grains. The developed micromechanical theory is then applied to model the 
creep behavior of lead at 0.56 Tm, under both tension and shear. Based on these 
micromechanical analyses, a macroscopic multiaxial theory—involving an effective 
normal stress to reflect the climb force on the microscale as well as the usual effec­
tive shear stress—is also developed. It is found that the effective normal stress, 
which is independent of the hydrostatic pressure, depends primarily on the second 
invariant of the deviatoric stress, and only weakly so on the third invariant. Thus 
despite the distinct presence of two types of microstress, the constitutive equations 
on the macroscale can still be reasonably described by the second invariant alone 
even at high temperature. 

1 Introduction 
In their first and subsequent reports on the deformation-

mechanism maps, Ashby (1972) and Frost and Ashby (1982) 
have clearly demonstrated that there are several inelastic 
deformation mechanisms for a polycrystalline metal, and that, 
depending on the stress and temperature level, one mechanism 
is usually more dominant than the other. Over the entire stress 
and temperature range, three principal fields have appeared in 
the map. In the low-temperature, high-stress range, disloca­
tion glide is the most important one, leading to the low-
temperature plasticity. But as temperature increases, the abili­
ty of dislocations to climb as well as to glide introduces the so-
called power-law creep. Also at the high-temperature, but low-
stress range, diffusional flow is more dominant. Although 
several other mechanisms are also potentially active, power-
law creep—as was first systematically demonstrated by Dorn 
(1954)—appears to be the primary source of creep when both 
temperature and the applied stress are sufficiently high. 

On the microcontinuum scale, dislocation glide has often 
been modelled as crystallographic slip and, by which, the 
plasticity of single crystals and polycrystalline metals has been 
fruitfully studied. While the inelastic behavior of metals is 
more deeply rooted in the behavior of dislocations and other 
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microstructural activities, the behavior of a slip system often 
serves as a convenient point of departure for the study of 
micro-macro transition. This scale is small enough that the 
collected behavior of dislocations can still be reasonably 
represented, but large enough to allow one to characterize its 
local stress and strain state under an externally applied stress. 
For the dislocation glide, the constitutive equations then in­
volve principally the resolved shear stress, shear strain, and 
strain rate. The constitutive equations of the slip systems in­
volving the climb-plus-glide process, on the other hand, would 
involve the resolved normal stress for the dislocation climb, 
and resolved shear stress for the released dislocations to glide, 
in addition to the usual strain and strain-rate. The latter equa­
tion appears not to have been introduced in the study of in­
elastic behavior of polycrystals from those of its constituent 
grains, and this we shall attempt to do. 

As in Frost and Ashby (1982), dislocation glide and power-
law creep will be treated as alternative mechanisms and, within 
the intended stress and temperature range, creep strain will be 
calculated solely from the power-law creep. While power-law 
creep and point diffusional flow are independent mechanisms 
involving different defects, dislocation glide and power-law 
creep basically involve the same dislocations moving under 
different conditions, the fast one being dominating. At high 
stress, the strain contributed by diffusional flow is relatively 
small; especially with the transient creep to be included, its 
fractional contribution is really negligible. The calculation of 
creep strain based on the dislocation climb-plus-glide process, 
therefore, should be a reasonable approach at high 
temperature. 
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Fig. 1 A schematic representation of dislocation climb-plus-glide 

Taking into account both active and latent hardening of slip 
systems, we shall incorporate the dislocation climb-plus-glide 
process to establish the constitutive equations of slip systems. 
This would allow one to calculate the creep strain of a consti­
tuent grain and, with the help of a self-consistent scheme, to 
determine the transient and steady-state power-law creep of a 
polycrystal by an averaging process. 

While our principal goal is to develop a micromechanical 
theory at a constant temperature, we shall at the end use its 
basic features to construct a macroscopic multiaxial one 
suitable for engineering design and analysis. 

2 Constitutive Equations of Slip Systems 

The earliest theory of power-law creep was probably that 
developed for the steady state by Weertman (1955), whose 
basic premise that climb produces the release of dislocation 
loops whose glide provides the only significant contribution to 
the overall creep strain will be adopted in our theory. A 
schematic model of the dislocation climb-plus-glide process is 
depicted in Fig. 1. The motion of dislocations first involves the 
release from the locked position at A by dislocation climb to 
position at B, and then the glide from B to another locked 
position at C. 

The creep strain is generated by the glide process from B to 
C. Since dislocations dwell mostly in the locked position the 
creep rate during the subsequent glide from B to C must first 
depend on the release rate of dislocations from A to B, and 
then the area (or distance) they sweep out in the subsequent 
glide. In this fashion the shear creep rate of a slip system may 
be written as (Evans and Knowles, 1977) 

yc=N(j)b, (2.1) 

where N is the rate of dislocations released to position B—the 
gliding position—by dislocation climb, $ is the average area 
swept out by the released dislocations, and b the usual Burgers 
vector. 

To establish the stress dependence of yc from this equation, 
it may be recognized that the rate of release N depends on 
both the velocity of dislocation climb and the dislocation den­
sity on the slip plane. The climb velocity is controlled by the 
climb force, whereas the dislocation density on a glide plane 
and the slipped area <j> generally depend on the resolved shear 
stress and creep strains. We therefore expect a general 
dependence of j c on the climb force, resolved shear stress, and 
slip strains. 

For instance, based on a model of dislocation network, 
Evans and Knowles (1977) found that the rate of release by lat­
tice diffusion can be written as 

N— 
1 

(2.2) 

where vt is the climb velocity of dislocation link, I is the 
average link length and x the average mesh size. The area 
swept out <j>, is approximately equal to f»s, or the product of 
link length and slip distance. In a three-dimensional network 
both I and s are proportional to x; thus 

t-xZ^ndN-Vt/x*. (2.3) 

The mesh-size in a crystal is in general inversely proportional 
to the applied stress (x ~ 1/u, see also Evans and Knowles, 

1977). While it is appreciated that the formation of a three-
dimensional network is primarily a result of multislip and that 
the applied stress here cannot be simply identified with T or a„ 
of a particular slip system alone, such an identification would 
become more justifiable if it is carried out for all systems. 
Then the activity of multislip leading to a network structure 
can be accounted for. Furthermore, recognizing that slip ac­
tivity on the glide plane or the slip distance is indeed more 
dependent on T, than on a„, we may set x ~ 1/T for every 
system as an approximation. Since the velocity of the dif­
fusive, stress-assisted dislocation climb is proportional to the 
climb force, which includes both the chemical force due to the 
nonequilibrium vacancy concentration and the mechanical 
one contributed by the resolved normal stress on, one has 

Vg-xp + a,,, (2.4) 

where the chemical force—represented \pb—is equal to 
(kTb/av)bi(cv/c0), with k, T, av, cv, and c0 being the 
Boltzmann constant, absolute temperature, atomic volume, 
actual vacancy, and equilibrium vacancy concentrations, in 
turn (Weertman, 1965; Hirth and Lothe, 1982). The stress 
dependence of creep rate can therefore be cast as 

yc~(i< + on)'T", (2.5) 

with n = 2. Experimental data show that the value of n may 
lie from 2 to 6. 

As dislocation climb and the subsequent glide are in­
terdependent and the climb process is the slower of the two, 
dislocation climb is rate-controlling in this process. 

With this stress dependence we may write the constitutive 
equation of slip systems for a power-law creep. The disloca­
tion climb-plus-glide is capable of producing both transient 
and steady creep, and may also cause active and latent harden­
ing. At a constant temperature the steady creep rate of, say 
system k, may take the form 

(*) K)c (, W \ 
7S =«{*+ an J 

(k) \ (k)„ 
(2.6) 

Its transient creep rate, on the other hand, decreases with in­
creasing active and latent hardening; assuming that there is a 
combined isotropic and kinematic hardening for the slip 
systems, it may be written as 

( * ) c 

it =-

/ , (*)\(*)„ 
V\W+ On) ? 

r (K,l) (K,()-\ (I) 
f + E a + ( l - a ) c o s 6 cos </> 7 

(2.7) 

where, like K in equation (2.6), ij, f, and a are material con-

stants, 9 and <j> are the angles between the slip 
directions and the slip-plane normals, respectively, of the kth 

(Oc 
and lih slip systems, 7 is the creep strain of the Ith system, 
and the sum extends to all systems in the same grain. We fur­
ther assume that 4> stays appreciably constant and may also be 
treated as a material constant. Parameter a is "the degree of 
isotropy in work hardening;" when a = 1, this corresponds to 
Taylor's (1938) isotropic hardening and when a = 0, it 
reduces to Prager's kinematic hardening (Weng, 1979). It also 
represents the internal back-stress under cyclic deformation 
and has proved essential to the study of cyclic creep (or more 
precisely plasticity) acceleration and deceleration at low 
temperature (Weng, 1983). 

If the local stress field in the considered grain is denoted by 
ay, the resolved shear stress is simply given by 

(Ar) (k) 
T = VuOji (2.8) 
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(k) 
V 

given by 
where vy is the Schmid-factor tensor of the kth slip system, 

i>y= — (binJ + bJni), (2.9) 

in terms of its unit slip direction £>, and slip-plane normal «,-. 
In equation (2.8), and henceforth, the Einstein summation 
convention for a repeated index is adopted. 

While the gliding process involves no diffusion, the climb 
process is associated with the diffusion of atoms or vacancies. 
Taking into account such a process, Weertman (1965) found 
that the force acting on a dislocation climb can be calculated 
from the Peach-Koehler (1950) equation, but with the stress 
tensor replaced by its deviatoric component. The resolved nor­
mal stress then is given by 

(k) (k) 

where a'y is the deviatoric component of ay {a'y = ay — 1/3 
oyokk, by being the Kronecker delta), and jxy is given by 

Hy=b,bj. (2.11) 

Since both positive and negative ^ + a„ may lead to disloca­
tion climb, its absolute value should be used in equations (2.6) 
and (2.7); the sign of creep rate yc is determined soley by T. 

Once the creep rate is calculated from the constitutive equa­
tions (2.6) and (2.7), the creep-rate tensor of the considered 
grain follows from all contributions of its slip systems 

, = £ 
(k)(k)c 

(2.12) 

where j c = Js + in a r ,d the summation extends to all slip 
systems in the grain. 

In passing we note that, if the creep rate of a slip system 
associated with the dislocation climb from A to B is denoted 
by ec„ (as opposed to yc for the shear rate), the produced creep-
rate tensor of the grain would be 

^ = l \ N - — 5u) l„ > (2-13) 

assuming the kinetics of vacancy equilibrium to be fast enough 
so that the vacancy concentration stayed appreciably constant 
during dislocation climb, leading to no net volume change. 
Such a process was considered by Nabarro (1967), who also 
arrived at a power-law creep by assuming dislocation climb to 
be the sole source of creep strain. It is interesting to see that 
the creep-strain tensors generated by the glide and the climb 
processes of a given slip system are always mutually or­
thogonal, as 

VU\H—r6y)=0' (2.14) 

for a given system. Since in reality the climb distance from A 
to B is very short as compared to the glide distance from B to 
C, the creep rate given by equation (2.13) is practically 
negligible. 

tion perhaps can be most conveniently evaluated by the self-
consistent relation. 

Recognizing that creep deformation can take place under a 
constant stress, Weng (1981) identified that the incremental 
creep strain is truely a "stress-free" strain in the sense of 
Eshelby (1957), and found that the Kroner (1961) and 
Budiansky-Wu (1962) relation can be used to evaluate the 
incremental stress variation of a constituent grain. Over a time 
increment dt, if the incremental creep strain of a grain is 
denoted by dey, and that of the aggregate by the corre­
sponding barred (averaging) quantity dey, the incremental 
stress variation of a grain can be written as 

dOy = ddy-2il(l~P)(dey-dey), (3.1) 

where—assuming the grain to be elastically isotropic—^ is the 
shear modulus and, in terms of Poisson's ratio v, /3 = 
2(4-5*0/15(1 -v). This equation was first used by Brown 
(1970) to compute the time-dependent deformation of 
poly crystals. 

The incremental creep strain of a grain is given by 

dey = e<ydt, (3.2) 

where the creep rate in turn is contributed by the creep rates of 
all slip systems through equation (2.12). Once dey is deter­
mined for all grain orientations, the incremental creep strain 
of the polycrystalline aggregate can be calculated from their 
orientational average. Symbolically we write 

dey=\dey], (3.3) 

for such an average. It may be noted that day = {day) results 
automatically from equation (3.1). 

These equations, together with the constitutive equations 
(2.6) and (2.7) allow one to determine the development of 
creep strain of a polycrystalline metal. Briefly the computa­
tional procedure goes as follows. Under an applied ay, the in­
itial stress ay for all grains are equal to the applied one, and 
this allows one to determine T and a„ from equations (2.8) and 
(2.10) for all slip-systems in each constituent grain. These 
values are substituted into the constitutive equations (2.6) and 
(2.7) to compute j c and then by way of equations (2.12), (3.2), 
and (3.3), the incremental creep strains dey and dey can be 
determined. Substitution of these incremental strains into the 
self-consistent relation (3.1) gives rise to the stress variation 
day during dt (day = 0 if ay is kept constant). Then using the 
new stress Oy + day for each grain as the basis, the incremen­
tal strains dey and dey may be similarly determined for the 
next time-increment. This process may be repeated to obtain 
the creep curve under ay for the entire history. 

It is perhaps worth mentioning that other methods to com­
pute the local stress in the constituent grains also exist. For in­
stance, without considering dislocation climb Hutchinson 
(1976) has applied Hill's (1965) self-consistent relation to 
determine the steady creep rate of the aggregate. Similarly, 
based on Lin's (1971) equivalent body force method, Lin et al. 
(1977) have also derived the polycrystal property from the 
creep data of single crystals. 

3 The Local Stress in a Grain and the Averaging 
Process 

Primarily due to the difference in grain orientations, the 
deformation of a polycrystal is highly heterogeneous. Such a 
heterogeneous deformation necessarily leads to a stress 
redistribution. As a consequence the local stress ay needed to 
calculate the creep rates in equations (2.6) and (2.7) generally 
differs from the externally applied one 6y\ their difference 
largely depends on the extent of creep deformation in the con­
sidered grain and the aggregate. Such a grain-to-grain varia-

4 Comparison With Experiments 

It is now of interest to apply the developed theory to a 
specific system and to see to what extent the major features of 
the prediction agree with experimental observations. Such a 
comparison requires that the experiments be carried out at 
high temperature, preferably above 0.5 Tm , and that the data 
include both steady and transient creep, and lie within the 
small strain range. The latter requirement will ensure no 
significant grain rotation, a factor not considered in the 
present formulation. In order to construct a macroscopic 
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Fig. 2 Micromechanical simulations of tensile creep data (the open 
circles) 

t, hr 

Fig. 3 Independent micromechanical prediction of shear creep, and 
comparison with two sets of experimental data (the triangles) 

multiaxial theory, both tensile and shear results are needed. 
Within these conditions the writer was able to locate only one 
set of data, reported by Finnie (1963) on lead at 0.56 Tm 

(60 °C). 
To apply the developed micromechanical theory, first we 

note that lead has a face-centered-cubic crystal structure. It 
has four (111) slip-planes and three <110> slip-directions 
on each plane, resulting in twelve slip systems in each grain. 
The three-dimensional polycrystal model was selected to con­
sist of 216 different grain orientations; these were obtained by 
rotating a basic crystal, aligned along the material axes, first 
about the xi axis then about the x3 axis and finally about the 
x2 axis. Due to the cubic symmetry, the rotation about each 
axis was taken to start from 0 deg and end at 75 deg, with an 
increment of 15 deg, leading to the required 6 x 6 x 6 = 216 
orientations. As judged from the generated creep-strain com­
ponents, this polycrystal model was found to possess a 
reasonable three-dimensional isotropy. The best pair of axes 
for isotropy is theX[-x2 pair, in which the maximum deviation 
from the isotropic property is less than 4 percent. Consequent­
ly this plane was chosen in the numerical calculation for both 
tensile and shear loadings. 

The elastic moduli of lead at 60°C are p = 5.09 GPa and v 
= 0.40. The shear modulus was calculated using the relation 
(Ashby, 1972) 

—= 14.4 X 10-VK, 
H dT 

with fi = 5.34 GPa at room temperature T = 300 K. The ex­
perimental data under three different tensile stresses and one 
shear stress were reproduced in Figs. 2 and 3, respectively. 

There are six material constants involved—K, i), f, a, \[/, and 
n—and these are determined from the tensile simulation of ex­
perimental data under au = 1.72 MPa, 3.32 MPa, and 3.95 
MPa. First we note that the ability for dislocations to climb at 
high temperature tends to reduce the internal back-stress; 
together with the commonly observed network structure it ap­
pears reasonable to assume the isotropic hardening (a = 1) in 
the calculation. Then, noting that primarily K would control 
the steady creep rate, K + ??/f the initial creep rate, ?//f2 the in­
itial decreasing rate of the creep rate, n the separation of creep 
curves at different stresses, and \p would add the relative creep 
activity at lower stress, these constants were determined so 
that the calculated creep curves under the three tensile stresses 
could well simulate the experimental data. The results are: K = 
1.01 x 10" ' , ij = 14.7, f = 18, 4/ = 0.2, and n = 2, where 
stress, strain, and time are in the units of MPa, 10~4 m/m and 
hr, in turn. The time increments taken in the computations are 
At = 0.1 if t < 2, At = 0.2 if 2 < t < 5, At = 0.3 if 5 < t < 
8, and At = 0.5 if t > 8. With these, we independently 
calculated the shear creep strain under dn =1 .88 MPa. These 
calculated creep results were plotted along the experimental 
data in Figs. 2 and 3. The tensile simulations and the indepen­
dent shear prediction appear to be in line with the test data. 

5 A Macroscopic Multiaxial Theory 

It appears that no macroscopic creep theory has ever been 
developed to account for the microscopic dislocation climb. 
Based on the properties of the micromechanical model, our 
objective here is to develop such a simple theory under the 
combined stress. 

In view of the constitutive equations (2.6) and (2.7), three 
basic features are associated with the micromechanical theory. 
First, as in low-temperature plasticity, creep strains are 
generated solely by dislocation glide, which is governed by T. 
Second, the deformation is insensitive to the hydrostatic 
pressure—or the first invariant of stress tensor—and involves 
no volume change. Finally the creep rate depends not only on 
the resolved shear stress and creep strain, but also on the 
chemical force and the resolved normal stress a„. 

The resolved shear stress T has been successfully modelled 
by the second invariant of the deviatoric stress tensor on the 
macro scale. Denoting this macroscopic stress by T*, it is given 
by 

T*=V3J2) (5.1) 

where J2 is the second invariant of the deviatoric stress tensor, 
given by J2 = 1/2 a'^. 

Since the resolved normal stress involves no hydrostatic 
pressure, its macroscopic counterpart—within the framework 
of the isotropic theory—would be a function of J2 and the 
third invariant J3 only. Allowing for the possibility that either 
J2 or J3 may vanish, we set this stress as a simple linear com­
bination of the two as 

1 
-(.J^+PJY3), ^ 3r-, v-. r-i „ (5.2) 

1/V3+/7.V2/3 
where p is a fractional ratio and the coefficient in front of the 
parenthesis is introduced to normalize the combination so that 
a* = a under pure tension. (This latter condition is set for 
convenience; any other choice—say a fraction of a—would 
still lead to the same constitutive form in equation (5.3), with 
that fraction absorbed by the parameters a, b, and c.) In terms 
of the three principal stresses alt a2, and o3 the third 
deviatoric invariant is given by J} = 1/27 [(2<jl - o2 — CT3) 
(2a2 - 03 - ffi) (2a3 - al - a2)]. As / 3 can sometimes 
become negative, only its absolute value—like an—should be 
used (alternatively one may write it as an even function 
(Jj)1/6). The fractional ratio p can be determined—as will be 
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done shortly—by comparing the tensile and shear creep 
curves. 

In parallel to equations (2.6) and (2.7), we may introduce 
the macroscopic constitutive equation for the effective creep 
rate e*c as 

e* c =(« + ^ ^ 7 ) - ( c + a „ * ) r * ' " , (5.3) 

where a, b, d, and c are macroscopic constants, with c 
representing the chemical force, and the effective creep strain 
is given by 

e*< = (V2/3) [(ef, - e|2) * + ( & - e§3) * + (ef3 - €?,) * 

9.44 x 10~2, d = 1.5, c = 0.85, and m = 2.1, where stress, 
strain, and time are in the units of MPa, 10"4 m/m and hr, in 
turn. With these parameters, the shear creep strain at a given 
time t from either the experiment or the micromechanical 
theory can be used in equation (5.11) to find the value of p. 
We used the shear strain at t = 50 hr. (Fig. 3) to compute this 
value, and found 

f 0.04 from experiment, 
P= \ (5-12) 

^ -0 .02 from the micromechanical theory. 

Both results suggest that the fractional contribution of J3 to a* 
is relatively small and that, as a first approximation, one may 
set 

+ 6(e12 + el3 + el,)] 

The creep strain-rate components follow from 

3 e*c 

(5.4) 

(5.5) 

along the direction of the deviatoric stress. 
The suggested macroscopic theory falls within the 

framework of normality structure (see for instance Rice, 
1970). Assuming $ as a creep potential, we may recast these 
constitutive relations into 

a$ 

with 

tfj-\(J2,Jy)-rrr 
oor, 

*= r(a + -r^—) fV372) ' 
m+l V d+e*c/\ V 

\ = c + -
1/VJ+P-V2/3 

-(V+/<3). 

(5.6) 

(5.7) 

(5.8) 

5.1 Determination of the Fractional Parameter p. De­
pending on the objective, the parameter/? may be determined 
by applying the macroscopic theory to reproduce the creep 
curves of either the experimental data or the micromechanical 
calculations. This can be conveniently accomplished by con­
sidering two creep curves: one under pure tension and the 
other under pure shear (whose J3 = 0). 

Under pure tension one has a* = r* = an, e*c = kc
n, and 

t*c = icn', under pure shear one finds a* = CT12/(1/V3), + p • 

V^/3 ), T* = V3 an, e*c = 2/V3 ic
n, and e*c = 2/V3 ec

n. In 
both cases the effective creep strain e*c can be obtained as a 
function of time t by integrating equation (5.3) as 

b e*c + d+b/a 
e*c in ^ = a{c + a*)T*mt. 

a d+b/a 

(5.9) 

When translated into the tensile and shear components under 
the respective loadings, this equation leads to 

b ef, + d+b/a 

a d + b/a 

2 b 2/V3-ef2 + d+b/a 
e\2-—tn-

(5.10) 

V3 d+b/a 

= «• \c + -
V3 a12 

1 +P-V2/V3 
-) .(V3 -onrt. (5.H) 

The five macroscopic parameters—a, b, d, c, and m—can be 
determined readily from three tensile creep curves using equa­
tion (5.10). For lead, the results are: a = 2.62 x 10 - 3 , b = 

P = 0, = V 3 / 2 = T \ (5.13) 

Remarkably, while two distinct microstresses—a„ and T—ap­
pear in the microscopic constitutive equations, only the second 
invariant of the deviatoric stress appears in the macroscopic 
ones. 

6 Concluding Remarks 

We have, therefore, developed a micromechanical theory 
for the high temperature creep of metals. This theory takes 
dislocation climb to be the rate-controlling mechanism and 
dislocation glide to be responsible for the generation of creep 
strains. A micro constitutive equation, involving the chemical 
force, the resolved normal and shear stresses, and active and 
latent hardening, is developed for the slip systems. The ensu­
ing creep behavior are that, like the low-temperature plastici­
ty, it is independent of hydrostatic stress and involves no 
volume change, but that, dislocation climb, not dislocation 
glide, is rate-controlling and that both the chemical force and 
the resolved normal stress are also present in the rate-
equation. This theory is applied to model the creep behavior 
of lead at 0.56 Tm under both tension and shear, and the 
results are found to be satisfactory. 

Based on the basic features of the microchemical model, a 
simple macroscopic multiaxial theory has also been developed 
to account for the effect of dislocation climb on the macro 
scale. The effective normal stress—reflecting the mechanical 
force responsible for the dislocation climb—is found to de­
pend primarily on the second invariant of the deviatoric stress 
tensor and only weakly so on the third invariant. The con­
stitutive equations at high temperature, therefore, can be 
described by the chemical force, creep strain, and the second 
invariant of the deviatoric stress. 
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Crack Paralleling an Interface 
Between Dissimilar Materials 
A crack paralleling a bonded plane interface between two dissimilar isotropic elastic 
solids is considered. When the distance of the crack from the interface is small com­
pared to the crack length itself and to other length scales characterizing the 
geometry, a simple universal relation exists between the Mode I and Mode II stress 
intensity factors and the complex stress intensity factor associated with the cor­
responding problem for the crack lying on the interface. In other words, if the in­
fluence of external loading and geometry on the interface crack is known, then this 
information can immediately be used to generate the stress intensity factors for the 
sub-interface crack. Conditions for cracks to propagate near and parallel to, but not 
along, an interface are derived. 

1 Introduction 

Bonded interfaces between dissimilar elastic materials often 
separate by cracking, as would be expected if the toughness of 
the interface is low compared to that of the abutting materials. 
In some instances cracking is observed to occur approximately 
parallel to the interface but with the crack lying entirely within 
one of the two materials. The aim of this paper is to analyze 
subinterface cracks which parallel the interface and to ex­
amine conditions under which they might be expected. 

The mathematical problem which is analyzed is introduced 
in Fig. 1. Each material is taken to be isotropic and linearly 
elastic. The interface lies along the xx axis with material #1 ly­
ing above and #2 below. Plane strain deformations are con­
sidered. Attention will be restricted to subinterface cracks 
which lie below the interface at a distance h which is small 
compared to the length of the crack L and to all other relevant 
geometric length quantities in the problem. As indicated in 
Fig. 1, we will consider the asymptotic problem for the semi-
infinite subinterface crack. The remote field in the asymptotic 
problem is prescribed to be the near-tip field of the interface 
crack problem (everywhere but in material #2 between the 
crack and the interface). That is, the solution to the subinter­
face crack problem at any point a fixed distance from the tip 
approaches the solution to the corresponding interface crack 
problem as h~0+ with L fixed. Thus, at distances from the 
tip which are large compared to h and small compared to L, 
the near-tip field of the interface crack problem pertains. Pos­
ing the problem in this manner permits us to develop a univer­
sal relation between the Mode I and II stress intensity factors 
of the subinterface crack and the corresponding "complex" 
stress intensity factor of the interface crack. This relation is 

INTERFACE CRACK 

Currently, Department of Aerospace Engineering and Engineering 
Mechanics, University of Texas at Austin, Austin, Texas. 
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10017, and will be accepted until two months after final publication of the paper 
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Applied Mechanics Division, May 11, 1987. 

SUB-INTERFACE CRACK 

SEMI-INFINITE 
SUB-INTERFACE 
CRACK 

Asymptotic remote field merges with near-tip 
field of interface crack problem 

Fig. 1 Relation of asymptotic subinterface crack problem to interface 
crack problem 

otherwise independent of loading, crack length, and external 
geometry. 

With the universal relation in hand, we examine conditions 
under which propagation of a parallel sub-interface crack 
should be expected. When conditions do favor such cracks, 
the analysis predicts the separation distance from the 
interface. 

2 Formulation and Solution 

The singular near-tip field of the interface crack problem 
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Table 1 Values of <*>(«, /S) 

X 
. -.4 

-.2 

-.1 

-.05 

-.02 

0 

.02 

.05 

.] 

.2 

.4 

-.8 

-.1202 

-.1814 

-.2057 

-.2167 

-.2229 

-.2270 

-.2309 

-.2366 

-2456 

-.2620 

-2902 

-.6 

-.0801 

-.1162 

-.1281 

-.1328 

-.1354 

-.1369 

-.1384 . 

-.1403 

-.1431 

-.1468 

-.1449 

-.4 

-.0467 

-.0708 

-.0764 

-.0779 

-.0785 

-.0787 

-.0788 

-.0187 

-.0780 

-.0744 

-.0566 

-.2 

-.0186 

-.0351 

-.0368 

-.0363 

-.0356 

-.0350 

-.0343 

-.0330 

-.0301 

-.0219 

.0055 

-.1 

-.0060 

-.0197 

-.0199 

-.0187 

-.0176 

-.0167 

-.0156 

-.0138 

-.0101 

-.0003 

.0307 

0 

.0058 

-.0056 

-.0046 

-.0027 

-.0012 

0 

.0013 

.0035 

.0079 

.0191 

.0531 

.1 

.0168 

.0075 

.0096 

.0120 

.0139 

.0153 

.0168 

.0193 

.0243 

.0367 

.0733 

.2 

.0273 

.0197 

.0227 

.0256 

.0277 

.0293 

.0311 

.0339 

.0393 

.0528 

.0917 

.4 

.0468 

.0419 

.0465 

.0501 

.0527 

.0547 

,0567 

.0601 

.0663 

.0815 

.1242 

.6 

.0653 

.0618 

.0675 

.0718 

.0748 

.0770 

.0793 

.0830 

.0900 

.1065 

.1522 

.8 

.0810 

.0798 

.0865 

.0912 

.0946 

.0970 

.0995 

.1035 

.1110 

.1287 

.1769 

(England, 1965; Erdogan, 1965; Rice and Sih, 1965) gives rise 
to tractions directly ahead of the tip (6 = 0) given by 

<j21 + ion=K(2w)-mrk (2.1) 

where K=Kx+iK2 is the complex stress intensity factor, 
/ = V( -1 ) , and 

1 . f G^G^-Av^ 
t = In (2.2) 

2TT L G2 + G,(3-4y2) 

where G is the shear modulus and v is Poisson's ratio. Here 
K= (kx + ik2yfir cosh 7re where kx + ik2 is the complex intensi­
ty factor as originally introduced by Rice and Sih (1965). The 
Vir is standard in converting the lower case k's of that period 
to K's; we include the factor cosh ire so that the magnitude of 
the traction vector on the interface is given by 
X( ff22 + a\2) = I K I / V 2 7r r , a n a l o g o u s l y t o 
the homogeneous material case. The associated crack face 
displacements a distance r behind the tip are given by 

<5, +/5, =2 
K i - ^ / G . + a - i ^ / G j ] 

•K(r/2ir)1 (2.3) 
(1 + 2;'e)cosh ire 

where 8a = ua ( - r, 0 + ) - ua ( — r, 0 _ ). The fact that equation 
(2.3) predicts interpenetration in a (usually) small 
neighborhood of the crack tip is not relevant in the present 
context. Dimensional considerations dictate that K must be of 
the form 

K= (applied stress) X (VZ L~k) xf (2.4) 

where L is a length quantity such as crack length and / is a 
nondimensional possibly complex function of dimensionless 
combinations of the material moduli and the geometric 
parameters. Two specific examples will be given in Section 3. 
The energy release-rate (per unit extension along the interface 
per unit length of crack front) is 

„ r ( i~» 1 ) /G 1 +(i ->< 2 ) /G 2 - ' 
\KK (2.5) 

L 4 cosh27re 

where ( ) denotes the complex conjugate. 
The tractions on the line directly ahead of the subinterface 

crack tip satisfy 

a22 + ian^(Kl+iKn){2itr)^/2 (2.6) 

where Kx and Ku are the standard Mode I and Mode II stress 
intensity factors. The energy release-rate is 

1~"2 

2G, 
-](*?+*?,) (2.7) 

As discussed earlier, the remote stresses in the semi-infinite 
subsurface crack problem are required to approach (for all 6 
but 6 = if) the characteristic Williams singular field of the in­
terface crack, which can be written as 

<Tnfl = Re[*(2,rr)-l'2/*ffO0(0)] (2.8) 

with universal (complex) angular dependence cfaj3(0) for a 
given material pair. The remote crack face displacements ap­
proach equation (2.3). The only length quantity in the semi-
infinite sub-interface crack problem is h. From dimensional 
considerations and by linearity it follows that 

Ki+^^cKh't+dKh-" (2.9) 

where c and d are dimensionless complex constants depending 
only on dimensionless combinations of the moduli of the 
materials. The depth of the crack below the interface must ap­
pear as the factor hk to combine with L~k in equation (2.4) as 
the dimensionless term (h/L)K. 

By considering a unit advance of the semi-infinite crack, 
one concludes by an energy argument, or equivalently by ap­
plication of the /integral, that the energy release-rate given by 
equation (2.7) must be equal to that given in equation (2.5). 
That is 

K2+K2
l=q2KK (2.10) 

where 

l 2 C0Sh27T€ L 

l ) 

G , ( l - i » 2 ) + ']} (2.11) 

Using an argument similar to that of Thouless et al. (1987), 
one can show that d = Q, and then substitution of equation 
(2.9) into (2.10) gives cc = q2 and thus 

c = qe'* (2.12) 

so that the relation (2.9) is fully determined apart from the 
single dimensionless function <j> of the elastic moduli. A fur­
ther simplification is achieved when use is made of Dundurs' 
(1969) observation that for problems of this class the moduli 
dependence can be expressed in terms of just two (rather than 
three) special nondimensional combinations. In plane strain, 
Dundurs' parameters are 

G I ( 1 - K 2 ) - G 2 ( 1 - J ' , ) 

and 

0 = 
1 

G . d - ^ + G^l-K,) 

G,(l-2^)-G2(l-2v1) 

(2.13) 

2 0 , ( 1 - ^ + 0 , ( 1 - ^ ) 

where the roles of 1 and 2 are switched from Dundurs' defini­
tions. These parameters vanish for identical materials across 
the interface and they change sign when the materials are 
switched. The quantities e and q can be reexpressed as 

1 r 1-/3 1 

^ ^ H - T T F J
 (2-15) 

and 

L 1 + aJ (2.16) 
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Table 2 Some special systems: 

SYSTEM © / © 

A l ^ / C u 

Cu/Al203 

MgO/Au 

Au/MgO 

Si/Cu 

Cu/Si 

MgO/Ni 

Ni/MgO 

Al203/Ti 

Ti/AljOj 

A!203/Nb 

Nb/AljOj 

a 

.51 • 

-.51 

.51 

-.51 

.094 

-.094 

.14 

-.14 

.56 

-.56 

.57 

-.57 

P 

.089 

-.089 

.011 

-.011 

-.033 

.033 

-.015 

.015 

.12 

-.12 

.060 

-.060 

e 

-.028 

.028 

-.0036 

.0036 

.0105 

-.0105 

.0049 

-.0049 

-.039 

.039 

-.019 

.019 

<t> 

.078 

-.104 

.069 

-.108 

.012 

-.014 

.020 

-.023 

.089 

-.114 

.081 

-.122 

G v G v 

Au: 0.293xlOnN/M2 0.417 Cu: 0.478 0.345 

Ti: 0.434 0.322 A]20): 1.792 0.207 

Ni: 0.808 0.314 Nb: 0.377 0.392 

MgO: 1.283 0.175 Si: 0.688 0.220 

An integral equation formulation of the semi-infinite 
subinterface crack problem is given in the Appendix. 
Numerical solution of the integral equation for various com­
binations of a and (3 has been carried out, the numerical values 
for $(a, /3) are presented in Table 1. As discussed in the Ap­
pendix, the accuracy of these numerical results is believed to 
be within a small fraction of a percent. For sufficiently small a. 
and p the linear approximation (obtained by a numerical fit in 
the range of small a and /3) 

</> = 0.1584 a + 0.0630 (3 (2.17) 

provides an adequate estimate of <t>. For example, with 
a = 0.05 and /? = 0.005 the error of this formula is only 1.3 per­
cent while with a = 0.14 and j3= -0.015 it is 6.7 percent. 

Combining equations (2.12) and (2.9) gives the basic result 
for the stress intensity factors of the subinterface crack in 
terms of the complex stress intensity factor of the correspon­
ding interface crack for conditions when (h/L) <SC 1: 

Kl+iKn=qe't>Khk (2.18) 

Note that AT, =Kl and Kn =K2 when a and (3 both vanish. 

3 Applications and Implications 

Moduli and values of a, /3, e, and </> are presented for six 
representative material combinations in Table 2. The shear 
modulus and Poisson's ratio listed for each material are 
polycrystalline values derived from Simmons and Wang 
(1971). The values for the cubic materials are the average of 

Fig. 2 Two basic interface crack problems 

the Hashin-Shtrikman bounds and the values for the noncubic 
materials are the average of the Voigt and Reuss bounds. The 
largest values of e are attained by the Cu/Al 20 3 systems. 

Solutions to a number of different interface crack problems 
exist in the literature. See Atkinson (1979) and Park and 
Earmme (1986) for recent discussions. The complex intensity 
factors for the two basic problems (Erdogan, 1965; Rice and 
Sih, 1965) shown in Fig. 2 will serve for discussion purposes 
here. For the semi-infinite crack along the interface be­
tween two elastic half-spaces and loaded by concentrated 
loads (per unit thickness) a distance L behind the tip, 

K= (P + iQ) (irL/2)-,/2L-iecosh -we (3.1) 

In the case of a finite crack of length L on the interface be­
tween two half-spaces which are subject to remote stresses 022 
and a?2> the complex intensity factor at the right tip is 

K=(o% + wf2)(l + 2ie)(wL/2)y2L-k (3.2) 

(See the discussion in Rice and Sih for the behavior of the 
remote component <JU. Those authors also gave solutions for 
a periodic row of collinear cracks along the interface of a solid 
under remote stressing, and for concentrated loads on the 
faces of a finite length crack.) 

In all cases K can be written as 

K= \K\e'iL^k (3.3) 

since \L~k I = |e-'e /nL I = 1 . Then, by equation (2.18), the in­
tensity factors of the semi-infinite subinterface crack are 

Ki =q\KIcos[y + <j) + e ln(h/L)] (3.4) 

and 

Kn=q\K\sm[y + (j) + e ln(h/L)] (3.5) 

Before asking what value of h/L is consistent with crack 
growth parallel to the interface, we first examine an interesting 
feature of the solution for arbitrary small values of h/L. If the 
collection of terms <j> + e ln(h/L) is small, as might easily be the 
ease judging from the systems listed in Table 2, then the stress 
intensity factors are well approximated by 

Kj + iKn = qLkK =q\K\ eh (3.6) 

For example, in the case of the concentrated wedge force (3.1) 

Kl+iKll=q(P+iQ)(t!L/2Y'n (3.7) 

assuming e itself is small. Apart from the factor q, this is just 
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the classical result when no material discontinuity occurs. 
Similarly, the result for the finite crack (3.2) becomes 

K, + iKu=q(o% + /(rr2)(7rZ,/2)1/2 (3.8) 

which is again the classical result multiplied by q. In other 
words, in these examples when e and <j> + e ln(h/L) are both 
small, the ratio of the Mode II to Mode I stress intensity fac­
tors is the same as in the corresponding classical problem but 
the energy release-rate is that of the interface crack as reflected 
by the factor q. 

Now consider situations in fatigue, stress corrosion or under 
monotonic loading when the crack will tend to advance in its 
own plane approximately parallel to the interface. Assuming 
the fracture properties of material #2 are homogeneous along 
with its moduli, the crack will only advance in its plane if 
Kn=0. If Kn > 0 it will tend to deflect downward away from 
the interface, while if Kn < 0 it will tend to grow upward. By 
equation (3.5), the condition for the crack to advance parallel 
to the interface in pure Mode I is 

sin[7 + 0 + e/n(/)/L)] = 0 (3.9) 

or 

y + <j> + eln(h/L)=2irn; « = 0 , ± 1 , . . . (3.10) 

with the associated Mode I intensity 

Kl=q\K\ (3.11) 

Values of h/L from equations (3.10) are 

h/L = exp[(2irn-y-<t>)/e]; « = 0 , ± 1 , . . . (3.12) 

but only those values (if any) will be physically meaningful 
which are small compared to unity but not so small that the 
parts of the crack faces make contact, as will be discussed 
below. The crack length L increases as the crack advances and 
thus h cannot remain strictly constant. However, if h at the tip 
satisfies equations (3.12) approximately as L increases the 
slope dh/dL of the crack, the path will be small (and equal to 
the value given by equations (3.12)), with the crack thus nearly 
paralleling the interface when h/L is small. 

As an illustration, consider the symmetric wedge loading 
(Q = 0) of the geometry in Fig. 2(a). By equations (3.1) and 
(3.3), 7 = 0. For the material systems listed in Table 2, the 
largest magnitude of e is 0.04, and it is readily seen that the on­
ly physically meaningful solution from equations (3.12), if 
any, is that associated with n = 0, i.e., 

h/L = exp[-<j>/e] (3.13) 

Of the systems in Table 2, only Cu/Si, Si/Cu, Ni/MgO, and 
MgO/Ni have positive values of $/e and might therefore prop­
agate a subinterface crack of the kind envisioned here for this 
particular geometry and loading. For Cu/Si, h/L = 0.26; while 
for Si/Cu, h/L = 0.32. The accuracy of these estimates may be 
somewhat questionable since they probably lie outside the 
range of h/L where the asymptotic analysis is accurate. For 
Ni/MgO, h/L = 0.009 and for MgO/Ni, h/L = 0.011, and 
these estimates should be accurate. Evidently the crack could 
satisfy a Kn = 0 criterion by propagating near the interface in 
either phase. We do not investigate here the configurational 
stability of those paths but expect, following Cotterell and 
Rice (1980), that only a path with a negative crack-parallel 
nonsingular stress term at the tip is stable. The conclusions for 
a finite crack paralleling the interface in Fig. 2(b) under 
remote tensile loading ( ^ = 0) are similar. Now, 7 = 2e and 
h/L = exp[-2-<l)/e]. Only the systems noted above will per­
mit propagation of the subinterface crack parallel to the inter­
face under the pure tensile loading. In general, however, it is 
important to note that the possibility of propagating a 
subinterface crack depends on both the material properties 
and the loading combination, so that subinterface cracks in 

the other systems may occur for other geometries and 
loadings. 

The discussion and the analysis given above assume that 
contact between the crack faces of the subinterface crack does 
not occur. In applications where the near tip conditions of the 
subinterface crack is in pure Mode I and where h/L is not 
ludicrously small, it is unlikely that contact of the crack faces 
will be an issue. If the corresponding interface crack problem 
does indicate contact well away from the tip, at distances as 
large as h or greater, then the possibility of contact in the 
subinterface crack problem should certainly be checked. Solu­
tions to (3.12) for h/L are only physically meaningful when 
h/L is not so small that contact will certainly occur or, what is 
more likely, that h is not so small that the crack lies so close to 
the interface that the material at the tip has properties which 
are affected by the existence of the interface. 
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A P P E N D I X 

Integral Equation Formulation and Solution 

A dislocation formulation of the integral equation for the 
semi-infinite crack problem of Fig. 1 is used. The general pro­
cedure for formulating such problems is outlined by Bilby and 
Eshelby (1968) and Rice (1968) and the formulation and solu­
tion of a similar problem was given by Thouless et al. (1987). 

The depth h of the crack below the interface will be taken to 
be unity here since the dependence of the solution on h is ex­
plicitly given in the body of the paper. With reference to Fig. 
1, let x=xt and y=x2 + 1 be coordinates centered at the crack 
tip with ^ = 0 parallel to the interface. Let bx(£) and by(£) be 
the x and y components of an edge dislocation located on the x 
axis at x= £. This problem was first solved by Head (1953). At 
a point (x, 0) the traction on a plane parallel to the x axis in­
duced by the dislocation at (£, 0) can be compactly derived us-
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ing Muskhelishvili methods for plane strain elasticity and is 
given by 

oyy(x)+ioxy(x)=2B(Z)(x-£)-i 

+ B(i)Hl(x-i)+B(i)H2(x-i) (,4.1) 

where / = V(— 1), ( ) denotes the complex conjugate, and 
where 

iy,(r)=-i65r/(4+r2)2 

#2(r)=-[^+s)r-2/(s-A)]/(4+r2)+85/(r-2o3 

5(S) = G 2 [ M £ ) + <M£)]/[4«'(i - x2)] 

Here, 

6 = ( |8-a)/C8+l) 

and 

X = (a + j3)/(j8-l) 

where a and /3 are defined by equations (2.13) and (2.14). 
The distribution of dislocations is chosen to give zero trac­

tions on y = 0 for x<0, i.e., B(%) with bx + iby now reinter­
preted to correspond to a dislocation density must satisfy 

{ £ ( £ ) / / , ( * - £ ) + J B ( £ ) [ 2 ( x - 0 - 1 

+ H2(pc-H)\)dH = Q {A.2) 

where the contribution with the (x—£)"' integrand is the 
Cauchy principal value integral. 

The integral equation (A.2) is supplemented by the condi­
tion that the crack opening displacements far from the tip are 
the same as those for the interface crack. That is for large 
negative £, from equation (2.3), 

= [ ( l - i ' 1 ) / G 1 + ( l - i . 2 ) / G 2 ] i £ ( - { ) - f e 

V2^FT) 
(A.3) 

cosh we 

and, therefore, as £ oo 

£(£) = (27rr 3 / 2 ( l - /3 2 ) 1 / 2 ( l+ « ) - ' £ ( - £ ) - 1 / 2 _ / e 04-4) 
To put the integral equation into a form suitable for 

numerical solution, make the change of variables 

x= ( M - 1 ) / ( K + 1 ) , - 1 < M < 1 

£ = (t-\)/[t+\), -\<t<\ 

and let 

f B X - $ = 2 ( « - 0 / [ ( « + l ) ( f + l ) ] 

Then, with/I ( 0 = 5 ( | ) , equation 04.2) can be reduced to 

j 1
] y i ( 0 ( K - 0 - 1 * + j _, M ( 0 # i ( f l 

+ ̂ 4(O[l + ^ + //2(f)]l(l + 0 - 2 * = 0 04.5) 

The approximation for A ( 0 was taken as 

7?(1-/32)1/2 (l + 01/2+,E 

A(t)={2wY 
2 f c( l+a) 

(1 + 0 

/ ! - / 

' 1 - f 
HckTk-At) (4-6) 

where the c's are complex coefficients which must be obtained 
by the solution process and 7} (t) is the Chebyshev polynomial 
of the first kind of degree j . The lead term in equation 04.6) 
gives the correct asymptotic behavior (AA) as £—— oo or, 
equivalently, as t— - 1. The stress intensity factors are given 
by 

Kl+iKn 

or 

A:I + /A' I I=A'(I 

= (27r)3/2lim [(-
£ - 0 -

zy/2B(m 

/ 3 2 ) 1 / 2 ( l - a ) - ' 
N 

+ (2TT)3/2V2X; (A J) 

The solution procedure is essentially the same as that 
employed by Thouless et al. (1987). When the representation 
(A.6) is substituted into 04.5) the integral equation becomes 
an equation of the form 

N 

£ [c tI,(«, k)+ckI2(u, k)] = Kl3(u)+KI4(u) 04.8) 
k=\ 

where the integral expressions for the F& are readily identified. 
For example, 

/ ,(«, Ar )= j ' i i / 1 ( f )T ,_ 1 (O( l + 0 " 1 ( l - 0 " 1 / 2 ^ 04-9) 

These integrals are evaluated numerically for specific values of 
u and fc. Some further reduction of the integrals is necessary to 
render them in a form suitable for efficient numerical evalua­
tion. Moreover, great care must be taken to ensure that the in­
tegration scheme provides a sufficiently accurate estimate of 
each integral. Accurate evaluation of these integrals is the ma­
jor obstacle to accurate evaluation of the stress intensity 
factors. 

With the real and imaginary parts of ck for k = 1, TV 
denoting the set of 2TVunknowns, the real and imaginary parts 
of equation 04.8) are satisfied at TV points u,- on the interval 
- 1 < u < 1. The numerical results reported in Table 1 were 
computed using Gauss-Legendre points for the «,-. The solu­
tion procedure produces both Kx and Ku, yet from energy-
release considerations the sum of the squares of the intensity 
factors is known (2.10). This provides an independent check 
on the accuracy of the numerical solution. The results 
reported in Table 1 were computed with TV= 20. The indepen­
dent check (2.10) was satisfied to better than 0.1 percent for 
essentially all the (a, /3) pairs reported in the Table. It is be­
lieved that the accuracy of <j> is comparable. 
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San Jose, CA 95118 isymmetric loading conditions. The nonaxisymmetric crack problem is solved by ex­

pressing its boundary conditions as the sum of a Fourier series. Contribution on JA 

from each of the Fourier terms in the nonaxisymmetric problem is shown to be 
decoupled from each other. Relationships between JA and stress intensity factors are 
also presented for linear elastic fracture problems. Application of JA to numerical 
fracture mechanics analysis is demonstrated by considering two example problems: 
an infinitely long circular bar with a penny-shaped internal crack at its center, and a 
circumferentially cracked pipe (both are under remote tension, bending, and 
torsion). 

1 Introduction 

Since the discovery of the path-independent J integral by 
Eshelby (1956) and Rice (1968), and later the JK, LK, and M 
integrals by Knowles and Sternberg (1972), path independent 
integrals have been widely used in fracture mechanics 
analyses. One of the most important applications of the path 
independent integrals is to calculate the stress intensity factor 
or energy release rate for a cracked solid. Since these integrals 
are path-independent, the stress intensity factor or energy 
release rate can be determined without having an accurate 
stress distribution near the crack tip. For instance, when the 
finite element method is used for a fracture mechanics 
analysis, even if the finite element grid near the crack tip is 
relatively coarse, the stress intensity factor and energy release 
rate can still be accurately predicted based on a path-
independent integral evaluated at a contour far away from the 
crack tip. 

While the energy release rate for cracks in a plane stress or 
plane strain problem can be readily determined by a path in­
dependent line integral (see, e.g., Budiansky and Rice, 1973), 
attempts in extending the concept to an axisymmetric problem 
have also been pursued in parallel. In the case of a linear 
elastic, axisymmetric solid under axisymmetric loading condi­
tions, it has been shown by Astiz et al. (1977) and Bergkvist 
and Lan Huong (1977) that the energy release rate per unit 
crack advance in the radial direction per unit crack length 
along the circumferential direction is given by: 
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J=~R~ O r \-WrdZ~{Trur:r + Tzuw)rds] 

- ] f i (W-Teur/r)dB^ (1) 

where r, z, and 6 are radial, axial, and circumferential coor­
dinates, respectively, ur and uz are displacements, Tn Tz, and 
Tg are tractions, Rc is the r coordinate of the crack tip, W is 
strain energy density, T is a contour enclosing the crack tip 
(see Fig. 1), and B is the area enclosed by T. Note that an extra 
area integral has been introduced in the above integral. Equa­
tion (1) has been used by many researchers to calculate energy 
release rates for axisymmetric crack problems, e.g., Kumar et 
al. (1981). For power law materials, He and Hutchinson 
(1981) have eliminated the need of such an extra area integral 
in equation (1) by introducing 

M=2irR2
cJ= \ [WXirii-TiUijXj-f^^-) T,u,]dA (2) 

v A \ ft "T" 1 / 

where /, j , k = 1, 2, 3, A is a torus-like surface ringing the 
edge of the axisymmetric crack, and n is the power-law 
constant. 

This paper extends the use of the M integral introduced by 
He and Hutchinson (1981) to the mixed-mode fracture 
problems for an axisymmetric crack with nonaxisymmetric 
loading, e.g., a circumferentially cracked pipe under com­
bined tension, bending, and torsion. 

2 Line Integral for Axisymmetric Loading 

For the convenience of later use in this paper, equation (2) is 
briefly rederived in this section by a method different from 
that used by He and Hutchinson (1981) or Astiz et al. (1977). 
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Fig. 1 An axisymmetric crack in an axisymmetric solid 

Consider an elastic solid with a power law stress-strain rela­
tionship of 

(e/e0) = a(a/aor (3) 

where e and a are uniaxial strain and stress, respectively, eQ 

and <T0 are yield strain and yield stress, respectively, and a and 
n are material constants. 

The three conservation integrals presented by Knowles and 
Sternberg (1972) are 

h = \A(Wnk-TiUiik)dA 

Lt = J^ ekiJ {Wxjti, + T,Uj - T^fjXj) dA 

M - L ' WXiHi-TiUijXj- ln-\\ dA 

(4) 

(5) 

(6) 

where i, j , k = 1, 2, or 3, A is a closed surface with com­
ponents n, as its outward unit normal, e!Jk is an alternating 
tensor, Wis strain energy density, x, is the z'th component of a 
Cartesian coordinate, and Ts and w,- are tractions and 
displacements, respectively. In equations (4) and (5), only Ju 

J2, and L3 are useful for the present problem because J3, Lit 

and L2 would result in integrals with a nonzero contribution 
from the crack surfaces. 

Next, let's consider crack problems in an elastic, 
homogeneous, isotropic, axisymmetric solid under axisym­
metric loading conditions. As a result of its axisymmetry, all 
the physical quantities, including displacements, stresses and 
strains, are functions of r and z only, where r, z, and 6 are 
cylindrical coordinates with the z axis being the axis of revolu­
tion. It is further assumed that the x3 axis of a Cartesian coor­
dinate system coincides with the z axis of the cylindrical coor­
dinate system and that the crack surfaces are located at the 
plane defined by z = 0 and are stress free. To apply the con­
servation integrals defined in equations (4-6), an integration 
surface A is chosen, as illustrated in Fig. 1, by rotating around 
the z axis an arbitrary contour, T, which encloses the crack tip. 
Thus, A is the outer surface of a torus-shaped body with T as 
the boundary of its cross section. 

With the transformation A:, = r cos 0, x2=rsind, x}=z, 
and similar relationships between (7 \ , T2, T3) and (7"r, Tz), 
and (MJ, U2, «3) and (« r, uz), and (/ij, n2< «3) and (nr, nz), the 
conservation integrals defined in equations (4-6) become 

Ji = h 
L3 = 0 

M = 2*\rlWxana-TauaJlxll- (-^jTj-) Taua] rds 

(7) 

(8) 

(9) 

where a, (3 = r or z. Physically, equations (7-9) imply that the 
energy release rates are zero for the crack to translate along 
the Xi and x2 axes or to rotate about the x3 axis, and that the 
energy release rate is not zero for the crack to expand uni­
formly (see Budiansky and Rice, 1973). 

Since the integrands in both equations (1) and (9) are pro­
portional to (1/7?) as R approaches zero where R is the 
distance to the crack tip, it can be shown that the M integral 
defined by equation (9) and the J integral defined by equation 
(1) are related by 

M 
J=^RJ (10) 

where Rc is the r coordinate of the crack tip. Therefore, the 
energy release rate per unit crack advance in the radial direc­
tion per unit crack front length along the circumferential 
direction can be calculated by 

JA = 
M 

2-KRI L< Wxana - Tauafix& 

( — ) 
V n + 1 / 

C 

~Rl 
ds (11) 

A subscript A is used in equation (11) because, as will be 
discussed in the next section, the line integral defined by equa­
tion (11) is no longer equal to the energy release rate /when 
the axisymmetric crack is subject to nonaxisymmetric 
loadings. 

3 Non Axisymmetric Loads in a Linear Elastic Solid 

The JA integral defined in equation (11) can be extended to 
crack problems in a linear elastic, homogeneous, isotropic, ax­
isymmetric solid under nonaxisymmetric loading conditions. 
Solutions to such a non axisymmetric loading case are usually 
obtained by expressing the nonaxisymmetric loads and its 
resulting displacement fields as the sum of a Fourier series 
with circumferential coordinate 8 as their arguments, and, 
thereafter, determining the Fourier coefficients with the 
properties of linearity and orthogonality of the harmonic 
functions. Such a Fourier series expansion solution technique 
for problems of nonaxisymmetric loads in an axisymmetric 
solid has been widely used in finite element analyses (see 
Wilson, 1965, for example). 

Consider an axisymmetric solid D with outer surface A and 
prescribed stresses and displacements on A„ and Au, respec­
tively, where A„ and Au are subsets of A. The nonaxisym­
metric boundary conditions on Aa and Au can then be ex­
panded in Fourier series as 

T* (r,z,6)= Y, \-T«m (r,z) cos (mff) 

Tam(r,z) sin (md)] on Aa (12) 

and 

u°a (r,z,6) = X) iKm (r,z) cos (md) 
m = 0 

+ u°am (r,z) sin (md)] onAu (13) 

where a = r,z, or 6, Ta are applied tractions on Aa, and ua
a are 

prescribed displacements on AK 

problem can be written as 
Thus, solutions to the 
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ua(r,z,0) = YJ Km (r,z) cos (md) 

eag(r,Z,6) = 

aaP(r,z,6) = 

m = 0 

+ «om (''.«) sin (md)] 

12 [eaem (r,z) cos (md) 
m = 0 
+ eapm (r,z) sin (md)] 
OO 

]C K<?m (T>Z) cos (md) 
m = 0 

+ °apm (r,z) sin (ra0)] 

(14) 

(15) 

(16) 

where a, j3 = /•, z, or 9. It is easy to see that, in equations 
(12)-(16), the m = 0 terms represent the solution of uniform 
tension or torsion, and the m = 1 terms correspond to the 
solution of pure bending. 

Substitution of equations (14)—(16) into equations (4)-(6), 
yields 

Jj — J 2 — i-'X — v (17) 

and 

M 

2-wRl L~l W Am (Uam>ea0m>aaQm) 
m = 0 

+ •>Am \u<xmi£a$m>Oa$m)\ (18) 

where a, /3 = r, z, 6, and 

°am)= L Wm (nrr+nzz) 

ds 
(l + 5„,0)7?? ~ ( 1 9 ) 

Wm = (ffa/3mea/3m)/2 ( 2 0 ) 

* am ~ Gartner "•" °azm^z (^1) 

6ffl0 = l ifm = 0, 5„,0=0 ifw^O (22) 

From equation (18), it is seen that, for the problems of an ax-
isymmetric solid under nonaxisymmetric loading conditions, 
not only displacements, stresses, and strains, but also the JA 

integral can be expanded as the sum of a Fourier series, i.e., 
each one of the harmonic components in a Fourier series ex­
pansion of the solution is decoupled with all the other har­
monics and can be solved individually. 

It is worth noting that JA is not a function of 0 and is no 
longer equal to the energy release rate / . In fact, JA can be in­
terpreted as the average energy release rate over the entire 
crack front 0<6<2TT. Similarly, JAm is the average energy 
relase rate over the entire crack front when the crack is under 
the mth mode loading. However, as will be discussed in the 
next section, there exists a relationship between JA and the 
stress intensity factors or J. 

4 Relationships to Stress Intensity Factors 

In this section, we'll establish a relationship between the JA 

integral and stress intensity factors in linear elastic fracture 
mechanics. 

For an axisymmetric crack, Sih (1971) has shown that the 
asymptotic stress distribution near the crack tip, which is in­
dependent of the crack geometry and loading conditions, can 
be written in a form of 

1 
JaP ' 

JlirR 
IKMfaflVJ+KlM gapWl) 

+ Km(6) /^(0 , ) ] (23) 

where a, /3 = r, z, or 0, R = [(r-Rc)
2 +z2]i/2, 0, = sin"1 

(z/R) is the angle between the r axis and the line connecting the 
crack tip and the point of interest in the r-z plane, and/a(3 (0,), 
Sap (0i). and ha/i (0;) are functions of 6{ and the Poisson's 
ratio v. Details of fa&, ga&, and hali can be found in the paper 
by Sih (1971). Thus, the asymptotic stress distribution near the 
crack tip of an axisymmetric crack can be written as 

oa»(r,z,6) = 
1 

Y {[KImcos(md) 
\T2TTR „,=0 

+ K,msm(m6)] f^Wi) + [KIlmcos(md) 

+ KIImsm(m6)] gae(dl) + [Kmmcos(md) 

+ Kmmsm(md)] hrfWi)} (24) 

In other words, the stress intensity factors can also be ex­
pressed as the sum of a Fourier series, 

K^d)= E [Kgmcos(md) 

+ Kqm sin(m0)] ,q = I,II,III (25) 
Substitution of equation (24) into equation (18) yields a 

relationship between JA and the stress intensity factors can be 
written as follows 

LJ \JAM(Klm'Kjim,KUIm) 

+ JAm (.Kim>KlIm>^///m)] (26) 

where 

^ff, = [(i-"2)(*L+tfk) 
+ 2(l + V)KjIIm]/[E(l + 6m0)] (27) 

where v and E are Poisson's ratio and Young's modulus, 
respectively, and 5m0 is a Delta function defined in equation 
(22). The energy release rate 7(0) at any location of the crack 
front can then be calculated based on Kq (6) and the well-
known J-K relationship (similar to equation (27)) for linear 
elastic solids. 

Therefore, as can be seen from equations (26) and (27), for 
a general, three-dimensional fracture problem of an axisym­
metric crack, the stress intensity factors can be calculated 
separately for each of its Fourier components. Usually, the 
Fourier expansion of the boundary conditions for an axisym­
metric crack can be done in such a way that the three fracture 
modes (modes / , II, and III) are decoupled from each other 
and the stress intensity factors can be determined by equations 
(25) and (26). However, if it is difficult to decouple the three 
fracture modes for any of the Fourier terms, e.g., the interface 
crack problems, an additional conservation law similar to that 
introduced by Yau et al. (1980) can be derived to decouple the 
three K's. Application of JA to the interface crack problems 
will be reported elsewhere. 

5 Application to Numerical Analysis 

In the foregoing we have established JA as a path-
independent line integral for an axisymmetric crack under 
nonaxisymmetric loading conditions. To investigate the effec­
tiveness and applicability of the JA integral in actual engineer­
ing analyses, let's first consider an example problem of an in­
finitely long circular bar containing a penny-shaped internal 
crack at its center. As shown in Fig. 2, the radius of the penny-
shaped crack, a, is one half of the bar radius, b. Three loading 
conditions (remote tension, bending, and torsion) were ap­
plied at the ends of the bar. A two-dimensional finite element 
program, which can handle nonaxisymmetric loads in an ax-
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Fig. 2 An infinite bar with a penny-shaped crack 

Table 1 Solutions for a penny-shaped crack in a bar 

Load Case 

Path 1 

Path 2 

Path 3 

Path 4 

Path 5 

Path 6 

Path 7 

Path 8 

Reference 

Tension 
m = 0 

1.5587 

1.2095 

1.2086 

1.2091 

1.2088 

1.2079 

1.2088 

1.2102 

1.2196 

^7 
Bending 
m = 1 

0.5207 

0.3448 

0.3665 

0.3733 

0.3737 

0.3723 

0.3746 

0.3762 

0.3837 

KIIIm 

Torsion 
m = 0 

0.4722 

0.3727 

0.3763 

0.3763 

0.3773 

0.3774 

0.3790 

0.3794 

0.3797 

isymmetric solid, was used to solve the above crack problem. 
The finite element mesh for the problem is illustrated in Fig. 3. 
In this finite element model, only half of the structure was 
modeled due to its inherent symmetry about the crack plane, 
and a total of 80 eight-node elements and 277 nodes were used. 
The two elements adjacent to the crack tip were quarter-node 
crack tip elements (Barsoum, 1974) and the rest of the 
elements were the typical eight-node isoparametric elements. 
The applied loads at the remote ends were 

I 

•8" 

— • •7 

_ 6 

4-

— 2-
H 
A'TOTO' A^ 'wwsws r 

Fig. 3 Finite element mesh and integration contours 

P = o0irb2, M- --o0irb4/4, and T=a0irb4/2 
such that the maximum stresses at the remote ends of the bar 
were CT0 for all three loading cases. Also shown in Fig. 3 are 
eight integration contours for calculating JA. 

Results of the finite element analysis and a reference solu­
tion given by Benthem and Koiter (1973) for the same problem 
are compared and summarized in Table 1. It is seen from this 
table that the stress intensity factors predicted by finite ele­
ment methods and JA are essentially path independent except 
the first path for the tension and torsion cases and the first 
three paths for the bending case. Errors at the first three paths 
are expectable since the finite element mesh used in that region 
was relatively coarse and stress distributions near the crack tip 
are thus not expected to be highly accurate. However, with 
only 80 elements in the model, the stress intensity factors 
calculated based on JA from far field finite element solutions, 
e.g., stress intensity factors at path 8 in Fig. 3 and Table 1, are 
within 2 percent of the reference solution given by Bentham 
and Koiter (1973). 

Secondly, as illustrated in Fig. 4, let's consider an infinitely 
long pipe with a 360 degree circumferential crack at its inside 
surface and with applied loads P, M, and Tat infinity. For the 
interest of pressure vessel industry, the pipe and crack sizes are 
chosen to be t/R,^ = 0.18, and a/t= 1/2. Like the first problem, 
it is assumed that the applied loads P, M, or T will each result 
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Table 2 Solutions for a circumferential crack in a pipe 

Load Case 

Path 1 

Path 2 

Path 3 

Path 4 

Path 5 

Path 6 

Path 7 

Path 8 

Reference 

vETF 

Tension 
m = 0 

3.4768 

2.7163 

2.7163 

2.7147 

2.7176 

2.7142 

2.7135 

2.7139 

2.7296 

Bending 
m = 1 

3.1233 

2.3067 

2.3140 

2.3119 

2.3117 

2.3118 

2.3194 

2.3119 

NA 

KIIIm 

vfTa" 

Torsion 
m = 0, 

1.9.193 

1.5558 

1.5542 

1.5549 

1.5498 

1.5686 

1.5769 

1.5772 

NA 

c.3 

in a maximum stress of a0 at the uncracked section of the pipe. 
The same finite element mesh shown in Fig. 3 can still be used 
for this example problem except that a r translation has to be 
imposed in the coordinates of the previous finite element 
model. Tension solution to this problem has been given by 
Buchalet and Bamford (1976) and Labbens et al. (1976). Un­
fortunately, the bending and torsion solutions cannot be 
found after a literature survey. Results of the second example 
problem are summarized in Table 2. As shown in this table, 
except for the first path, stress intensity factors calculated by 
JA are path-independent and are within 1 percent of the 
reference solutions for the tension case. Up to now, re­
searchers and engineers often treat the combined tension and 
bending crack problems of a cracked pipe by taking the max­
imum combined stress and use that as the uniform remote ten­
sile stress. However, most of the time, the maximum combin­
ed stress is mainly attributable to bending, and thus, as can be 
seen from Table 2, the approach of assuming the pipe is under 
remote tension would result in a conservative stress intensity 
factor and crack growth prediction. A more realistic calcula­
tion of the stress intensity factors based on JA can ease such 
conservatism and provide a more reasonable crack growth 
prediction and allowable crack size for in-service inspection of 
cracked pipes. 

6 Discussion and Conclusions 

So far, application of the JA integral has been restricted to 
homogeneous materials. However, path independence of JA 
can be extended to the problems of an interface crack between 
two dissimilar, linear elastic solids with the fact that all the in­
tegrands in equation (19) are continuous across the material 
interface (C-A in Fig. 1). That is, the energy release rate of an 
axisymmetric crack between two disimilar, linear elastic, ax-
isymmetric solids can be evaluated by integrating JA along any 
contours which enclose the crack tip. Moreover, application 
of JA to anisotropic materials can also be achieved by follow­
ing a similar derivation procedure discussed in the above sec­
tions, but will not be elaborated on in this paper. 

To sum up, the following conclusions can be drawn: 
(1) For axisymmetric cracks under nonaxisymmetric 

loading conditions, JA is the sum of the Fourier components 
JAm which are decoupled from each other. 

(2) JA is the average energy release over the entire crack 
front. 

(3) For a nonaxisymmetric fracture problem, the stress in­
tensity factors and energy release rate J can be calculated 
directly from JA. 

a 

Fig. 4 An infinite pipe with a 360-degree internal circumferential crack 

(4) JA can also be used to calculate the energy release rate 
for interfacial cracks between two dissimilar materials. 
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A Finite Element Study of Stable 
Crack Growth Under Plane 
Stress Conditions: Part I— 
Elastic-Perfectly Plastic Solids 
A detailed finite element study of stable crack growth in elastic-perfectly plastic 
solids obeying an incremental plasticity theory and the Huber- Von Mises yield 
criterion is performed -under plane stress, small-scale yielding conditions. A nodal 
release procedure is used to simulate crack extension under continuously increasing 
external load. It is found that the asymptotic angular extent of the active plastic zone 
surrounding the moving crack tip is from 6 = 0 deg to about 6 = 45 deg. Clear 
evidence of an elastic unloading region following the active plastic zone is found, 
but no secondary {plastic) reloading is numerically observed. The near-tip angular 
stress distribution inside the active plastic zone is in good agreement with the varia­
tion inside a centered fan, as predicted by a preliminary asymptotic analysis by Rice. 
It is also observed that the stress components within the plastic zone have a strong 
radial variation. The nature of the near-tip profile is studied in detail. 

1 Introduction 

A slow, stable crack extension phase is often observed 
(Broek, 1968; Green and Knott, 1975) in elastic-plastic 
materials prior to catastrophic failure during which a steady 
increase in applied load is required to propagate the crack. 
The primary reason for this is the reduced singularity in the 
strains that results when the crack propagates into material 
that has already deformed plastically. 

Several investigators have contributed in providing an 
understanding of the mechanics and the practical implications 
of stable crack growth by using both analytical and numerical 
techniques. Problems that have received wide attention are 
crack extension in elastic-perfectly plastic materials under the 
conditions of anti-plane shear and Mode I plane strain. 
Chitaley and McClintock (1971) constructed an asymptotic 
analytical solution for steady, quasi-static crack growth under 
anti-plane shear conditions. Following preliminary investiga­
tions by Rice (1968, 1975), Rice et al. (1980) assembled an 
asymptotic solution for cracks growing in an incompressible 
elastic-perfectly plastic material under Mode I plane strain. 
The solution for this problem was also found independently 
by Slepyan (1974) and Gao (1980). Finally, the asymptotic 
analysis of Drugan et al. (1982) accounted for crack growth 
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under Mode I plane strain in elastic-perfectly plastic materials 
without the restriction of elastic incompressibility. 

However, by contrast not many asymptotic solutions are 
available for cracks growing in strain-hardening materials, 
primarily due to the difficulty involved in the analytical treat­
ment of the governing equations. Amazigo and Hutchinson 
(1977) performed an asymptotic analysis for steady-state crack 
extension in a linear hardening material under antiplane shear 
and Mode I plane strain and plane stress. Ponte Casteiieda 
(1987) has recently extended their analysis to include the 
possibility of secondary reloading and has also treated Mode 
II plane strain and plane stress. Nevertheless, some questions 
pertaining to Mode I plane strain and plane stress, in the limit 
as the perfect plasticity is approached, are left unanswered by 
his investigation (see for example Section 4 of the present 
paper). Also, Gao and Hwang (1981) performed a preliminary 
investigation about the near-tip fields for a crack growing in a 
material governed by a more realistic power hardening law. 

Finite element studies simulating crack growth, by using 
nodal release procedure, were conducted by Sorensen (1978) 
under antiplane shear and by Sorensen (1979) and Sham 
(1983) under Mode I plane strain. Dean and Hutchinson 
(1980) and Lam and McMeeking (1984) have used a Eulerian 
finite element formulation to study steady-state crack advance 
in the above cases. On the other hand, remarkably little work 
has been performed regarding crack growth under Mode I 
plane stress, notwithstanding its practical importance, as, for 
example, to thin aircraft structures. Also, a study of plane 
stress crack gorwth is compelling, because of the possibility of 
direct comparison with experiments based on the optical 
method of caustics, which in recent years has showed great 
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promise towards applications in ductile fracture (Rosakis and 
Freund, 1982; Zehnder et al., 1986). A preliminary analysis 
has been performed by Rice (1982), concerning the asymptotic 
nature of the stress and deformation fields near a growing 
crack tip in an elastic-perfectly plastic material under plane 
stress conditions. A complete (all-round) asymptotic solution 
for this problem has thus far remained elusive. Achenbach 
and Dunayevsky (1984) have recently investigated the varia­
tion of the plastic strain field along a ray ahead of the tip, 
based on the assumption of the validity of the asymptotic 
value for the stress field (Rice, 1982) up to the elastic-plastic 
boundary (see Section 4 for further discussion). 

As far as numerical modelling is concerned, a steady-state 
Eulerian finite element study has been conducted recently by 
Dean (1983) for plane stress crack growth following the ap­
proach of Dean and Hutchinson (1980). However, as noted in 
Section 4 of this paper, the analysis of Dean (1983) is not very 
detailed, and certain issues pertaining to the near-tip stress and 
deformation fields have not been examined. 

In the present investigation, a very detailed finite element 
study that provides great resolution near the crack tip has been 
carried out to model stable plane stress crack growth under 
continuous increase in external load, by using the nodal 
release procedure (Sorensen, 1979; Sham, 1983). Attention is 
restricted to elastic-perfectly plastic materials in the present 
analysis. This is a continuation of our earlier work 
(Narasimhan and Rosakis, 1986a), which analyzed the 
monotonic loading of a stationary crack under plane stress, 
small-scale yielding conditions. 

2 Numerical Analysis 

Formulation. The numerical modelling of the Mode I 
plane stress, small-scale yielding problem was discussed in 
detail by Narasimhan and Rosakis (1986a), who performed 
the analysis of a monotonically loaded stationary crack. In the 
present investigation, the results obtained by them will be used 
as initial conditions to simulate stable crack extension. Some 
of the features about the numerical analysis will be briefly 
outlined in this section. In the present paper (e^ e2, e3 j will 
represent an orthonormal frame centered at the crack tip and 
translating with it, while (ef, e2', e3') will be a fixed orthonor­
mal frame situated at the position of the stationary crack tip. 

The upper half of a domain R containing a crack and 
represented entirely by finite elements is shown in Figs. 1(a) 
and 1(b). The leading term in displacements of the linear 
elastic asymptotic solution, 

ua=KJ^-ua(0), (2.1) 
* 27T 

was specified as a boundary condition on the outermost con­
tour S of the domain.1 The loading was applied through the 
Mode I stress intensity factor Kj or equivalently through the 
far-field value of the / integral. All plastic deformation was 
contained within a distance from the crack tip, which was less 
than 1/30 of the radius of S. 

The active region of Fig. 1(a) has a total of 1704 four-noded 
quadrilateral elements and 3549 degrees of freedom. The 
quadrilaterals were formed from four constant strain triangles 
with static condensation of the internal node. Static condensa­
tion was also employed in the large region surrounding the ac­
tive mesh, which always remained elastic. The cutout of Fig. 
1(a), which is a fine mesh region near the crack tip, is shown in 
detail in Fig. 1(b). The small square elements near the crack tip 
have a size L, which is about 1/385 of the radius RA of the ac­
tive region and about 1/3400 of the radius of S. 

1 Throughout this paper, Greek subscripts will have range 1,2, while Latin 
subscripts will take values 1,2,3. 

original cracktip 0
 R* 

(a) 

Fig. 1 Finite element mesh: (a) outer mesh; (b) fine mesh near the crack 
tip 

Constitutive Assumptions. The material model that was 
considered here was that of an isotropic elastic-perfectly 
plastic solid. A small strain incremental plasticity theory was 
employed along with the Huber-Von Mises yield condition 
and the associated flow rule. The total strain rate tensor is 
assumed to be decomposed into elastic and plastic parts, and 
the constitutive law for material currently experiencing plastic 
deformation is given by, 

. _ „» . _ \ n t-ijpq^pq^mn ^mnkl \ . ,~ ~ , 
aij ~ <^ijklekl ~ ^ijkl ^~~7; ^ ekl- \L-L> 

Here Cijkl is the isotropic, positive definite elasticity tensor, 
and Sij is the deviatoric stress tensor. In the present analysis, 
the yield criterion and the constitutive law (2.2) were used 
along with the plane stress condition, 

<73,-0. (2.3) 

On using equation (2.3) in equation (2.2), a constraint for e33 

in terms of ea/3 can be obtained. The ratio of the Young's 
modulus to the yield stress in pure shear (E/T0) was taken as 
350 and the Poisson's ratio iy) as 0.3 in the computation. 

Finite Element Scheme. A displacement based finite ele­
ment method was employed and inertia effects were neglected 
in the analysis. The incremental finite element equilibrium 
equations were derived from the principle of virtual work by 
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linearization (Bathe, 1982). These equations were solved for 
each time step using the iterative Newton-Raphson method. 
An explicit integration procedure also known as the Tangen­
tial Predictor-Radial Return method (Schreyer et al., 1979) 
was employed together with subincrementation to integrate 
the incremental stress-strain law. 

Solution Strategy. The plastic zone at the end of the sta­
tionary load history had a maximum extent, which occurred 
ahead of the crack tip, of about 100 times the smallest element 
size L. Subsequently, twenty one-element crack growth steps 
were simulated using the nodal release procedure, as described 
below. The stiff spring that was attached to the crack tip node 
in the x2 direction, in order to enforce the symmetry condition 
(w2 = 0), was removed and was replaced by the point load 
acting on it. This point load was subsequently relaxed to zero 
in twenty increments, at the end of which a traction-free ele­
ment surface emerged, and the crack advanced by one element 
length L. 

The externally applied load through the far-field / integral 
(or Kj) was increased simultaneously during the above nodal 
release procedure (as done by Sham, 1983), in order to model 
stable crack extension in a continuous manner. During crack 
growth the K field remained centered at the location of the 
original crack tip. This was because while the K field was 
specified at a radius of 3400L, the crack advanced by only 
20L. For this purpose, a simple J versus crack growth (Aa) 
history with a constant slope was used. Following eighteen 
one-element crack growth steps at T=(E/ol)dJ/da = 5, two 
crack growth steps at four different rvalues of 0, 5, 15, and 
20 were simulated (T is the nondimensional Paris tearing 
modulus). The last two steps were thus carried out in order to 
study the effect of different rates of increase of external load 
on crack displacement increment. The computation was per­
formed using a Cray XMP (Boeing Computer Services, Seat­
tle). The total CPU time taken was about 3 CPU hours. 

3 Asymptotic Fields Near Propagating Crack Tips 

Plane Strain. Rice et al. (1980) assembled a near-tip solu­
tion for quasi-static crack advance under plane strain in an in­
compressible material (p = 0.5). This solution is essentially the 
Prandtl field (Rice, 1968) together with an elastic unloading 
sector following the centered fan. This was added to eliminate 
the negative plastic work that would otherwise occur at the 
trailing boundary of the fan. The asymptotic form of the 
plastic strains in the fan is given by, 

( 5 - 4 K ) T 0 / 

e&~- 2V2 E 'a/3 «»>'«(-f)' r - O . (3.1) 

where R is an arbitrary length scale. The angular factors 
GaB(d) are fully determined from an asymptotic angular in­
tegration of the plastic strain rates (Rice, 1982). It should be 
noted that the dominant log(r) term of (3.1) is much weaker 
than the 1/r plastic strain singularity near a monotonically 
loaded stationary crack tip (Rice, 1968). 

Motivated by the above, Rice et al. (1980) proposed the 
following form for the near-tip crack opening rate during 
stable plane strain crack advance, 

a J an / R\ 
8 + pJLdl„[—), r~0. (3.2) 

a0 E \ r / 

In the above, a and /3 are constants and R is a length dimen­
sion, which is expected to scale with the plastic zone size under 
small-scale yielding conditions, so that 

/ EJ\ R=shd- (3-3) 
Here, J is the remotely applied value of the /integral which, 
under small scale yielding conditions, is given by, 

E 

(plane strain) 

(plane stress). 

(3.4) 

The constant /3 in (3.2) can be obtained from an all-round 
asymptotic solution (Rice et al., 1980; Drugan et al., 1982), 
whereas the constants a in (3.2) and 5 in equations (3.3) are 
undetermined from the asymptotic analysis. 

The second term in (3.2) arises because of the log(r) domi­
nant singularity in the material particle velocities. The first 
term in (3.2) encompasses the assumption that the higher-
order terms in velocities are bounded and linear in load rate ( / 
for small scale yielding). Also, for a = 0, the right-hand side of 
(3.2) reduces to the correct expression for the discrete crack 
opening rate that is observed during the monotonic loading of 
a stationary crack. An asymptotic integration of (3.2) can be 
carried out to obtain the near-tip crack opening displacement 
during stable crack growth (when crack length a increases con­
tinuously with J) as follows, 

/eR^ dJ „ On , . 

„ da -E-\-h r-°> (3-5) 

where e is the base of the natural logarithm. As opposed to the 
monotonic loading of a stationary crack, equation (3.5) im­
plies that the opening displacement at the crack tip is equal to 
zero during crack growth. However, as can be noticed from 
(3.5), the crack profile during growth exhibits a vertical 
tangent at the tip. 

Plane Stress. The general features outlined above for 
plane strain apply to plane stress as well, with some modifica­
tions. No all-round asymptotic solution that satisfies all the 
boundary and symmetry conditions and that does not violate 
material stability postulates has yet been assembled for this 
case. However, Rice (1982) has performed a preliminary 
asymptotic analysis and has demonstrated that only two types 
of plastic sectors can exist near the crack tip. These are 
centered fan sectors in which radial lines are stress 
characteristics (srr = 0) and constant stress sectors in which the 
Cartesian components of stress aal3 are constant (not functions 
of angle 6). The asymptotic stress and deformation fields 
within the above plastic sectors and in elastic unloading sec­
tors have been derived by Rice (1982). 

The asymptotic stress field within a centered fan sector is 
summarized below assuming that it adjoins the 0 = 0 ray 
(similar to the stationary crack tip solution of Hutchinson, 
1968): 

arr = T0cosd, am = 2rQcosd, cr̂  = T0sin(?, r->0 (3.6) 
Rice (1975) has demonstrated that if a centered fan adjoins 

the 6 = 0 line, then the plastic strains in front of the crack tip 
are given by: 

1 

where, 

-JG^(^),0 = O, r-0, 

G „ = 0 G12 = 0 

G22 = 2 G33 = — 2 

(3.7) 

(3.8) 

It should be observed that the plastic strains (on the 6 = 0 ray) 
are singular as log2(r) in plane stress, whereas in plane strain 
the plastic strains in the fan have a \og(r) dominant singularity 
from (3.1). The stronger log2(r) dominant plastic strain 
singularity in plane stress (which also occurs in antiplane 
shear) arises because the crack propagates into a centered fan 
region unlike in Mode I plane strain. 

In plane stress, the material particle velocities have a log(r) 
singularity analogous to plane strain (see Rice, 1982). Hence 
one expects the crack opening rate during stable plane stress 
crack advance to have the same functional form as (3.2). Also 
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Fig. 2(a) Active plastic zone surrounding the propagating crack tip; (b) 
plastic zone corresponding to the stationary crack (Narasimhan and 
Rosakis, 1986a) 

the equations from (3.2) to (3.5) and the accompanying discus­
sions are expected to apply for stable plane stress crack 
growth. 

4 Results and Discussion 

Plastic Zone. The active plastic zone surrounding the 
crack tip is shown in Fig. 2(a) in moving coordinates that have 
been made dimensionless by the parameter (K,/a0)

2. For com­
parison purposes, the plastic zone corresponding to a sta­
tionary crack under plane stress conditions, which was obtain­
ed by Narasimhan and Rosakis (1986a), is shown in Fig. 2(b). 
In Fig. 2(a), the current crack tip is at the origin of the coor­
dinate system, and this result was obtained at the end of twen­
tieth crack growth step. A point in the figure represents an ac­
tively yielding integration station (currently on the yield sur­
face in stress space) within an element. It can be seen from the 
figure that a large elastic unloading region follows the active 
plastic zone. The active plastic zone appears to occupy an 
asymptotic angular extent from 0 = 0 deg to about 45 deg, 
which will be verified later. 

The elements behind the active plastic zone, which are close 
to the crack plane and which occupy the angular range from 
6 = 45 to 180 deg, have unloaded elastically. These elements 
have previously experienced plastic yielding during the passage 
of the crack tip. The present numerical solution does not ex­
hibit any secondary (plastic) reloading along the crack flank. 
This is in contrast to plane strain, where a secondary plastic 
region was found, extending behind the moving crack tip 
(Sham, 1983). 

As can be seen from Fig. 2(a), the trailing boundary of the 
active plastic zone seems to have a kink, resulting in a shape 
similar to that observed in antiplane shear (Sorensen, 1978; 
Dean and Hutchinson, 1980). The parallel between plane 
stress and antiplane shear has been recognized earlier, from 
the presence of an intense deformation zone (centered fan) 
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Fig. 3 Radial distribution of plastic strain ahead of the propagating 
crack tip for various levels of crack growth 

ahead of the moving tip in both cases. In the present computa­
tion, the kink in the active plastic zone developed during the 
first few crack growth steps and persisted with subsequent 
crack advance. Also, the overall features of the plastic zone 
did not change much after the first few crack growth steps. 

The maximum radial extent of the plastic zone, which oc­
curs directly ahead of the growing crack tip (0 = 0), is 
Rp~Q.2%(Kj/o0)

2, which is about the same as the stationary 
problem (Fig. 2(b)). Also, on comparing Figs. 2(a) and 2(b), it 
can be seen that the plastic zone for the propagating crack is 
similar in overall shape and size to that obtained for the sta­
tionary problem at points away from the crack tip. However, 
near the tip the two plastic zones seem to deviate in shape, 
primarily due to elastic unloading behind the trailing bound­
ary during crack growth. As pointed out by Rice (1982), 
strong changes in plastic zone shape near the tip and a tenden­
cy to reestablish a shape similar to that for the stationary crack 
at points away from the tip are expected during the initial 
stages of crack growth. This can also be observed in the results 
for both antiplane shear (e.g., Sorensen, 1978) and plane 
strain (e.g., Sham, 1983). 

Finally, it is noted that the plastic zone of Fig. 2(a) com­
pares well with the steady-state result obtained by Dean 
(1983), from a Eulerian finite element formulation, except for 
the presence of the kink. However, the present finite element 
solution is more detailed, since it has a larger ratio of plastic 
zone to smallest element size of over 100 as compared to about 
35 in Dean's computation. Also, unlike Dean's work, the in­
itial phase of crack growth was simulated here under con­
tinuously increasing external load. 

Radial Distribution of Plastic Strain. The radial distribu­
tion of normalized plastic strain, ef2/en> with respect to nor­
malized distance, r/(Kj/oa)

2, ahead of the current crack tip is 
shown in Fig. 3. Results are presented for various levels of 
crack growth under steadily increasing value of far-field / at 
T=5. The solid line in the figure is the plastic strain distribu­
tion ahead of a monotonically loaded stationary crack tip, 
which was obtained by Narasimhan and Rosakis (1986a). It 
can be seen that the plastic strain converges rapidly during the 
first few crack growth steps to an invariant distribution. For 
example, at a distance of 0.0l(Kj/a0)

2 ahead of the moving 
crack tip, the plastic strain dropped by 32 percent during the 
first five crack growth steps and by 17 percent, 8 percent, and 
3 percent during the sixth to tenth steps, eleventh to fifteenth 
steps, and sixteenth to twentieth steps, respectively. Such 
rapid convergence was also observed in the numerical simula­
tion of antiplane shear crack growth by Sorensen (1978). 
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Fig. 4 Development of crack profile for various levels of crack growth 
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Fig. 5 Radial distribution of stresses ahead of moving crack tip 

As can be seen from Fig. 3, the plastic strain distribution 
ahead of the tip during growth exhibits a weaker singularity 
than in the stationary problem. This fact is the origin for the 
stable crack extension phase (McClintock and Irwin, 1965) 
observed in elastic-plastic materials (preceding instability), 
when crack growth occurs under steadily increasing external 
load. 

Crack Profiles. The development of the crack opening 
profile for various levels of crack growth at T= 5 is shown in 
Fig. 4 in the nondimensional form 8/(J/a0) versus 
x[/(K,/a0)

2. The stationary crack profile is also plotted in the 
figure for comparison. As can be seen from the figure, the 
crack profile changes from a blunted form at the end of the 
stationary load history to a sharp shape during crack growth. 
This is because of the lessened strain concentration that results 
when the crack propagates into material that has already 
deformed plastically. In Section 5 this numerically obtained 
profile will be used to estimate the parameters a, |3, and s in 
the asymptotic equation (3.5). 

Radial Distribution of Stresses. The radial variation of the 
normalized stress components, ffag/T0, versus normalized 
distance ahead of the crack tip at the end of the twentieth 
release step is shown in Fig. 5. The centroidal values of stresses 

TO 
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Fig. 6 Near-tip angular distribution of (a) normalized polar stress com­
ponents and (b) Von Mises equivalent stress 

in the row of elements ahead of the tip have been used to con­
struct this plot. The numerically obtained stresses very near 
the crack tip approach the asymptotic distribution given by 
equation (3.6) which assumes that there is a centered fan 
ahead of the tip. For example, from the finite element results 
at r=0.01(KI/o0)

2, the values of an and a22 are 0.99T0 and 
1.99970, in excellent agreement with the values r0 and 2T0 , 
respectively, given by (3.6). 

It can be seen from Fig. 5 that the an stress component ex­
hibits a strong radial variation with a value of 1.40r0 at the 
elastic-plastic boundary. The value of an differs 'from the 
asymptotic limit by less than 5 percent in the range 
r<0.04(Kj/a0)

2. This stress variation compares closely with 
that for the stationary crack (Narasimhan and Rosakis, 
1986a). As noted by them, it suggests possible curving of the 
leading boundary of the fan at moderate distances from the 
tip. This will also be discussed later in connection with Fig. 7. 

Near-Tip Angular Distribution of Stresses. The angular 
variation of the normalized polar stress components at a 
distance of 0.01CST7/o-0)

2 from the moving crack tip (which is 
within 0.04Rp) is shown in Fig. 6(a). The centroidal values of 
stresses in the elements lying on a rectangular contour sur­
rounding the moving crack tip, which is shown as an inset in 
the figure, have been used to construct this plot. The angular 
variation along the above contour of the Von Mises equivalent 
stress, <7eqv = (3/2sySy)U2 which has been normalized by aQ, is 
shown in Fig. 6(b). 
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Fig. 7 Stress characteristics within active plastic zone 

As can be seen from Fig. 6(b), aev, becomes less than cr0 for 
0>45 deg, which suggests that the asymptotic angular extent 
of the active plastic zone is about 45 deg. This agrees well with 
visual observation of Fig. 2(a). However, from published 
results for crack advance under both antiplane shear (e.g., 
Dean and Hutchinson, 1980) and plane strain (e.g., Sham, 
1983), where the asymptotic angular extent of active yielding 
was overestimated by finite element solutions, one is led to in­
terpret the above conclusion with some caution. Also, from 
Fig. 6(b), it can be seen that <reqv does not become equal to a0 

as 6 approaches 180 deg, which implies that no secondary 
(plastic) reloading has been detected by this numerical 
solution. 

The angular distribution of stresses (Fig. 6(a)) within the ac­
tively yielding region is in good agreement with the variation 
in a centered fan, as predicted by equation (3.6). For example, 
in the angular range 0 deg < 6 < 45 deg, the values of oM and 
Orf as given in Fig. 6(a) differ from that obtained using equa­
tion (3.6) by less than 1 percent and 4 percent, respectively. 
However, the value of a„ shown in Fig. 6(a) agrees with that 
given by equation (3.6) to within 8 percent in the angular range 
0 deg <0<25 deg and deviates substantially for 25 deg 
<0<45 deg. The reason for this discrepancy will be explained 
later in this section. Also, the angular stress distribution of 
Fig. 6(a) compares quite well with the finite element results of 
Dean (1983). However, as pointed out earlier, the present 
computation is considered to be more detailed than Dean's 
analysis. 

The recent asymptotic analysis of Ponte Castafieda (1987) 
for steady, quasi-static crack growth in a linear hardening 
material is unfortunately not definitive about the asymptotic 
angular extent of the primary plastic zone in the limit as the 
perfect plasticity case is approached. He obtains a primary 
plastic angle of about 53.2 deg and 49 deg when the ratio E,/E 
of the tangent modulus to the elastic modulus is 0.001 and 
0.0001, respectively. Also the presence of a secondary 
reloading zone and its angular extent (which is extremely 
small) are not completely conclusive from his results, in the 
limit as E,/E tends to be zero. The prediction of a very small 
reloading angle is, however, not inconsistent with the present 
numerical results, since such a tiny reloading zone cannot 
possibly be detected by a finite element scheme. 

Nevertheless, the angular factors ff,y(0) of the dominant r1 

term for the stresses given by Ponte Castafieda (1987) for 
Et/E= 0.001 agree closely with the present numerical solution 

of Fig. 6, except for the arr component, which seems to deviate 
in the angular range from 0 = 25 deg to about 100 deg. Also, 
the stress distribution obtained by Ponte Castafieda (1987) for 
E,/E = 0.001 suggests yielding in compression for 6 very close 
to 180 deg. While the present results do indicate a region near 
the crack flank where a„ is negative (see Fig. 6), no yielding in 
compression has been observed. 

Stress Characteristics. The two families of stress 
characteristics within the active plastic zone, near the prop­
agating crack tip, are shown in Fig. 7, using nondimensional 
crack tip coordinates. The dashed line in the figure is the 
boundary of the active plastic zone. The stress characteristics 
were plotted using the averaged stresses within the elements, as 
described by Kachanov (1974). These characteristics are lines 
along which the direct component of the stress deviator 
vanishes. The dotted line in the figure separates a region near 
the tip, in which the equations for the stresses are hyperbolic, 
from a region outside, in which they are elliptic. At each point 
on the dotted line, the condition for parabolicity of the gov­
erning equations for the stresses (see Kachanov, 1974) is 
satisfied. As can be seen from the figure, the two families of 
characteristics become mutually tangential to each other at 
every point along this dotted line, as it curves upwards from 
the 0 = 0 ray. However, it is not clear whether the elliptic 
region extends all the way up to the crack tip as a wedge of 
vanishingly small angular extent, as r ^ 0 along the 0 = 0 ray, 
although there is some evidence to suggest this possibility. 
This observation might explain the difficulties encountered in 
constructing an all-around solution based on the asymptotic 
equations of Rice (1982). 

Two important observations should be made from this 
figure. Firstly, it can be seen that a family of characteristics 
focusses at the crack tip in the angular range from 6 = 0 deg to 
about 25 deg, beyond which the characteristics seem to in­
tersect the crack plane slightly behind the tip. This is probably 
because of the fact that, due to discretization, the crack tip is 
not precisely sensed in the finite element solution leading, ac­
cording to the terminology of Sorensen (1978), to a "fuzzy 
crack tip phenomenon." 

This was also observed in antiplane shear by Dean and Hut­
chinson (1980), who found that the active plastic zone obtain­
ed from their steady-state finite element solution extended 
from 6 = 0 deg to about 60 deg, while the charcteristics focuss-
ed at the tip only for angles less than 20 deg. For comparison, 
the analytical asymptotic solution of Chitaley and McClintock 
(1971) in antiplane shear crack growth has a centered fan 
region from 6 = 0 deg to 19.69 deg, followed by a large elastic 
unloading region and a tiny secondary reloading zone. 

Secondly, the radial family of charcteristics in Fig. 7 bend 
downwards (towards the 6 = 0 ray) even for small distances 
(r>0.0\(K,/a0)

2) from the tip. These two factors probably ac­
count for the strong discrepancy in the a„ stress component, 
between the finite element solution and the analytical asymp­
totic expression equation (3.6), in the angular range 25 deg 
<0<45 deg. 

Finally, the strong radial variation in the stresses ahead of 
the crack tip (Fig. 5), combined with the observation of the 
change in nature of the governing equations as the distance 
from the crack tip is increased (Fig. 7), seems to disagree with 
the assumption of a constant stress field ahead of the tip made 
by Achenbach and Dunayevsky (1984). 

5 Study of the Propagating Crack Profile 

In this section, a value for the parameter /3 in the asymptotic 
crack opening rate (3.4) will be obtained by fitting the 
analytical asymptotic form to the numerically obtained values. 
The method employed is similar to that used by Sham (1983) 
in stable plane strain crack advance. Also, the linearity of the 
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higher-order term in (3.4) with respect to / will be verified 
from the numerical solution. 

To that effect, the crack opening rate 5 is written as 

' - • S K T W T ) ] - -»• 
where L is the smallest element size and is a convenient length 
scale and a is the crack length. Under small-scale yielding con­
ditions, the function/(a/L) can be shown to have the follow­
ing form (see Section 3 and also Rice et al., 1980; Sham, 1983), 

f(JL)=gma))+m(2^). (5-2) 
where the quantity EJ/a\ has the dimension of length and is a 
measure of the plastic zone size. In the above equation, / , 
which is the remotely applied value of the J integral, and the 
nondimensional Paris tearing modulus T= (E/ol)(dJ/da) are 
functions of the crack length a. If g( T) is a linear function of 
T as was assumed in Section 3, then comparison of equation 
(5.2) with equations (3.2) and (3.3) gives 

g(T)=aT+pins, (5.3) 

where a and s will be taken as constants for limited amounts 
of crack growth. 

The crack displacement increment at a fixed material point 
(#1,0), when the crack grows from ay to a2, can be obtained by 
integrating (5.1) as follows (Sham, 1983), 

E Ab{x[,a) 

L L \a2—x{/ 

L \a,—x[/i 
(5.4) 

In the above equation, e is the base of the natural logarithm 
and 

Ab(x[,a) = 5{x[,a2) - &(x{,aj 

*a2/L (•"2 
A F = 

J a\, 
/(f)rff 

(5.5) 

The values of (3 and AF were obtained as the slope and axis in­
tercept of a least-squares straight line fit to 

E /Ab{x[,a)\ Aa-x[ ( eL \l 
— I 1 versus A ln[ 1 
o0 \ L / L L \a—x{/J 

for successive one-element crack growth steps. 
The representative straight line fits for crack growths under 

four different values of T of 0, 5, 15, and 20, which were 
simulated for the twentieth release step, is shown in Fig. 8. 
The first node behind the crack tip has been omitted and the 
data corresponding to the next five nodes have been plotted in 
this graph. The first node was omitted because it was ob­
served that the crack tip element undergoes excessive rotation 
during the nodal release procedure. This conclusion was 
reached by performing a sensitivity study as described below. 
The average value of j3 based on the first six nodal points 
behind the crack tip was obtained as 2.1. On omitting the first 
node, it was found that a better straignt line fit can be made to 
the data corresponding to the net five nodal points (as in Fig. 
8), which, however, gave a substantially lower average value 
of (3 of 1.7. The straight line fits underwent very little change 
on omitting the first and second nodes behind the tip, giving 
an average value of /S of 1.67. On the basis of the above study, 
it is concluded that correct estimate for /3, based on the crack 
displacement increments obtained from the finite element 
solution is around 1.70. 

The value of AF obtained from the axis intercept can be 
taken approximately as 

L A t 
a - xj, 

Fig. 8 Straight line fits to normalized crack displacement increments 
during the twentieth release step to determine 0 in asymptotic equation 
for crack opening rate 

Fig. 9 Variation of higher-order term g(T) in crack opening rate with 
respect to T. Straight line fit has been made to determine a and s. 

AF* 
(a2-a{) 

KT)- (5.6) 

where d= (a, +a2)/2. The value of f(a/L), which was com­
puted from the above equation, was used along with the mean 
value of /during crack growth from a{ to a2 in equation (5.2) 
to determine g(T). The values of g{T) obtained as above for 
crack growth simulations under four different values of T dur­
ing the twentieth release step are plotted against Tin Fig. 9. It 
can be seen that a very accurate straight-line fit can be made to 
the numerically obtained points validating the assumption of 
linearity of g(T) with respect to Fmade in Section 3. 

On employing equation (5.3) (with /? as 1.7), the values of a 
and s were obtained as 0.82 and 0.60 from the slope and axis 
intercept of the straight line fit (Fig. 9), respectively. From the 
analysis that included the first node behind the crack tip to 
determine (3 and AF (giving f3 as 2.1), the values of a and 5 
were estimated as 0.82 and 0.24, respectively. 
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The value of a computed above is thus completely insen­
sitive to the determination of /3 and is also in good agreement 
with the corresponding estimate from the opening displace­
ment of the stationary crack, which was 0.85 as reported by 
Narasimhan and Rosakis (1986a). The value of s, on the other 
hand, seems to be extremely sensitive to the accuracy in deter­
mining (3. This can also be observed in plane strain from the 
scatter in published numerical results for P and s (e.g., Sham, 
1983; Dean and Hutchinson, 1980; Lam and McMeeking, 
1984. 

Finally, the asymptotic crack profile as given by (3.5) is 
plotted in nondimensional form for crack growth at T— 5.0 in 
Fig. 10 with the parameters a, (3 and s taken as 0.82, 1.7, and 
0.6, respectively. The values obtained from the finite element 
solution are also plotted in the figure for comparison. It is 
found that the predicted asymptotic crack profile is very close 
to the numerical solution in the range r<0.04(.fir//o-0)

2. 
A discussion of the implementation of a ductile fracture 

criterion will be presented in Part II of this investigation. This 
study will also result in the prediction of plane stress resistance 
curves for the case of perfect plasticity. 
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A Finite Element Study of Stable 
Crack Growth Under Plane 
Stress Conditions: Part I I— 
Influence of Hardening 
A detailed finite element analysis is performed to model quasi-static crack growth 
under plane stress, small-scale yielding conditions in elastic-plastic materials 
characterized by isotropic power law hardening and the Huber-Von Mises yield sur­
face. A nodal release procedure is used to simulate crack extension. Results pertain­
ing to the influence of hardening on the extent of active yielding and the near-tip 
stress and deformation fields are presented. Clear evidence of an elastic unloading 
wake following the active plastic zone is found, but no secondary (plastic) reloading 
along the crack flank is numerically observed for any level of hardening. A ductile 
crack growth criterion based on the attainment of a critical crack opening displace­
ment at a small microstructural distance behind the tip, is employed to investigate 
the nature of the J resistance curves under plane stress. In addition, the same 
criterion is employed to investigate the influence of hardening on the potential for 
stable crack growth under plane stress. It is found that predictions based on a 
perfectly plastic model may be unconservative in this respect, which is qualitatively 
similar to the conclusions reached in antiplane shear and Mode I plane strain. 

1 Introduction 

Several investigators have contributed in providing an 
understanding of the mechanics of stable crack growth by us­
ing both analytical and numerical techniques. Such works are 
reviewed in the introduction of Part I of the present 
investigation. 

In this part a detailed finite element analysis is undertaken 
to model crack growth under plane stress in isotropic power 
hardening solids. This is a continuation of our earlier work 
(Narasimhan and Rosakis, 1986), which analyzed the 
monotonic loading of a stationary crack. Two crack growth 
histories (see Section 2) are simulated to study the mechanics 
problem of quasi-static crack extension and also to investigate 
the initial phase of stable growth under small-scale yielding, as 
would be observed in an experiment. 

2 Numerical Analysis 

Formulation. The numerical modeling of the Mode I 
plane stress, small-scale yielding problem was discussed in 
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detail by Narasimhan and Rosakis (1986), who performed the 
analysis of a monontically loaded stationary crack. In the pre­
sent investigation, the results obtained by them will be used as 
initial conditions to simulate quasi-static crack extension. The 
basic features of the numerical analysis have been summarized 
in Part I. 

Constitutive Assumptions. The material model that was 
considered here was that of an elastic-plastic solid with an 
isotropic power law hardening behavior. A small strain in­
cremental plasticity theory was employed along with the 
Huber-Von Mises yield condition and the associated flow rule. 
The Huber-Von Mises yield condition for isotropic harden-
ding takes the form, 

f(a,eP)=F(a)-a
2(ep), (2.1) 

where F(a) = 3/2 S-S, and e" = i(2/3^j)U2dt is the ac­
cumulated equivalent plastic strain. In the above, S is the 
deviatoric stress tensor, and a(ep) is defined by the following 
power hardening rule, 

= ( — ) . (2.2) 

Here a0 and e0 are the yield stress and strain in uniaxial 
tension. 

The total strain rate tensor is assumed to be decomposed in­
to elastic and plastic parts, and the constitutive law for 
material currently experiencing plastic deformation is given 
by, 
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(2.3) 

Here Cm is the isotropic, positive definite elasticity tensor 
and H = da/dep, which can be obtained from (2.2). In the 
present analysis, the yield criterion and the constitutive law 
were used along with the plane stress condition, 

ff„- = 0. (2.4) 

On using equation (2.4) in (2.3), a constraint for e33 in terms 
of e^ may be obtained. 

The computations were performed for two levels of harden­
ing, n = 5 and 9. The ratio of the Young's modulus to the yield 
stress in pure shear (E/T0) was taken as 1400 and the 
Poisson's-ratio as 0.3 in the calculations. 

Solution Strategy. In this study, two simple crack growth 
histories were simulated employing the nodal release pro­
cedure (see Part I and also Narasimhan et al. 1986). In the first 
case, the maximum plastic zone extent at the end of the sta­
tionary loading process was slightly more than 50 times the 
smallest element size L. Subsequently, twenty one-element 
crack growth steps were simulated using the nodal release pro­
cedure, holding the externally applied load fixed. This was 
achieved by imposing T= (E/o%)dJ/da = 0 during crack 
growth. 7/is the nondimensional Paris tearing modules. The 
purpose of this investigation is to examine the nature of the 
near-tip stress and deformation fields for the mechanics 

problem of quasi-static crack growth without the influence of 
increase in applied load. Following Rice (1975), this would 
correspond to a hypothetical situation in which a cracked 
specimen is initially loaded by clamping portions of its boun­
dary and imposing displacements, which is then followed by 
crack extension by saw-cutting ahead under fixed boundary 
displacements. 

However, in an actual situation, after initiation, a crack will 
generally grow stably in an elastic-plastic material for an ex­
tent typically of the order of a few plastic zone sizes, during 
which the applied load will have to be increased to propagate 
the crack. A steady-state condition will then be reached, after 
which no further increase in applied load will be required for 
additional crack growth. In the second load history, stable 
crack extension was modelled (in a continuous manner) by 
simultaneously increasing the applied load during the nodal 
release procedure. This was accomplished by simulating fif­
teen one-element crack growth steps under T — 1.5, following 
the stationary loading process. The maximum extent of the 
plastic zone was over 100 times the smallest element length, L. 
Only the material with n = 9 was considered in this 
investigation. 

In the following section, detailed results will be presented 
initially for n = 5 and 9 corresponding to the first load 
history. At the end of the section, comparison between the 
results for the two load histories will be made for the material 
with n = 9. 

3 Results and Discussion 

Active Plastic Zones. The active plastic zone surrounding 
the propagating crack tip after the twentieth crack growth step 
is shown in Fig. 1 for n = 5 and 9, in moving coordinates that 
have been made dimensionless by the self-similar parameter 
(^Tj/tTo)2. The plastic zone for the stable plane stress crack 
growth in an elastic-perfectly plastic material is also shown for 
comparison.' The current crack tip is at the origin of the coor­
dinate system, and a point in the figure represents an actively 
yielding integration station within an element. 

A large elastic unloading region can be seen following the 
active plastic zone. No secondary (plastic) reloading along the 
crack flank has been observed for any level of hardening from 
the present numerical solution. The asymptotic angular extent 
of the active plastic zone, dp, decreases with decreasing 
hardening (increasing ri). The values of 8p are approximately 
65 deg, 55 deg, and 45 deg for 77 = 5,9, and 00, respectively. 
The maximum radial extent of the active plastic zone, Rp, 
which occurs directly ahead of the crack tip, increases with 
decreasing hardening. The values of Rp are about 
0 .22^/ t r 0 ) 2 , 0.24(#,/<x0)

2, and 0 .28( iVo) 2 for n = 5, 9, and 
00, respectively. 

Comparison of Fig. 1 with the plastic zone surrounding the 
stationary crack (Narasimhan and Rosakis, 1986) show that 
the active plastic zone becomes more acute (sharper) with the 
onset of crack growth. The results for the stationary problem 
show rounded plastic zones for the hardening cases, with 
yielding spreading beyond 90 deg near the crack tip. Strong 
changes in the near-tip plastic zone shape occurred during the 
first few crack growth steps, and then the overall features were 
unaltered with subsequent crack advance. The maximum 
radial extent of the plastic zone, Rp, given above for the pro­
pagation crack, is about the same as in the stationary problem 
for all levels of hardening. 

A kink in the trailing boundary of the active plastic zone 
(Fig. 1) appears to develop for materials with low hardening 
and it becomes pronounced for the perfectly plastic case. The 
reason for this development could be related to the change in 

Throughout this paper, results given as « 
perfectly plastic crack growth analysis of Part I. 

t» will correspond to the 
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Fig. 2 Radial distribution of plastic strain ahead of the propagating 
crack tip for various levels of crack growth under fixed applied load for a 
material with n = 9 
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Fig. 3 Radial distribution of plastic strain ahead of the propagating 
crack tip at the end of the twentieth crack growth step at fixed applied 
load for n = 5 and 9 

nature of the governing equations (from elliptic to hyper­
bolic), in the limit as the perfectly plastic case is approached. 
Such a behavior can also be observed from the plastic zone 
shapes given by Dean and Hutchinson (1980) for crack growth 
under antiplane shear in a linear hardening material. The 
similarity between the present plane stress plastic zone shapes 
and their antiplane shear results stems from the presence of an 
intense deformation zone ahead of the crack tip in both cases. 

The active plastic zones of Fig. 1 and the corresponding 
results obtained by Dean (1983) for steady-state crack growth 
under plane stress in a linear hardening material have essen­
tially the same features. However, one difference seems to be 
the absence of the kink in the active plastic zone for the 
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Fig. 4 Radial distribution of opening stress ahead of the moving tip 

perfectly plastic limit in Dean's solution. Nevertheless, the 
present analysis is more detailed, because it has a larger ratio 
of plastic zone to smallest element size as compared with that 
of Dean's computation. Also, unlike his work, the initial 
phase of crack growth was modelled in the present 
investigation. 

Radial Distribution of Plastic Strains. The radial distribu­
tion of the normalized plastic strain, ê 2/eo> with respect to 
normalized distance, /•/(A Î/<r0)

2> ahead of the propagating 
crack tip is shown in Fig. 2 for a material with n - 9. Results 
are presented for various levels of crack growth at fixed ap­
plied load, along with the plastic strain distribution ahead of a 
monotonically loaded stationary crack tip, which was obtain­
ed by Narasimhan and Rosakis (1986). As can be seen from 
this figure, the plastic strain ahead of the moving crack tip 
converges rapidly during the first few crack growth steps to an 
invariant distribution. For example, at a distance of r = 0.013 
(A^/O-Q)2 ahead of the moving tip, the plastic strain dropped by 
30 percent during the first five crack growth steps and by 8 
percent, 3 percent, and 1.5 percent during the sixth to tenth 
steps, eleventh to fifteenth steps, and sixteenth to twentieth 
steps, respectively. 

Such rapid convergence was typical of the other hardening 
case (« = 5) as well as the perfectly plastic material. The 
weaker singularity in the plastic strains near the tip during 
crack growth, as compared with the stationary problem in Fig. 
2, is due to the fact that the crack propagates into material 
that has already deformed plastically (Rice, 1975). The radial 
distribution of the plastic strains ahead of the tip at the end of 
the twentieth release step is shown in Fig. 3 for the two levels 
of hardening, n = 5 and 9. 

Radial Distribution of Stresses. The radial distribution of 
the normalized opening stress, o12/ja, ahead of the moving 
crack tip is shown in Fig. 4 for n = 5 and 9, along with the 
perfect plasticity solution. As can be seen from this figure, the 
stress components become more strongly singular with in­
creasing hardening. The perfect plasticity solution for a22 
tends to a bounded value of 1.999T0, as the crack tip is ap­
proached along the 0 = 0 ray, and is in excellent agreement 
with the preliminary asymptotic result of Rice (1982). This 
asymptotic limit was the same as that obtained by the 
numerical solution near the stationary crack tip. 
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Fig. 5 Comparison of radial stress distribution ahead of the moving tip 
as given by the K\ field (solid line) with the finite element solution for (a) 
n = 5 and (b) n = 9 

The stress variation for the hardening materials in Fig. 4 
also differs only slightly from the stationary crack distribu­
tion, for moderate to large distances from the tip. For exam­
ple, at a distance of r = 0.018 (Kl/a0)

2 ahead of the tip, the 
ratio of the opening stress for the propagating crack to that 
for the stationary problem is 3.04/3.13 and 2.58/2.66 for n = 
5 and 9, respectively. Also, as pointed out by Narasimhan and 
Rosakis (1986), the stress distribution (Fig. 4) appears to be 
relatively insensitive to the hardening level for distances from 
the tip exceeding about 0.15 (A^/oo)2-

In order to study the influence of the crack tip plastic zone 
on the stress field in the surrounding elastic region, the radial 
stress distribution ahead of the moving crack tip is shown on 
an expanded scale for n = 5 and 9 in Fig. 5. The singular 
elastic solution (KY field) is also indicated by the solid line in 
the figure, for comparison. The distribution of stresses outside 
the plastic zone is almost identical to the corresponding result 
obtained for the stationary problem. The o22 stress component 
obtained from the numerical solution differs strongly (by 
more than 30 percent) from that given by the KY field at the 
elastic-plastic boundary (r = Rp). But a rapid transition in the 
stress distribution takes place immediately outside the plastic 
zone and the stresses agree closely with those of the Kl field 
for/- >l.5Rp. 

Near-Tip Angular Distribution of Stresses. The near-tip 
angular distribution of the normalized polar stress com­
ponents is shown in Fig. 6 for n = 5 and 9 along with the 
perfect plasticity solution. The centroidal values of stresses in 
the elements lying on a rectangular contour surrounding the 
moving crack tip, with an average radius of 0.018 {K^OQJ1 

(which is within 0.08 Rp), have been used to make this plot. 
The angular variation along the above contour of the Von 
Mises equivalent stress, aeqv = (3/2SjjSij)l/2, which has been 
made dimensionless by a0, is also shown in the figure. 

The assertion made earlier, that no secondary (plastic) 
reloading was observed (as 6 — 180 deg) for any level of 
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Fig. 6 Near-tip angular distribution of the normalized polar stress com­
ponents and the Von Mises equivalent stress at a distance of 0.018 
(K|/<r0)

2 from the moving tip 
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Fig. 7 Numerically obtained crack opening profiles for quasi-static 
crack growth under fixed applied load for n = 5 and 9. The dashed line is 
th linear elastic asymptotic solution and the solid line is the asymptotic 
crack displacement for steady-state crack growth in a perfectly plastic 
solid, as predicted in Part I. 

hardening, is confirmed from this figure. Also, elastic 
unloading occurs for angles 6 greater than about 65 deg, 55 
deg, and 45 deg for n = 5, 9, and oo, respectively, although it 
is not obvious from this figure for the hardening cases. The 
near-tip angular stress variation for the hardening materials 
appears to be qualitatively similar to the perfectly plastic case. 
As noted in Part I, the angular stress variation within the ac­
tive plastic zone for the perfectly plastic case is in very good 
agreement with the distribution in a centered fan, as predicted 
by Rice (1982). 

Crack Opening Profiles. The normalized crack opening 
displacement, 5/(J/o0), versus normalized distance, 
x,/(ATj/(70)

2, along the crack flank is shown in Fig. 7 for the 
two hardening cases, n = 5 and 9, when the crack grows under 
fixed applied load. This profile was obtained after twenty 
crack growth steps and was self-similar in normalized form, in 
the sense that it was almost identical for different levels of 
crack growth. The crack opening profile for a linear elastic 
material is also shown by the dashed line in the figure. 

The steady-state asymptotic opening profile for a crack 
growing in a perfectly plastic material, as predicted in Part I, 
is indicated by a solid line in the figure. This is given by, 

(//*„) 
--foln (— 

, ) • 
(3.1) 

where 

v = r/(K1/ao)
2 

In the above equation e is the base of the natural logarithm. 
The parameters (3 and s which occur in equation (3.1) were 
estimated in Part I as 1.70 and 0.60, respectively, from a best-
fit to the near-tip crack displacement increment, obtained 
from the numerical solution for the nonhardening case. 

It can be noticed from Fig. 7 that the crack profiles vary 
considerably with the hardening level. This was also observed 
by Dean (1983) from his steady-state solution for plane stress 
crack growth in linear hardening solids. This also appears to 
be true for the crack profiles obtained under antiplane shear 
•by Dean and Hutchinson (1980). However, the crack profiles 
under Mode I plane strain show comparatively less variation 

with the hardening level, at least near the crack tip (e.g., Dean 
and Hutchinson, 1980). Also, as opposed to the blunted 
shapes obtained for the stationary problem, the crack opening 
profiles during growth (Fig. 7) are sharp. This is directly 
traceable to the permanence of plastic deformation (Rice, 
1975). 

4 Ductile Crack Growth Criterion 

Perfect Plasticity. Rice and Sorensen (1978) and Rice et al. 
(1980) proposed that a critical opening displacement, 8 = 5C, 
should be maintained at a small microstructural distance, rc, 
behind the crack tip for continued crack growth. The near-tip 
crack displacement during continuous stable crack extension 
(see Section 3, Part I) can be written as 

•-'(-2-WT-)- -»• 
where 

p=Re^l + r«/(3) 

(4.1) 

(4.2) 

In the above equation, R = sEJ/al for small-scale yielding 
and T is the tearing modulus. The parameters a, /3, and s, 
which occur in equation (4.2), were estimated in Part I as 0.82, 
1.70, and 0.60 respectively. The crack growth criterion stated 
above requires that the parameter p, which uniquely 
characterizes the near-tip crack profile, be constant for con­
tinued crack extension. 

Thus, on estimating p from Jc and T0, which are the values 
of the far-field J and the tearing modulus T at the onset of 
crack growth, it is possible to obtain the following differential 
equation for / a s function of crack length a (Rice et al., 1980), 

T= 
E dJ{a) 

da °z 
(4.3) 

By using J = Jc and a 
equation can be integrated to give 

uT0 

a \JC-

a0 as initial conditions the above 

& 

(EJc/a$) 0 
AoTo/0) [*•[-?} (3 

-H-B-mi (4.4) 

where £•,•{•) is the exponential integral function. It is in­
teresting to note that the mathematical structure of equations 
(4.3) to (4.4) are similar to the ones deduced by Wnuk (1974) 
by means of his "final stretch" crack growth criterion, based 
on a plane-stress Dugdale, line plastic zone model. 

A family of plane stress resistance curves generated from 
equation (4.4) corresponding to several values of T0 with a 
and j3 taken as 0.82 and 1.70, respectively, is shown in Fig. 8. 
The abscissa of the figure is the extent of crack growth, made 
dimensionless by the quantity 0.3EJC/OQ, which is approx­
imately equal to the maximum plastic zone extent at initiation. 
The flat portion of the curves corresponds to steady state 
crack growth when no further increase in externally applied / 
is required to propagate the crack. Setting dJ/da = 0 in (4.3) 
gives J corresponding to steady-state as 

/ s s = / ce«V0. (4.5) 

Comparison of Fig. 8 with the corresponding plot for plane 
strain given by Rice et al. (1980) show that the amount of 
stable crack extension in plane stress if far more extensive than 
in plane strain. This is because the ratio a/)3 in plane stress as 
computed in the present investigation, is 0.82/1.70, which is 
about 4.4 times larger than the corresponding ratio of 
0.6/5.46 in plane strain (Rice, 1982; Sham, 1983). Thus, for 
T0 = 5, the ratio Jss/Jc calculated from (4.5) is 11.2 and 1.73 
for plane stress and plane strain, respectively. 
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Fig. 8 Predicted normalized plane stress J resistance curves. The 
abscissa is the amount of crack growth normalized by a quantity which 
is approximately equal to the maximum plastic zone extent at initiation. 
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Uo rc) 
Fig. 10 Influence of hardening on Jgg/Jc in Mode I plane stress, as 
predicted by the critical displacement criterion, for continued crack 
growth. The solid line is the perfect plasticity result of Part I. 
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Fig. 9 Variation of Sl(e0r) with normalized distance along the crack 
flank for (a) the stationary problem (Narasimhan and Rosakis, 1986) and 
(b) quasi-static crack growth under fixed applied load 

Hardening Solid. The above crack growth criterion can be 
used for both initiation and continuation at crack growth 
(Dean and Hutchinson, 1980) to examine the potential for 
stable growth from the microstructural viewpoint. To this 

end, the crack proflies shown in Fig. 7 for crack growth under 
fixed applied load were taken as steady-state profiles and were 
used to generate a plot of 5/(e0r) versus r/(Kss/aa)

2. This is 
shown in Fig. 9(b) for the two cases of hardening, n = 5 and 
9. The opening displacement for the stationary crack given by 
Narasimhan and Rosakis (1986) was used similarly to obtain 
the variation of 5/(e0r) versus r/(Kc/<j0)

2 as shown in Fig. 
9(a). 

For a given value of the microscale parameter X,„ = 
|W(eo''c)> the value of rc/(Kss/u0)

2 can be obtained from the 
abscissa of Fig. 9(6) corresponding to steady-state crack 
growth. The value of rc/(Klc/a0)

2 may be obtained similarly 
from Fig. 9(a) for initiation of crack growth. These two quan­
tities can be used to compute the ratio of Jss/Jc = 
(Kss/Kc)

2, corresponding to the chosen value of the 
microscale parameter \m. The variation of / s s / / c versus 
8c/(e0rc), calculated as indicated above for n = 5 and 9, is 
shown in Fig. 10. On comparing Figs. 9(a) and 9(b), it can be 
seen that the influence of hardening on the relationship be­
tween Jss/Jc and bc/(e0rc) arises mainly due to the results in 
Fig. 9(b), corresponding to steady-state crack growth. The ef­
fect of hardening on the variation of 8/(e0r) with respect to 
r/(Kc/oQ)2 at initiation is not so significant, as can be seen 
from Fig. 9(a). 

For comparison purposes, the variation of Jss/Jc with 
respect to 8c/(e0rc) for the elastic-perfectly plastic material, is 
also shown in Fig. 10 by the solid line. It can be shown from 
equations (4.1)-(4.3), along with the fact that 8C = aJc/a0 

for initiation, that this relation is given by, 

Jc s\„ 
,<Xm /0-l) (4.6) 

where Xm = 5c/(e0rc). It can be seen from Fig. 10 that in the 
range fim > 8.0, the ratio Jss/Jc may increase significantly 
with a decrease in hardening. For example, corresponding to a 
value of X,„ = 9.5, the ratio Jss/Jc is 5.8, 8.3, and 14.1 for n 
= 5, 9, and oo, respectively. Thus, the potential for stable 
crack growth may be grossly overestimated by a calculation 
based on the perfect plasticity idealization, when the material 
actually possesses some hardening. Hence, predictions about 
the extent of stable crack growth based on the perfectly plastic 
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Fig. 11 Comparison of the radial distribution of plastic strains ahead 
of the tip for the two crack growth histories that were simulated for n = 
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Fig. 12 Radial stress distribution ahead of the tip for n = 9 for the two 
crack growth histories 

model may be unconservative for a hardening material when 
the microscale parameter exceeds a value of about 8. A 
qualitatively similar conclusion was reached in antiplane shear 
and Mode I plane strain as well, by Dean and Hutchinson 
(1980). 

In the light of the above observation, one is compelled to ex­
amine the effects of kinematic hardening and corner forma­
tion on the yield surface, which may occur during the non-
proportional loading experienced by a material particle near 
the crack tip. It is not clear to what extent these factors will af­
fect the potential for stable crack growth under plane stress 
conditions. Dean and Hutchinson (1980) found that the in­
fluence of corner formation was not as significant as strain 
hardening from their numerical results for antiplane shear 

-0.05 - 0 .04 -0.03 -0.02 

( r V o o ) 2 

Fig. 13 Effect of increase in applied load at T 
crack displacement for n = 9 

1.5 on the near-tip 

crack growth. However, Lam and McMeeking (1984) ob­
served that both corner formation and kinematic hardening 
further reduced the potential for stable crack growth in Mode 
I plane strain. Thus, in this sense, even the results based on a 
smooth yield surface with isotropic hardening may be un­
conservative. It is suggested that such effects should be in­
vestigated in Mode I plane stress. 

5 Comparison of Results for the Two Craek Growth 
Histories 

In order to study the influence of increase in applied load, 
as would be observed in an experiment during the initial phase 
of stable crack extension, a crack growth history at a constant 
value of T = 1.5 was also simulated in this work. Only the 
material with « = 9 was considered in this investigation. 

The active plastic zones obtained for this crack growth 
history compared very closely with that shown in Fig. 1, both 
in shape and size. During the first few crack growth steps, the 
active plastic zone assumed the sharpened shape of Fig. 1, 
which did not change with subsequent crack advance. The 
values of 8p and Rp were about 55 deg and 0.24 (K^OQ)2 as 
reported earlier, based on the first crack growth history (at fix­
ed applied load). 

The plastic strains ahead of the moving crack tip exhibited a 
tendency to converge rapidly to an invariant distribution dur­
ing the first few crack growth steps as in the earlier analysis 
(Fig. 2). The normalized plastic strains ahead of the tip at the 
end of the fifteenth crack growth step under T = 1.5 is shown 
in Fig. 11 and is compared with the result given in Fig. 3 for 
crack growth at T = 0. As expected, the plastic strains for T 
= 1.5 are slightly higher due to the influence of increase in ap­
plied load with crack growth. 

The radial distribution of stresses ahead of the propagating 
crack tip for the two histories is shown in Fig. 12 in the non-
dimensional form, oap/T0 versus r/(Ki/a0)

2. The effect of the 
increase in applied load on the stress field seems to be less 
significant than that on the deformation field. Also, the near-
tip angular stress distribution for the two histories were almost 
identical. Finally, the nondimensional crack opening displace­
ment, 6/(7/(j0), as a function of position on the crack flank, 
x,/(rM/(70)2, is shown in Fig. 13 for T = 0 and 1.5. Due to the 
increase in applied load, the crack opening displacement for T 
= 1.5 is higher than that for T = 0. 
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Transient Thermoelastic Fields in 
a Transversely Isotropic Infinite 
Solid With a Penny-Shaped Crack 
The present paper deals with a transient thermoelastic problem for an axisymmetric 
transversely isotropic infinite solid with a penny-shaped crack. A finite difference 
formulation based on the time variable alone is proposed to solve a three-
dimensional transient heat conduction equation in an orthotropic medium. Using 
this formulation, the heat conduction equation reduces to a differential equation 
with respect to the spatial variables. This formulation is applied to attack the tran­
sient thermoelastic problem for an axisymmetric transversely isotropic infinite solid 
containing a penny-shaped crack subjected to heat absorption and heat exchange 
through the crack surface. Thus, the thermal stress field is analyzed by means of the 
transversely isotropic potential function method. 

1 Introduction 

In recent years, a considerable effort has been devoted to 
calculations of thermal stresses associated with various types 
of cracks. Most of these calculations, however, deal with 
isotropic media. Thermoelastic crack problems in anisotropic 
media, on the other hand, have been treated only in a limited 
number of papers. The plane-thermoelastic problems in or­
thotropic media with a crack have been considered by Atkin­
son and Clements (1977), Ghosh (1977), Clements and 
Tauchert (1979), Sumi (1981, 1982), and Clements (1983). 
Maiti and Misra (1976), Murata and Atsumi (1977), and Tsai 
(1983a, 1983b) have analyzed thermal stresses in a transversely 
isotropic medium containing a penny-shaped crack. But all of 
these are steady thermoelastic problems. The transient ther­
moelastic problems in anisotropic media with a crack have not 
been considered so far. Even if the analytical solution in the 
Laplace transform domain may be obtained, the inverse 
Laplace transform must be carried out numerically because of 
difficulty in evaluating the analytical inverse Laplace 
transform. Such a procedure may require intricate numerical 
calculations. 

In this paper, a finite difference method with respect to the 
time variable only is introduced to analyze the transient ther­
moelastic problem for an axisymmetric transversely isotropic 
medium containing a penny-shaped crack. In the first stage of 
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the analysis, we shall apply this finite difference method to a 
mixed boundary value problem for three-dimensional tran­
sient heat conduction in an orthotropic solid. Next, we shall 
discuss the problem of transient thermal stress for an axisym­
metric transversely isotropic infinite solid containing a penny-
shaped crack subjected to heat absorption and heat exchange 
through the crack surface. In this method, the temperature 
distribution can be determined by solving a dual-integral equa­
tion. A subsequently thermal stress field is analyzed by means 
of the transversely isotropic potential function method 
(Takeuti and Noda, 1978). 

Numerical examples of the temperature, axial displacement, 
and the stress intensity factor are illustrated for a transversely 
isotropic graphite and are compared with those derived under 
isotropic conditions. The effects of anisotropies of the 
transversely isotropic material constants on the stress intensity 
factor are shown in figures. The numerical results due to this 
procedure, in the case of constant heat flux through the crack 
surface, closely agree with the exact solutions. 

2 General Discussion on Temperature Field in an Or­
thotropic Solid 

Consider a heat conduction problem in an orthotropic body 
with heat generation. The governing equation for the 
temperature Tat time t and on the position P(x , , x2,x-i) is 

T„/Ki-W(P,t)/\ (1) A,r= 

where - + - dx\ bx\ Kl=*l/CpY 

thermal diffusivity, W(P, t) is the heat generation per unit 
volume and unit time, 7 is the density, cp is the specific heat, 
and X,. is the thermal conductivity in the xt direction. Partial 
differentiation is indicated with a comma followed by the 
variables. 
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The initial and boundary conditions are the body is initially at the same uniform temperature (T= 0) 
T=ty(P) at t = 0 (2) anc* t n a t the crack is to be opened by the agency of heat 

absorption. 
a _ The axisymmetric transient heat conduction equation in 
- T,„ + q(P,t)/\„ =h„ I T—Q(P,t) J transverse isotropy without heat generation can be expressed 

on the boundary surface (3) ^ 

where ¥(P) is the initial temperature, Q(P, t) is the A27+A T,ZZ = T,,/K (11) 
temperature of the surrounding medium, q(P, f) is the heat where 
generation on the boundary surface, hn=a„/\„ is the coeffi- A2 = d2/dr2+r-ld/dr, K = \/c y, \z = \ / \ 
cient of relative surface heat transfer (i.e., ratio of convective ' r p z r 

coefficient to conductivity), X„ is the thermal conductivity, T n e i n i t i a l a n d boundary conditions can be expressed by 
and n is the normal direction on the boundary surface. T=0 at t = 0 (12) 

Usually, it is not easy to obtain the analytical expression for _,UT I n ft \ 11\/\ nwv \ - n nr» 
equation (1) under the initial and boundary conditions given l^~^nl ' <20J(ng(t)/Azisti(a r) o n z - u (U) 
by equations (2) and (3). In what follows, we shall introduce a 
finite difference formulation in terms of a single independent w h e r e H ^ i s Heaviside's unit step function, while - Q0 is the 
variable, namely, the time variable. Equation (1) along with h e a t absorption rate which is assumed to be constant, 
equation (2) reduces to Equations (11)—(13) reduce to the following equations by 

use of the finite difference formulation with respect to the 
AlTj=(l-8lj)(Tj-Tj„l)/K1Atj time variable: 

+ &iJiTJ-1HP))/Kitoj-W(P,tj)/hl (4) AzTj + VTj^lTj-d-SjOTj^l/KAtj (14) 
where 5y is Kronecker's delta, while 7} is the temperature at 
time tj with 

> Tj,z-hTj = Q0f(r)g(t)/\, f o r 0 < r « n 
tj= IJ Atk, and Atj = tj-tj_l. ^onz = 0 (15) 

*=i Tjn = 0, for a<r J 

Let us consider the case in which all time differences Atj (j = The general solution of equation (14) may be expressed by 
1, 2, . . ) have different values. (Note that the solution of 
equation (4) depends on the values of the time differences Ar,.) T = Y* w T CI 61 

The general solution of equation (4) may be expressed by 

j 

Tj=Y,wji<T
kc + Tjp (5) 

where 

JP 
k=\ 

w jk 

J 

= 8;* + (l-fy> E[ Mk/(Atk-Atm) (6) 

in 

w 

which wjk 

Tkc -

tere 

isgi 

Jo 

k=\ 

ven by equation (6), 

AkpJ0(pr)exp(-sk 

sk=^Jp2 + (KAtk) 

and Tkc 

z/\)dp 

~ i 

is 

(17) 

m = k+ 1 
Substitution of equation (16) into equations (15) yields to a 

and Tjc and TJp are complemental and particular solutions of dual-integral equation: 
equation (4), respectively. These solutions are governed by 

&\Tjc-Tjc/KxAtj = 0 (7) f pAj(Sj + \h)J0{pr)dp=-\Djf(r), f o r 0 ^ r < « 
*iTJl)-Tjp/KlAtj=-&lj*(P)/KlAtj 

-{\-blj)Tu_l)p/KlAtj~W(Pjj)/\, (8) 

The boundary condition (3) reduces to J 0 PsjAjJo (pr)dp = 0, for a < r 

Tjc,n + hnTJC=Dj(P) - ( i g ) 

on the boundary surface (9) 
where 

where 

Dj(P) = ~( TJp,„ + KTjp)+ hnQ{P,tj) +q(P,tj)/\n D. = Qog{tj)/Xz - (1 - §1.) | j WjkDk 

- d - ^ i ^ W j A ^ ) (10) 
This dual-integral equation reduces to an infinite system of 

k=l simultaneous algebraic equations for the unknown coeffi-
Thus, we can obtain the temperature 7} at time tj by solving cients AJn: 

the governing equations (7) and (8) under the boundary condi- „ 
t i o n ( 9 ) ' D Ajn \" {\ + \h/Sj)ZnpJl{pa/2)dp= -\Djf„„ 

3 Thermal Stresses in a Transversely Isotropic Body (m = 0 , 1 , 2 , . . . ) (19) 
With a Penny-Shaped Crack where 

3.1 Temperature Field. Let us consider a heat conduc- A = Y* A Z /DS 
tion problem for an axisymmetric transversely isotropic in- ' ^0

 j" "p ' 
finite body containing a penny-shaped crack with radius a, us­
ing the cylindrical coordinate system (r, z). It is assumed that Znp = J2n+3/2ipa)/yp, 
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2 

f(r)=f0 + 2j2fmcos(m6), „ n = £ {(c„-c12)0,,n 
/ = i 

fm = j o V { a V 2 ( l - c o s 0)/2}cos(m8)d6/w - (ci2v.,-cl3k,)</>,-,« j 

+ cnQ,„ + c12fi,/r + c13x,a - ft y 
Then, the temperature T, is given by 

2 

TJ = E ^ E >**- C ^ 1Z„p/0(pr)exP(-^/X)* (20) "" = "" £ ' ^ " ^ ^ 
i = l n = 0 

+ (c11 /u ;-c13A:,)(/> /^ 
In a similar fashion, the steady state t empera ture Tm may be 

expressed as + cnQ,rr + cuQ,r/r + cn\,zz — fiiT 

roo= U ^o=n] p-lZnpJ0(pr)zxp(-pz/\)dp (21) a „ = - £ (Ci3M,-c33A:,.)<A,.,ra 

n = o ,= 1 

where the coefficients A„„ are the solutions of infinite system + c n^2^ + ciiX,zz — fi^T 
of simultaneous algebraic equations: 

A - r - , "« = C44fE(1 + * ( ) * ' + 0 + x].« 
2 J^„„ {\+Hi/p)Z„JHjja/2)dp l " -> 
n = 0 J 0 

= - ^ < 2 o g ( 0 0 ) / m / ^ z > (m = 0 , 1 , 2, . . . ) (22) N o w , we get admissible solut ions for fl, x , <t>\ and 0 2 as 
follows: 

(27) 

^ ™ _ poo 

3.2 Thermal Stresses. Let us consider a three- P / = LJ wrt 2 ^ ^*« J 0 P~2sk i F k z „ , 
dimensional t ransient thermal stress problem for an axisym- _1 "=0 

metric transversely isotropic infinite solid containing a penny- x j ( „ r ) e x p (_ s z/\)dn 
shaped crack. The stress-strain relat ions are k 

^ = c^rr + cl2eM + cnezz-plT 1 Xj= £ WjktAS p~^GkZn 

°09 = c 1 2 e r r + c l l e 0 0 + cl3ezz ~Pi •* 

ff« - C 1 3 € r r + c 1 3 e 6 9 + C 33 e zz — 0 3 ^ 

*=1 «=0 

( 2 3 ) x / „ (p/-)exp( - skz/X)dp 

y (28) 

- /-J: - H H -</, - / 1100 

<Ay= j Q p-2/Jy/0(pr)exp(-pz/V^)c(p, 0=1,2) (29) 
where c,-,- and 0,- are material constants of transverse isotropy. 

Now, we shall introduce the potential functions Q, x> 4>i and 
02 defined by where Fk, Gk, H^, and H2J are unknown coefficients. 

_ , , , . 0 •>. Substi tuting equat ions (28) into equat ions (25), Fk and Gk 

ur-(<i>i+<t>2),r + u,r I ( 2 4 ) are determined as follows: 

«, = (*,*,+M2).,+x„ J JFt={01(c334-c44p2x2)-03(c13 + C 4 4 ) 4 ] - ^ 
2 — ^ ( 3 0 ) 

As we substitute equations (24) into the corresponding Gk~ Wl(c" +C44)P2X2-03(cuP2X2-c44^)) -FG 
displacement equations, we find that the potential functions 
must satisfy the following equations (Takeuti and Noda, where 
1 9 7 8 ) : FG =pW/ ((c,3 + C44)V4A2 

c11A20 + c440,„+ (c13+c44)x>2Z=01r^ ^ -(,cnpW-c44sl)(c33sl-c44pW)} 

(c13 + c44)A2fi + c44A2x + c33x,« = 03 ? \ 
The substitution of equations (28) and (29) into equations (24) 

A2<fo + j M w = 0i 0=1.2) (26) and (27) yields the displacement and thermal stress com­
ponents as 

where 2 
cuc44/i

2 + (2c13C44 + c?3-cuC33)/t + c33c44=0 "</ = - ] 0 ^ _ 1 'o(PO|_E#0*/exp(- /«A/^) /V^ 

A:, and k2 are j 
^^(Cn/ t i -c^ /Ccu+c^) , (/=1,2) + TiwjkH,Aknp-lGkZnpsnp(-skz/\)/\[dp (31) 

t = I n = 0 J 

Substituting equations (24) into equations (23), the thermal . „ 2 
stress components can be represented by the potential func- <JZZJ= - J0(pr)\ J^Hy(cn -c33/t,//x,)exp(-pz/V/T,) 
tionsas J o s-=i 
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{JrzJ~L44 

+ E wJk E Akn (FkCn - Gkc33s
2
k/p

2\2+(33)Znp 

/ t= l n = 0 

x exp( - skz/\)/sk! dp 

2 

J 0 ^ ^ r ) ( E ^ + ̂ )exP( -Pz/^i)/^i 

(32) 

Qkn(Sk,P) = Wk[cn +Sk[k2^i (C13 - C 3 3 ^ 1 / ^ 1 ) 

- fc,V^"2 (c13 - c33k2/ix2)) /pX(fci - ^2)] - G j t[c334/p2X2 

+ sk{^i(c13-ci3kl/lil)-\f^2(cn-c}3k2/ix2)} 

/pMki-k2)] + p3l\Znp/sk (40) 

The solution of this dual-integral equation is given by (Sned­
don, 1966) 

Pj= 2 \" sin(pij) (" 5{ri2 -82 } ~1/2 

+ T,WjkT,Akn(Fk + Gk)Zni 
/ t= l n = 0 

x exp( - skz/\) /p\ I dp (33) 

j " Uj,:J0(md!id8dr,/irp (41) 

The boundary conditions of the displacement and thermal 
stresses on the crack surface may be given by 

The stress intensity factor K-Mode I is defined by 

tfv = lim ^2ir(r-a)[azzj]z=0 

0^ = 0, for 0^-r<a 

on z = 0 

on z = 0 
uzj = 0, for a<r 

The substitution of equation (33) into equation (34) yields 

(34) 

(35) 

/^-V^ju+W/Afo 

= 2f p'lsm(pa)UJpdp/^?ra (42) 

Replacing UJp in equation (39) by the following equation, 
00 

E wJk E Akn(Fk + Gk)Z„p/p\\/(\+k2) (36) 
A=l « = 0 

Substituting equations (31) and (32) into equations (35), the 
following dual-integral equation is obtained: 

i oo /> 00 

0 p2PjJ0(pr)dp=\io UJpJ0(pr)dp, for0^r<a 

I oo 

o PPjJ0(pr)dp = 0, f or a < r 

(43) 

we can obtain the stress intensity factor Kloa for the steady 
case. 

3.3 Exact Solution for h = 0. If the relative heat transfer 
coefficient h is equal to zero, the exact solution of temperature 
can be obtained by use of the Laplace and Hankel transforms. 
The stress intensity factor may be expressed by means of the 
same transversely isotropic potential function method as 
follows: 

(37) 
T= \ J0(8r) \ f6„cos(o>z/\)do)d6 (44) 

where 

Pj={(cn-c33kl/ixx)4^l(\+k2) 

- (CB - c33k2/ix2)V^2(l + kl))[{k1- k2)Hij/^i 

J m - "1 

- E wjk E Akn(pkk2-Gk)Znp/p\ 
1— 1 n -* 

Table 2 Comparison of (u£)p = f _ 0 by this method with exact one for B,< 
= 0 and Case I of heat absorption. 

( 2_j = 2 ^ , E.S.: Exact Solution 1 
"n=0 n = 0 

k=\ n = 0 

/p2(\ + k2)(k{-k2) 
j 00 

UJP=-Tl WJk E AknQk„ (Sk,p) 

(38) 

(39) 
k=l « = 0 

5 

10 

15 

E . S . 

0 . 0 1 

0 . 0 1 8 

0 . 0 1 8 

0 . 0 1 8 

0 . 0 1 8 

0 . 1 

0 . 1 3 7 

0 . 1 3 4 

0 . 1 3 4 

0 . 1 3 7 

1 

0 . 4 2 3 

0 . 4 1 9 

0 . 4 1 9 

0 . 4 2 5 

10 

0 . 5 9 8 

0 . 5 9 0 

0 . 5 9 1 

0 . 5 9 5 

100 

0 . 6 5 9 

0 . 6 5 1 

0 . 6 5 1 

0 . 6 5 3 

-

0 . 6 8 9 

0 . 6 8 1 

0 . 6 8 1 

0 . 6 8 1 

and 

Table 1 Comparison of ( T )p _ f _ 0 by this method with exact one for Bf 

= 0 and Case I of heat absorption. 
00 N 

Table 3 Comparison of k] by this method with exact one for B, = 0 
and Case I of heat absorption. 

( E = E • E S " Exact Solution) 
n = 

5 

10 

15 

E . S . 

= 0 n = 0 

0 . 0 1 

- 0 . 1 0 7 

- 0 . 1 2 1 

- 0 . 1 1 8 

- 0 . 1 2 0 

0 . 1 

- 0 . 3 6 7 

- 0 . 3 7 1 

- 0 . 3 7 1 

- 0 . 3 7 7 

1 

- 0 . 7 7 0 

- 0 . 7 7 0 

- 0 . 7 7 0 

- 0 . 7 7 9 

10 

- 0 . 9 7 3 

- 0 . 9 7 1 

- 0 . 9 7 1 

- 0 . 9 7 4 

100 

- 1 . 0 4 2 

- 1 . 0 3 9 

- 1 . 0 3 9 

- 1 . 0 3 9 • 

-

- 1 . 0 7 3 

- 1 . 0 7 0 

- 1 . 0 7 0 

- 1 . 0 6 9 

. 0 0 jy 

( E - E 
x n=0 n=0 

, E.S.: Exact Solution 

5 • 

10 

15 

E . S . 

0 . 0 1 

0 . 0 2 1 

0 . 0 2 1 

0 . 0 2 1 

0 . 0 2 1 

0 . 1 

0 . 1 0 1 

0 . 1 0 0 

0 . 1 0 0 

0 . 1 0 0 

1 

0 . 3 0 8 

0 . 3 0 5 

0 . 3 0 5 

0 . 3 0 5 

10 

0 . 4 6 0 

0 . 4 5 5 

0 . 4 5 5 

0 . 4 5 5 

100 

0 . 5 1 2 

0 . 5 0 8 

0 . 5 0 8 

0 . 5 0 8 

-

0 . 5 4 1 

0 . 5 3 5 

0 . 5 3 5 

0 . 5 3 5 
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Fig. 1 Comparisons of ( 7")„ = f=o for graphite with that for isotropic 
conditions 
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Fig. 4 Effects of X2 on ftj for 8, = 0.1 for Case I of heat absorption 
(M-l) 
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oo 

Fig. 2 Comparisons of (uf)() = f = 0 for graphite with that for isotropic 
conditions 0 -w- 50 
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// 
// 
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B, = 0.l ^ / ^ ^ 
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^ ^ • ^ C a s e II ^ \ S . 

^-^T%r-
X~~ 

y Case I 
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E 

Fig. 5 Effects of £ on K, for B; = 0.1 for Case I of heat absorption (M-ll) 

Jo 

Xexp(-K(<52 + co2)T)c?T/ir 

^ „ = (/3i(c13+C<(4)5
2X2 

-/33(c1152X2 + C44co2)).^5' 

(46) 

0 I0"a I0"1 10° I01 

t' 
1 0 ' CD and 

Fig. 3 Comparisons of K( for graphite with that for isotropic 
conditions 

* , = - 2 J " 8-»sin(&i){J (cn5
2RSal 

+ c33co2S6w/X2 + ft fSw )do>db/-JVa (45) 

where 

/=xjo//(/-)70(5/-)c?/-A, 

•/?S= X2f fo/{(C)152X2 + c44co2)(c33o>2 + c446
2X2) 

-(Ci3+c44)252o)
2X2) 

4 Numerical Results and Discussion 

For convenience of numerical calculations, the following 
dimensionless quantities are introduced: 
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t'= 1 ^SSry^X 
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Fig. 8 Effects of v,e for Kt for B, = 0.1 for Case I of heat absorption 
Fig. 6 Effects of G on K[ for B, = 0.1 for Case I of heat absorption (M- (M-V) 
III) 

( * 

1 

Lvr-̂  

B| = 0.l 

T' = 00 \ / / 

t ' = i o o A /// 
t'= 10 \ \ \ / / / 
t'= i \ \ \ \ / / 
t' = 0.l A W / 

Table 4 Various materials of transverse isotropy 

0 0.01 0. ' 0 

Fig. 7 Effects of a on Kt for B; = 0.1 for Case I of heat absorption (M-
IV) 

p = r/a, $=z/a, t'=Kt/a2, 

T=\zT/aQ0, u^=uz\/ara
2Q0, 

Kl=K{Kz/arEra
y2Q0, B; = ah, 

E=EZ/Er, G = Grz/En a = cxz/otr 

where Er, Ez, and Grz are moduli of elasticity, ar and az are 
coefficients of linear thermal expansion. 

Numerical calculations were carried out for the transversely 
isotropic infinite solid subjected to the following two types of 
heat absorption through the crack surface. 

Case I Heat absorption rate is constant, namely, 

f{p)g(f)=H(\-p). 
Case II Heat absorption rate depends on time, namely, 

f(p)g(t')=H(l-p)exp(-t'). 
The time variable is expressed by 

/ y = ] 0 a-4ivio i ( ,= 1 , 2 , 3 , . . . ) 

The material constants are taken as 

Xr= 1.172 W/(mK), \ = 1.340 W/(mK), 

£ r = 10.4 GPa, £ z = 11.8GPa, G„ = 4.14 GPa, 

a r = 3 .9x l0~ 6 K"1 , a, = 3 . 5 x l 0 - 6 K"1 , 

"re = "rz=0A1 

M a t e r i a l 

M- ! 

M-n 

M-EI 

M-1V 

M- V 

A* 

0.1-25 

1 

1 

1 

1 

E 

' 
1 - 3 0 ' 

1 

1 

i 

G 

0 . 4 5 0 - 1 

0 . 4 S 0 4 

0 . 0 1 - 0 . 4 5 0 4 

0 . 4 5 0 4 

0 . 4 5 0 4 

a 

0 . 0 1 - 1 0 

v r 9 

0 . 11 

0 . 1 1 

0 . 11 

0 . 11 

0 - 0 . 5 

for a graphite and 

X2=£' = a = l , G = 0.4504, vrt = vn=QA\ 

for isotropic conditions, where v^ and vrz are Poisson's ratios. 
It is necessary to examine the propriety of this finite dif­

ference method and the convergence of the infinite series solu­
tion for the dual-integral equation. The temperature, axial 
displacement, and stress intensity factor of a graphite were 
calculated for various upper limit numbers of the infinite 
series and compared with the exact solutions for B, = 0 and 
Case I of heat absorption. The calculated results are shown in 
Tables 1 to 3. It is clear from these tables that the infinite 
series solutions converge for N= 10, at a reasonable rate. The 
value of KY from the finite difference solution agrees quite 
well with the exact one. However, for T and u^, some 
discrepancy is appreciable between the finite difference solu­
tion and the exact solution. (It should be noticed that 
numerical integrations in the temperature and axial displace­
ment are more formidable than that in the stress intensity 
factor.) 

Figures 1 to 3 compare the results of temperature, axial 
displacement and stress intensity factor of a graphite with 
those derived under isotropic conditions^ for Case I and II. 
These figures show that T, u^, and Kx in a graphite are 
somewhat larger than those derived under isotropic condi­
tions, and that T, iTj:, and KY for 5,-= 1.0 are smaller than 
those for B, = 0.1. The maximum values of temperature, axial 
displacement, and stress intensity factor for Case II appear 
when Fourier's number is between 0.1 and 1.0. 

Figures 4 to 8 illustrate the effects of anisotropics of the 
transversely isotropic material constants on the stress intensity 
factor for Bt = 0.1 and Case I of heat absorption (when only 
one among the material constants such as X2, E, G, a, and v^ 
indicates various anisotropics, while the other material con­
stants are kept equal to those of isotropic conditions as shown 
in Table 4). These figures show that the stress intensity factor 
is strongly influenced by the values of X2, E, and a, and that 
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the effects of G and v^ on the stress intensity factor are small 
in comparison to the effects of X2, E, and a. 

The present numerical calculations were made with double 
precision accuracy by NEC ACOS-1000 in the Computation 
Center at Osaka University. 
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Circumferential Crack at the Fixed 
j A Alabi End of a Cylinder in Flexure 

Mechanical Engineering Department, 
University of Science and Technology, The problem of a circumferential through-crack at the fixed end of a cylinder in 

Port Harcourt, Nigeria flexure is considered herein. An expression for the energy-release rate, in closed 
form, is obtained according to linear fracture mechanics and thin shell theory. The 
expression consists of two terms, one of which is the energy-release due to shear and 
the other is the energy-release due to bending. The former is relatively negligible ex­
cept for very short cylinders. A formula for the flexibility factor is also derived. 

Introduction 

The problem of circumferential through-cracks in pipes and 
cylindrical shells has been investigated by a number of authors 
(Folias, 1967; Erdogan and Ratwani, 1970; Duncan-Fama and 
Sanders, 1972; Nicholson et al., 1983; Sanders, 1982; Alabi, 
1984; Alabi and Sanders, 1985; Barsoum et al., 1979; Tada et 
al., 1980; Smith, 1984). In most of these investigations the 
cylindrical shell has been subjected to simple tension or pure 
bending. However, a cracked pipe or cylinder may be loaded 
by a shear force, and the question of how the varying bending 
moment produced compares with a similar pipe or cylinder 
subjected to constant bending has practical importance. The 
analyses of Tada et al. (1980) and Smith (1984) have shed 
some light on this problem. The present work is concerned 
with the problem of a circumferential through-crack at the fix­
ed end of a long circular cylinder loaded by a shear force. 

The shell under consideration contains a circumferential 
crack at one end which is otherwise held rigid. A shearing 
force is applied at the other end. The investigation is along the 
lines of the analyses carried out in Sanders (1982) and Alabi 
and Sanders (1985). As in Sanders (1982) and Alabi and 
Sanders (1985), the solution is applicable to cylindrical shells 
containing a sufficiently long crack and is valid everywhere ex­
cept close to the crack tips. The difficulty with the solution 
near the crack tips is overcome by the use .of path-independent 
integrals to evaluate the energy-release rate. The results show 
that the energy-release rate is composed of two terms, one of 
which is the contribution due to shearing and the other is due 
to bending. The shear term is insignificant except for very 
short cylinders. Thus for all but very short cylinders, the 
energy-release rate is effectively proportional to the square of 
the cylinder length. This may be contrasted with cylinders sub­
jected to pure bending where, as has been shown (Alabi and 
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Sanders, 1985), the energy-release rate is independent of the 
length of the cylinder provided the latter is sufficiently long. 
This implies that a shearing force can have a much more severe 
effect on a circumferential crack in long cylinders than pure 
bending because of the large flexural stresses produced. 

Equations and Boundary Conditions 
The complex displacements and stress functions in a circular 

cylindrical shell are given by (Sanders, 1983) 

u = e~2<t' — v<f>' xz- ~'e~2®' ~~'<"t>' 
v = e-2$-(2+v)j> xe = ie~2$ + '(.2-v)j> (1) 

w = - $ + »(1 + 2k2)<j> \p = /* + (1 + 2ie2)<f> 

where ( )' = d/dz ( ) and ( ) ' =d/d9 ( ). z and 8 are dimen-
sionless coordinates specified by the condition that axial and 
circumferential distances are, respectively, given by Rz and Rd 
where R is the cylinder radius. The physical displacements and 
stress functions are obtained from the real parts of equations 
(1). The characteristic functions $ and 4> both satisfy 

V4Q + fl-^2(l+2;e2)Q"=0 (2) 

and are related to each other by $" =e24>. The dimensionless 
variables in equations (1) are related to the dimensional quan­
tities u, v, etc., by 

P P 
Eh e2Eh ,^\ 

(.Xz,Xe) = i2PR(xz,Xe) t = PRi< 
Similarly, the dimensionless membrane and bending stress 
measures Na/j and Ma(? are related to the dimensional forms by 

Nae^Nae Maf>=^PMafi (3a) 

Here, P is the magnitude of the shear force applied at the 
"free" end of the cylinder, h is the shell thickness, E is 
Young's modulus, v is Poisson's ratio, and e is a small 
parameter given by 

e2 = (h/R)[12(l-p2)]-'/2 (4) 
In terms of the characteristic function <j>, the membrane and 
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Fig. 1 Cylinder of length L loaded by a shearing force 

bending stress resultants are given by (Sanders, 1983) expres­
sions such as Nz = 4>, Mz = — i<j>" - iv<j>, etc. 

On the stress-free crack, boundary conditions on the stress 
functions are (Alabi and Sanders, 1985) 

Xz=Xe = i' = 4>'=0 on z = 0, \6\<a (5) 

Off the crack where the cylinder is fixed, we have 

u = v=w=w' = 0 on z = 0,ct<6<2ir-a (6) 

equations (1), (5), and (6) lead to the boundary conditions in 
terms of the characteristic functions $ and <l>. On the crack 

(R((l + /eM4>c)=0 

(R{i$c + ie2(2-v)<t>c}=0 

(R{^ + ie2(2-V)4>^=0 (7) 

(R{/$c' + /e2v</>c')=0 

and off the crack 

(R{(i + e2v)<t>c}=0 

<R{$c + e2(2 + p)<f>c}=0 

CR{/</>c'-e
2(2 + <O0c')=O (8) 

( R ( # c ' - e 2 ^ c ' ) = 0 . 

The symbol (R ( ) denotes the real part of the expression in 
brackets. The subscript c means that the expressions are in 
terms of the complete characteristic functions. 

Solution 

The analysis is much simpler if we consider a composite of 
problems (Fig. 1) in which two different types of loading are 
applied. The solution to the first problem in which the cracked 
cylinder is subjected to pure bending is known (Alabi and 
Sanders, 1985). What follows is the solution to the second 
problem in which the cracked cylinder is loaded by a shearing 
force and a bending moment of equal but opposite sign to that 
in the first problem. 

First, we formulate a reduced boundary value problem in 
such a way that the reduced characteristic function 4> and $ 
vanish at infinity. The stresses very far away from the fixed 
end of the cylinder are required to be those corresponding to 
shear and bending. The solution for combined shear and 
bending is given by 

7T</>= -(l+2ie2)zcos0 

•«0sin0 — r(l - ie2v)zcos8. (9) 7r# = —e2z3 cos0 
6 2 

In addition, elementary solutions corresponding to rigid body 
motions (for which stresses vanish) and null effect (for which 
displacements vanish) are allowed to be present at infinity pro­
vided they have the proper symmetry. This list of solutions, 
null effect, axial translation, lateral translation, and a rotation 
are, respectively, 

<£ = ie - 1 a ,*= -e-la(l+2ie2);4> = ibz,$= -bz{l+2it2) 

>̂ = O,# = e-1ccos0;0 = O,* = iizcos6l (10) 

Now put 0C = <t>E + 4>, * c = * £ + $ where <j>E, <bE refer to the list 
of elementary solutions (9) and (10). Accordingly, the bound­
ary conditions (7) and (8) reduce to 

Gl[(l + ie2i>)<t>) =e'laI + evaR 

(R(z'$ + /e2(2-c)</>} = -e'[ar-evaR + e_1c /cos0 

<R[</>' + ie2(2- v)4>'} = b, + e 2 (2- v)bR +—cos0 (11) 

(Jt (/*' + ie2v4> ' ) = - & , - e2(2 - v)bR + c?7cos0 + 
1 1 

0sm0 cos0 
27T It 

to be satisfied on the crack and 

(R((/' + e2c)<£) =e~laR + eva, 

<Jt[$ + e2(2 + v)4>] =e-laR+evci[-e-lcRcos6 

(R{i4>'-e2(2 + p)(l,'}=bR-e2(2+v)br + e2vcos6 (12) 

(R{$'-e2v<t>')=bR-e2(2 + v)bI-dRcosd 

off the crack. The subscripts R and /refer to the real and im­
aginary parts of these constants. 

It is evident that for sufficiently long cracks, the reduced 
characteristic functions do not vary rapidly in the cir­
cumferential directions, i.e., <j> and <j> are the same order, ex­
cept very close to the crack tips. In such a situation, a solution 
that is accurate everywhere except in the immediate 
neighborhood of the crack tips exists. The solution is com­
pounded of semi-membrane solutions governed by 

(Q + Sl)"-ie~2Q"=0 (13) 

and edge-effect solutions governed by 

Q"- /e - 2 f i = 0 (14) 

More precisely, semi-membrane and edge-effect solutions are 
of the form Q(£,0,e) where £ = ez or e~{z, as the case may be 
and the leading term in the asymptotic expansion of </> in 
powers of e2 satisfies (13) or (14). A result involving the semi-
membrane solutions needed later is the following: 

(* + * ) " - / 0 + 2e2(0 + </>) = O(e4). (15) 

Assume a solution in the form 4> + e2<i> where </> is semi-
membrane and </> is edge-effect. * is order e4 too small and 
may be neglected. The boundary conditions (11), (12), equa­
tion (15), and the relations 

4>'=O(e0), ^ ' = 0 ( € - ^ ) 

lead to 

(R{<M =(R{ii«£) 

<R{j>'] = 0 

and 

(R(/<jb] =(R[v4>) 

(R{i4>') =ccos0 

Denote the edge-effect solution by 4> = iVlG{6)e~'/ 

conditions (16) and (17) are satisfied if: 

G is real and (R {iv* G} = (R f hij>(0,d} on 10 I < a 

and 

(R{G)=ccos0and(R{/3 /2G)=(R(^(O,0)) o n a < 0 < 2 7 r - a . 

The edge-effect is thus determined by the boundary values of 
the semi-membrane solution. 

Equation (13) governing semi-membrane solutions requires 
only two boundary conditions on z = 0. Only a first-
approximation solution is sought, and in view of equation 
(15), the first and third of boundary conditions (11) are not in­
dependent of the second and fourth, respectively, and similar­
ly the first and third of boundary conditions (12) are not in­
dependent of the second and fourth, respectively. The prob­
lem has now been reduced to finding a (first-approximation) 
semi-membrane solution $ for which 

on z = 0, 10 l < a 

on z = 0 and a < 0 < 2 7 r - a 

(16) 

(17) 

z. The 
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(R {/*} = -

®.{i<i>'} = -bI + dlcos6 

at z = 0 on the crack, and 

1 

1^ 'sin0 - -cos0 

(18) 

(19) 

"'OR— e"'c^cos5 

= bR—dRcosd 

(20) 

(21) 

(R{*)=e 

(R(* ' j 

at z = 0 off the crack. From the relation $ " = e2</> and equation 
(13) governing semi-membrane solutions follows 

</>=-/(* + * ) " (22) 
from which </> may be obtained once $ is known. 

Any solution to equation (13), even in 0, which vanishes at 
z = °°, must satisfy the conditions 

r * (O,0 ) t f0= r$(O,0)cos0tf0 = O 
Jo Jo 

(23) 

and it can be shown that such solutions are closely approx­
imated by solutions to the substitute equation (Sanders, 1983) 

$ ' : 
S(* + y* ) (24) 

The usefulness of this relation lies in the fact that the bound­
ary values of # ' can be expressed in terms of the boundary 
values of <J> and its second derivative with respect to 0. This 
allows the reduction of the boundary conditions to a system of 
ordinary differential equations. Now put $(0,d) = F(6) and 
use equation (24) to get 

1 
* '(O,0)=-/3 / 2e ('•-H (25) 

Because of equation (25), equations (18)-(21) may be rewritten 
as 

eF, = a i — czcos0 

iine(F+—F)]--
1 

- b, + d,cosd —:—0sin0 + 
2TT 

-COS0 

to be satisfied at z = 0 on the crack and 

eFR =aR—cRcos9 

(R{i3/2e(F+ —F) } = ~bR+ dRcosd 

(26) 

(27) 

(28) 

(29) 

to be satisfied at z = 0 off the crack. 
Equations (26)-(29) are a system of ordinary differential 

equations for the real and imaginary parts of F. The solution, 
even about 0 = 0 and 6 = ir, contains ten undetermined con­
stants (in real terms). These are determined by the conditions 
(23) applied to F, and certain continuity conditions demanded 
by physical considerations. These latter conditions are that the 
real displacements u, v, w, and real stress functions xz, Xe> $ 
must be continuous at the crack tips. In terms of F, these re­
quire that F, F, F be continuous and (23) to be satisfied by F. 
There are thus ten constants to be determined by ten condi­
tions. The constants a and c turn out to be real. The solution is 

eF--

and 

eF= 

r~ V2 6V2 
• 2V2(fe/ + dfiosd) + —0sin0 + cos0 + 

IT IT 

+^4cos—p- on the crack 
V2 

- 2/ (a - c cos0) + 2V2/ (bR + dR cos0) 

off the crack 

(30) 

(31) 

where 

IT A • 

2a — sin2a 

a 1 a 
cosasm-^ —^sinacos—r=-

V2 V2 V2 

. > , — / a a I a \ 
•wLa = 2V2(sina — acosa) + irA I —-COS-T=- —=-SUI-T=-I 

2^/2bR = -a 

r- nA a \- (32) 
4TTO7 = cosa + V27rtf + —^cos-r=-

V2 V2 

V2ir2csina =AY- 2cc2cosa — 3asina + 

+ 5cosasin2a 

2<2dR=c 

%A a r-47ra/coso: = 2asma + 8cosa -I—7=HX>S-T=- - VZTrccosa 
V2 V2 

3 • •> a ! • a , • ^ 

—sin2acos—7= -I p^-sin-Wa + 5cosasma) 
2 V2 2V2 V2 

If required, the solution for $(z,0), and by equation (22) for 
<t>(z,6) can be constructed by Fourier series or by means of an 
integral representation (Sanders, 1980). 

Energy-Release Rate 

The energy-release rate may be obtained by adding the 
energy-release rates in the composite of problems mentioned 
earlier. If the energy-release rate /(with respect to a) is made 
dimensionless according to the relation / = (P2/Eh)I, then for 
the cylinder loaded as shown in Fig. 1, / is given by 

10 x10J 

7.5x10-

5 x10' 

2.5x10J 

e = 0.1 
R/h= 30 

30° 40° 50° 60° 
c< 

Journal of Applied Mechanics 

10° 20° 

Fig. 2 Dimensionless energy-release rate versus crack angle 
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* ! • • 

2 J -a 
cos0-^(o,e)dd 

da 

+ -
1 r a fa? smd~(o,e)de 

J - a d a 
(33) 

The formula (33) is a special case of the path-independent in­
tegrals derived by Nicholson et al. (1983) for the calculation of 
/ i n cracked shallow shells. It can be shown that formula (33) 
is applicable to the complete cylinder as well as to the shallow 
cylinder. For the complete cylinder, formula (33) can be 
shown to give the following formula 

1 d 1 d f 
ir/=—- —— I cosduc (z, d, <x)dd 

2 da J - 1 

d 

da i n 
smdvc(z,d,a)dd 

— TT 

(34) 

In formula (34), uc, vc may be replaced by uE, vE, respective­
ly, because \*_„ u cosddd=\*_1Tv sinddd = 0. Both formulae are 
equivalent but the second is more easily evaluated to give, on 
account of equations (10) and (32) and equations (10) and (32) 
of Alabi and Sanders (1985), 

/=• - s in 2 a(e- 2 A 2 +fV) 

where 

\ 2 = 8 1+-

V2V 

acosecza — cota 

(35) 

2(2coto: + V2cot-^j 

M
2 = _ \ 2 + ( 1 + . 

acosec a — cota 

and 
2 (2cota + v ^ c o t ^ " ] 

e=-R 

(36) 

It should be noted that formula (35) corresponds to the total 
energy release-rate for the configuration of Fig. 1(a) which is a 
superposition of the energy-release rates in Fig. 1(b) and Fig. 
1(c). The second term in formula (35) may be obtained from 
equations (37) and (38) of Alabi and Sanders (1985) with T = 0 
and M=PL. 

Numerical evaluation of formulae (35) and (36) shows that 
the first term in formula (35) is negligible except for moderate 
values of £(£= 0(1)). This result is similar to that for the flexure 
of solid beams in which shear effects are known to be insignifi­
cant except for beams of comparable length and cross-
sectional dimensions. Formula (35) shows that / depends on 
the length of the cylinder or pipe unlike / for a similar cylinder 
or pipe subjected to pure bending. 

Flexibility Factor 

The flexibility factor/is defined as the ratio of the rotation 
of the cracked cylinder (or pipe) at any cross section to that of 
an uncracked cylinder (or pipe) of the same length, / i s always 
greater than unity because the crack gives rise to an additional 
rotation. For a cylinder of length £, f is given by 

/ = 1 + 
6e^(d°R+edR) 

f + 3£-6(2 + v) 
(37) 

4ird°R = 9a - 7cosasina - 2a2 cota + 

2(acoseca - cosa)2 

1 a 
cota —7^cot-7=-

V2 V2 

and 

4y/2Tcdl
B=4wd°R' 

Y (38) 

(acoseca-cosa)2 

1 a 
cota ;=cot—?=• 

V2 V2 

where 

(acoseca - cosa)2 

+ 
1 7T — a 

cota + —r=cot—T=— 
V2 V2 

Formula (37) is the flexibility factor for the cylinder in flexure 
as in Fig. 1(a). Numerical evaluation of formula (37) shows 
that the flexibility factor is, effectively, unity for the long 
cylinders under investigation in this paper. 

Concluding Remarks 

As already noted, the expression for the energy-release rate 
is composed of two terms, one of which is the energy-release 
due to bending and the other is due to shear. The latter is 
negligible for all but very short cylinders, i.e., £=0(1). This 
finding is similar to the known result for flexure of solid 
beams in which shear effects are insignificant except for beams 
whose cross-sectional dimensions are comparable with their 
length. 

For £=0(1), the expressions (35) and (36) for the energy 
release rate would not be very accurate due to end effects. 
More precisely, as has been discussed elsewhere (Sanders, 
1982), semi-membrane solutions decay very slowly in the axial 
direction and in order to avoid end effects, the distance be­
tween the crack and any boundary or load must not be less 
than about IR-iR/h, i.e., f=0(e - 1)- Furthermore, for £=0(1), 
the particular way in which the shear force P is applied at the 
end of the cylinder would (if it is different from that assumed 
in the present analysis) lead to further deviation from the 
results produced here. However, both corrections are not ex­
pected to be too "large" and expressions (35) and (36) for the 
energy release rate should at least serve as a guide in arriving at 
a more accurate result for the energy-release rate in such a 
situation. 

The results for the dimensionless energy-release rate for 
e = 0.1 and £=e~2 are shown in Fig. 2. Since the first term in 
expression (35) is small in comparison with the second for all 
but relatively small £, the results for / for other values of e and 
£ are readily obtained from the ones given here. For angles a 
less than about twenty degrees, a curve from a shallow shell 
analysis (if available) would apply (Sanders, 1982). Because of 
the large flexural stresses produced at the fixed end of long 
cylinders, plastic effects cannot be totally ignored. For such 
long cylinders the so-called small scale yielding condition no 
longer holds and this further limits the validity of the results 
produced herein. 
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Treatment of Body Forces in 2D 
Elastostatio BEM Using Particular 
Integrals 
A new set of direct and indirect boundary element formulations for two-dimensional 
elastostatics have been developed. These new formulations differ from currently 
popular formulations in the treatment of body forces. The method of particular in­
tegrals is used resulting in a formulation which requires neither volume nor surface 
integration to solve the most general body force problem. This formulation is im­
plemented in both direct and indirect boundary element methods using quadratic 
isoparametric elements. The efficiency and accuracy of this formulation for these 
two methods are compared for a range of problems. Finally, a multi-region problem 
with complicated geometry is run in order to show the complete generality of the 
particular integral method. 

Introduction 
In recent years, the boundary element method has emerged 

as a powerful technique for solving elastostatic problems. 
Because only surface discretization is necessary, boundary ele­
ment methods (BEM) can have significant advantages over 
other methods requiring full domain discretization. Such ad­
vantages include savings in data preparation and data reduc­
tion as well as decreased computing time due to the reduced 
dimensionality of the problem. This advantage is partially lost 
if, as in early formulations, volume integration is required to 
solve the generalized body force problem. 

In order to eliminate the volume discretization, Cruse et al. 
(1977) and Rizzo and Shippy (1977) have utilized the field 
equations for the body force potential and the divergence 
theorem to convert the volume integrals involved in the treat­
ment of conservative body forces into an equivalent surface 
integral. Although this obviously eliminates any necessity for 
a volume discretization, additional surface integrations are 
now required. This volume integral conversion method has 
become very popular amongst many BEM workers (Danson, 
1982; Kamiya and Sawaki, 1985; Nardini and Brebbia, 1982) 
in spite of this drawback. 

In this paper the development of a very general approach to 
the treatment of body forces in direct and indirect BEM 
analyses is presented. The method is based on the well-known 
concept of developing the solution of an inhomogeneous dif­
ferential equation by means of a complementary solution and 
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a particular integral. This completely general approach, when 
applied to boundary element formulations, does not require 
any volume or additional surface integration to solve the 
general body force problem. 

The second objective of this paper is to compare two for­
mulations of the BEM, namely the direct boundary element 
method (DBEM) and the indirect boundary element method 
(IBEM). Computer programs based on the DBEM and IBEM 
are developed and tested in order to expose the strengths and 
weaknesses of both formulations. In both numerical im­
plementations, three noded isoparametric elements allowing 
quadratic variation of tractions and displacements are used. 

Lastly, a complicated multi-region problem is considered in 
order to show the complete generality of the particular integral 
method for solving elastostatic body force problems. 

Boundary Element Formulations Using Particular 
Integrals 

Particular Integrals. Although the boundary element solu­
tion of elastostatic problems using the method of particular in­
tegrals has been tentatively discussed by Watson (1979) as well 
as Banerjee and Butterfield (1981), they have never been fully 
developed. Jaswon and Maiti (1968) appear to be the first to 
apply this concept in a boundary element analysis by solving 
some simple plate bending problems. The method of par­
ticular integrals is well known in the solution of in-
homogeneous differential equations. For example, the govern­
ing differential equations for the deformation of a 
homogeneous isotropic body with any system of body forces 
are given by 

(X + *i) 
d2Uj 

+ fi 
d2Uj 

dXjdXj 
+ ^,=0 (1) 

where X and jt. are Lames constants, ip: are the body forces, /, 
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y'=l, 2 for two-dimensional problems, u, is the displacement 
vector referred to a Cartesian coordinate system xh and the 
summation convention is implied. Equation (1) is a linear in-
homogeneous differential equation of the form 

JL(K)+ifc = 0 (2) 

where L(u) is a self-adjoint homogeneous differential 
operator such as the first two terms of equation (1) and i/-,- is 
the known inhomogeneous part as in equation (1). Since this is 
a linear equation, its solution can be represented as the sum of 
a complementary solution uf satisfying 

L ( « c ) = 0 (3a) 

and a particular integral uf satisfying 

L(un + *Pi = 0 (3b) 

The total solution is then simply 

u, = Wj + uf (4) 

The following observations are important as far as the par­
ticular integrals are concerned: 

(0 They can often be obtained by inspection of the in-
homogeneous differential equation or by the method of 
undetermined coefficients. 

(if) There are no unique particular integrals, since any 
polynomial satisfying (3b) or any linear combination of par­
ticular integrals is a valid particular integral. 

For gravitational and centrifugal loading one can obtain par­
ticular integrals from known solutions as illustrated below. 

Particular Integrals for Gravity Loading. If we consider 
the case of gravitational acceleration directed along the x2 

axis, the body force components are given as 

tf,=0 (5a) 

^i=-pg (5b) 

where p is the mass density and g is the acceleration due to 
gravity. One set of particular integrals for equation (1) cor­
responding to this set of body forces are given, for instance, 
bySokolnikoff(1956): 

-PS 
4/x(X + /*) 

\XiX2 

«s= 
pg 

8JU.(\+/A) 
\(\ + 2n)x\ + \x\] 

which gives the following stress components: 

<7f2=0 

rfn=pgx2 

And the associated tractions are given by 

f = afjtlj 

(6a) 

(6b) 

(6c) 

(fid) 

(6c) 

(7) 

or: 
ff = 0 (8a) 

t% = pgx2n2 (Sb) 

Particular Integrals for Centrifugal Loading. For stresses 
due to the rotation of a body about a fixed axis located at the 
origin of a Cartesian coordinate system, the body forces are 
given by 

^0 

pa2r 

0 

where w is the angular velocity, r is the radial distance to the 
point under consideration, and p is again the mass density. 
Converting to Cartesian coordinates, we get 

\j/x = \prcos8 - \l/esind = poi2x{ (9a) 

\p2 = \{/rsind + i/gcosd=pw2x2 (9b) 

or, in indicial notation, 

i^,=pco2x,- (10) 

The particular integrals for this loading are again given by 
Sokolnikoff(1956)as: 

.2 
II? = 

- p(j> 

8(A + 2fO 

The stress components are given by: 

\XnXn )Xj 

-poi [(2A + n)x„xn8jj + lyoCiXj] 

(11) 

(12) " 4(A + 2M) 

where §,•,• is the Kronecker delta and the summation conven 
tion is implied. Using equation (7), we find the tractions as 

,2 

t?=-
-poi 

-[(2A + n)xnxnnj + IfiXj (xsnt)\ (13) 
4(A + 2AO 

The final solution satisfying all of the real boundary condi­
tions can be found by simply combining the complementary 
and particular solution 

U; = UCi+Ul 

t: = tf + fi? 
aU = aiJ + afi 

(14a) 

(14*) 

(14c) 

Thus, it is only necessary to construct boundary integral 
formulations for the complementary solution and superim­
pose the particular integral. The particular integrals given 
above are not dependent on the problem geometry. Since they 
are completely general, they are independent of the boundary 
conditions of the problem and need only to be evaluated at 
each boundary point, with the required integrations the same 
as for a homogeneous problem. The details of how this is im­
plemented for the DBEM and IBEM are given in the following 
sections. 

Direct Formulation 

This section provides a brief summary of the mathematical 
foundations of the DBEM. The interested reader may find a 
more detailed description in, for instance, Banerjee and But-
terfield (1981). By using the reciprocal work theorem on the 
Kelvin singular solution and the complementary solution, one 
has for the displacement at an interior point £ due to any ad­
missible combination of tractions (/,•) and displacements («,-) 
over the surface (s): 

Kj(f) = j s[G{,-(*,f )*?(*) 

-Fv{x, H)W;(x)\ds(x) (15) 

The kernels G/j(x, £) and F-^ (x, £), where x is the load point 
and £ is the field point, are given explicitly in Appendix A. We 
have used the superscript c to emphasize that this is the com­
plementary solution, i.e., there are no body forces present. 

By taking the load point to the boundary of the body, we 
obtain a constraint equation relating the complementary parts 
of the known and unknown displacements and tractions on 
the surface of the body: 

C,y«f(0= \s[Gulx, MM 

-Fij(x,^)u'j(x)}ds(x) (16) 

where C,y = 1/2 5^ for a point on a smooth boundary. 
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where afj is given by equation (6) for the gravitational or equa­
tion (12) for the centrifugal load problem. 

For a multiregion problem, equation (20) can be formed for 
each subregion of the system and expressed as 

[AY[XY={bY 

where r represents the region under consideration. These are 
then assembled to form the final system equations by satisfy­
ing equilibrium and compatibility at the common interfaces as 
described, for instance, in Banerjee and Butterfield (1981). 

SCF 

X DBEM 

D IBEM 

— ANALYTICAL 

1.2 1.4 v 1 . ( 
x2 

1.8 

Fig. 1 Plate with circular hole 

Indirect Formulation 

In the indirect formulation, the displacement and traction at 
an interior point x are given in terms of a fictitious surface 
traction 4> as: 

Kf(*) = {sG<,(*,«tf,(«ds($) + C, 

/ f ( j f ) = j s ^ ( j f , f)*y(f)rfs(«) 

(23) 

(24) 

where the C, are unknown rigid body displacements which 
arise from the arbitrary nature of r0 in equation {A.2). 

Again we use the superscript c to denote that this is the com­
plementary solution. By bringing the field point x to the boun­
dary, we obtain the following equations relating the tractions 
and displacements 

«J S 
(25) 

tUx0) = ± -^-Sij4>j(x0) 

Using the strain-displacement and stress-strain relations, the 
stress state at any point within the body may be found as 

°&«>=L = \JTkiJ(x, £)$(*) 

-Eku(x, %)uc
k(x)]ds(x) >kyyA> S)uk\*n"*\*> (17) 

The kernels TkiJ and Ekij are listed in Appendix A. The 
stresses at a surface point can be obtained from the boundary 
tractions and displacements without any integration as was 
originally proposed by Cruse (1973). 

The usual procedure for solving equation (16) is to discretize 
the boundary into a number of boundary elements. In doing 
so, we may write this equation in matrix form as 

lG\ltc)-[F\[u') = iO} (18) 
Recalling equations (14a) and (146), which give the real solu­
tion as the sum of the complementary and particular solu­
tions, we have 

[G\[t-P)-m[u-uP) = [0\ (19) 

Placing all the known quantities on the right-hand side we 
get 

lAUX) = [b)+[G\lfi>)-[F\{uP) (20) 

where b is a vector obtained from the real known tractions and 
displacements, A is a coefficient matrix, and Xis a vector con­
taining the unknown tractions and displacements. This equa­
tion can be solved for the only unknown, [X]. If stresses are 
required, we can use equation (17) discretized as 

iou)e=imtc)-mi«c) (2i) 
and we can use equation (14c) to get 

{oi]}={T\{tc)-[E]{uc) + {aiJ}P (22) 

•Js*i,(*0. {)*,(€)<&(« (26) 

Equations (25) and (26) are now integrated along the bound­
ary of the body, which is divided into boundary elements for 
this purpose. The resulting equations can be represented in 
matrix form as: 

(wcS = [G]{01 (27a) 

[tc}=[F\W (21b) 

For a well posed problem, the number of known tractions 
and displacements will be exactly enough to find the unkown 
vector <j>. This is accomplished by combining the equations as 
follows: 

{YC)=[A]{4>) (28) 

where [A] is a system matrix and the individual components of 
the left-hand side can be obtained using equations (14a) and 
(146) 

{-fM-fH-f} 
•ye ) = { y j - { y p ] (30) 

where Y is a vector of given boundary tractions and 
displacements, W contains the contribution from particular 
integrals computed at each point, and Yc is a vector of 
"complementary" tractions and displacements. Equation (28) 
can now be solved for the <j> vector. Having found </>, the 
unkown tractions and displacements can be obtained using 
equations (27a) and (276) together with (14a) and (146). The 
stresses at boundary points are then obtained from the trac­
tions tj, the displacements uh and the constitutive and the 
strain displacement relations in the usual manner (Banerjee 
and Butterfield, 1981; Cruse, 1973). The stresses at any in-
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Table 1 Table 2 

Analytical 
IBEM 
DBEM 

SCF 

4.32 
5.31 
4.32 

Percent 
error 

22.9 
0.0 

Run time 
(s) 

42.2 
34.3 

Analytical 
IBEM 
DBEM 

Maximum 
SCF 

1.95 
2.00 
1.99 

Percent 
error 

2.5 
2.0 

Run time 
(s) 

130.5 
100.6 

2.5 

SCF 

0.5 

0.0 

x DBEM 

a IBEM 

— ANALYTIC 

0.5 1 1.5 

RADIUS 
Fig. 2 Rotating disk with eccentric holes 

terior point, if required, can be obtained from the discretized 
version of the equation 

an(x) = j s T„k{x, H)<l>ktt)ds(0 + ofj(x) (31) 

where TiJk(x, £) is defined explicitly in Appendix A. An ex­
cellent discussion of the treatment of the surface integral in­
volved in equation (31) was given recently by Cox and Shugar 
(1985). 

Numerical Examples 

A Plate with a Circular Hole. Consider a plate in plane 
stress of width 2b with a centrally placed unloaded circular 
hole of radius a under uniform tension as shown in Fig. 1. 
Because of the symmetry in the problem, only a quarter of the 
geometry need be discretized where for comparison purposes, 
we take a= 1, b = 2. The plate is modeled with 16 quadratic 
elements for a total of 32 nodes. The nodes on the x2 axis are 
constrained against displacing in the x1 direction while those 
on the Xi axis are fixed in the x2 direction. A uniform traction 
a0 is applied to the nodes at the far end of the model. 

The analytical solution to this problem is found in Savin 
(1968). The stress distribution along the line of symmetry c—d 
is plotted in Fig. 1 and the stress concentration factor at point 
c is compared to the accepted value in Table 1 where the run 
times on an HP-9000 desk-top minicomputer are also shown. 

REGION 1 

U D 
v REGION 2 

Fig. 3 Boundary element model of underground power station 

As seen in Fig. 1, both boundary element methods give ac­
curate results on the majority of the section, but the IBEM 
results, as is often the case, are poor near the sharp corners. 
Accurate results for point c could be obtained also with the 
IBEM by running the full geometry, thus eliminating the cor­
ners on the hole boundary. 

Rotating Disk with Eccentric Holes. The problem of the 
stress concentration in a rotating disk with a central hole as 
well as two eccentric holes was investigated experimentally 
first by Hetenyi (1939), and later theoretically by Ku (1960). 
The problem they considered is shown in Fig. 2. 

Because of the symmetry of the problem, only one-half of 
the body is modeled. The discretization consists of 20 
quadratic elements and 40 nodes. Again, nodes on the x2 axis 
are constrained against displacement in the xx direction while 
nodes on the x, axis are constrained in the x2 direction. The 
only loading applied is that due to rotation. 

The analytic solution is given by Ku (1960) in the form of a 
stress concentration factor (SCF) which is defined as the ratio 
of the circumferential stress at any point on the disk with the 
two noncentral holes to the circumferential stress at the inner 
boundary of a rotating disk with the central hole only. For 
comparison purposes, the stress is converted to an SCF by 
dividing by the proper circumferential stress for a disk with a 
central hole only (as computed using Timoshenko and 
Goodier's, 1970, solution). 

The SCF along a section through the holes is plotted in Fig. 
2. The maximum SCF, at the inner edge of the small holes, is 
given in Table 2, along with the run times for comparisons. 

Note again in this case both methods provide accurate 
results for interior points. Additionally, since the point of in­
terest does not lie on a corner, both the IBEM and DBEM give 
excellent results. 

Underground Power Station. As a final example we con­
sider the self-weight stresses in the underground power station 
shown in Fig. 3. Since integrating from the larger distant outer 
elements to the smaller elements around the openings would 
reduce the accuracy and lower the efficiency, the problem is 
divided into two subregions. The DBEM with a total of 144 
nodes and 72 isoparametric elements as well as 64 internal 
stress points are used to solve this plane strain problem. The 
nondimensionalized equivalent stress is plotted in Fig. 4. A 
similar problem is analyzed using the finite element method in 
Zienkiewicz (1977), although a direct comparison is not possi­
ble since detailed geometric and material data are not given. 
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Fig. 4 Nondimensional equivalent stress: Region 2 

Conclusion 

The method of particular integrals proves to be an efficient 
and accurate method of calculating stresses due to body 
forces. This method, based on a theory of differential equa­
tions, while certainly not new, has never been fully explored 
for elastostatics with the BEM. The complementary solutions 
are obtained using boundary only discretization, while the 
particular solutions need only be evaluated at each boundary 
point. Thus, the use of the method of particular integrals has 
succeded in eliminating any extra integration involving the 
body force terms and has been demonstrated for complicated, 
multi-region body force problems. 

Advanced formulations of the direct and indirect boundary 
element methods have been compared for a range of prob­
lems. In general, the results correlate well with accepted 
results. The DBEM formulation runs faster than the IBEM on 
an HP-9000 computer. 
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A P P E N D I X A 

The fundamental singular solution for the displacement 
field in a two-dimensional elastostatic problem is given by: 

ul(x)=Gll{x,$)ejVi) ( A l ) 

where 

Gu (x, 0 = C, (c2bijXn r_ Ilf) +Ajj (,4.2) 

and 

- 1 
C, = 

1 8TT/X(1 - v) 

C2 = 3 - 4 , 
Ajj = arbitrary constant tensor which 

can be determined by specifying 
that at any distance from the 
load point the displacements 
are zero 

yt = *,•-£,• 

yj = xJ-tj 

r2 = ytfi 

The stress state corresponding to the above displacement 
field can be deduced from the strain-displacement and stress-
strain relations as: 

<ru(x) = Tuk(x,£)ektt) (A3) 

The surface tractions at a point with an outward normal«, are 
calculated from: 

'/(*) = aij(x)nj{x) 

= Fik(xA)ek(k) (A .4) 

where 

Fik(*> i) = \~pr) [QK-V;-n-,y k) 

and the stress kernels are: 

Tkij (x, 0 = -7-[y («*y, + V; -hy) + ^p] (A-5) 
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+ "i (2" *jr + «2«A) + "j (2, i^* + a28ik) 
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Analysis of Orthogonally Cracked 
Laminates Under Tension 
The problems of stiffness reduction and stress analysis of cross-ply fiber composite 
laminates, where all plies are cracked in fiber directions, are treated by a variational 
method on the basis of the principle of minimum complementary energy. The 
Young's modulus obtained is a strict lower bound but is expected to be close to the 
true value on the basis of experience with a previous analysis. Approximate values df 
Poisson 's ratio and internal stresses have been obtained. The latter reveal important 
tendencies of continued failure by delamination. 

Introduction 
The major damage which develops in laminates under static 

or cyclic loading is in the form of interlaminar and in-
tralaminar cracks. The former develop gradually and slowly in 
between plies. The latter appear suddenly and in large 
numbers in plies in which the stresses reach critical values, 
perhaps defined by the first failure criteria of the plies. They 
are families of parallel cracks in fiber direction and their 
macroscopic effect is reduction of the inplane stiffness of the 
laminate. 

The subject of the analysis of stiffness reduction of cracked 
laminates has received repeated attention but has mainly been 
concerned with cross-ply laminates, i.e., [Q°m/90°„]s configura­
tions in which only the 90° plies are cracked. The main 
methods of analysis employed are: a simple shear-lag method 
(Reifsnider and Talug, 1980; Reifsnider and Jamison, 1982), 
self-consistent approximation to assess ply stiffness reduction 
in conjunction with classical laminate analysis (Laws et al., 
1983, 1985), and a variational method (Hashin, 1985). All of 
these methods give results which are in good to excellent agree­
ment with experimental data. The last method, unlike the 
others, also provides useful estimates of the internal stresses in 
the cracked laminate. 

In many cases of damage in laminates, several plies will be 
cracked and in particular adjacent plies. As a typical and 
relatively simple case we shall consider the problem of a 
[0°,/90°Js laminate in which all plies have intralaminar cracks 
and which is thus orthogonally cracked. Because of the com­
plicated interaction of the orthogonal cracks this problem is 
much more difficult than the one with plies cracked in only 
one direction. We are aware of only one publication in the 
literature (Highsmith and Reifsnider, 1986) on this subject, 
which is concerned with evaluation of stresses in a typical 
repeating cracked laminate element by numerical analysis. 
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Fig. 1 Orthogonally cracked laminate 

The present problem is closely related to that of a cracked 
±45° symmetric laminate which is indeed merely a rotated 
0°/90°. It is easily seen that uniaxial tension of a 
[ + 45„/-45°] i in bisector direction can be analyzed in terms 
equibiaxial tension and shear of a [0,°,/90°]s laminate. Indeed 
a typical case of orthogonal cracking is encountered for cyclic 
loading of a ±45° laminate. The problem of shearing of a 
cross-ply will be considered elsewhere. Here we are concerned 
with uniaxial tensile loading of an orthogonally cracked cross-
ply. Our purpose is to evaluate stiffness reduction due to 
cracks and approximate local stresses. We shall do this by 
generalization of the variational method which has been 
developed in Hashin (1985). 
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ffg( ±a,y,z)=ox
iH ±a,y,z) = 5 g ( ±aj>,z) = 0 

(6) 

CRACKED 
-t24*l4tl4t2-
-— h—^— h —H 

Fig. 2 Repeating element 

Admissible Field Construction 

Consider an orthogonally cracked laminate, Fig. 1, and a 
typical laminate element defined by intersecting crack pairs, 
Fig. 2. Let the laminate be subjected to constant membrane 
force 

Nr=2a°h (1) 
and no other loads. Thus a" is the average stress axx over the 
laminate and also over the thickness 2h. 

In the event that longitudinal and transverse crack families 
are each equidistant, the stresses and strains in each element 
(Fig. 2) are the same, the boundary and interface conditions of 
the repeating element can be formulated and the problem can 
be treated numerically in terms of finite elements, if desired. 
The problems associated with such an approach will be 
discussed at the end of the paper. Here we shall proceed dif­
ferently; it is our purpose to construct admissible stress fields 
which satisfy equilibrium and all traction, boundary and inter­
face conditions. These admissible fields will then be optimized 
in the context of the principle of minimum complementary 
energy to yield approximate stresses and lower bounds on 
stiffness. 

The stresses in the undamaged laminate under the loading 
considered are 

<4>) = am = kx»o° < » = 4 " = k^a" 

aoV) = af> = kf>ao ao(2) = a(2) = k(2)(Jo 

ff0(l) = ao(2) = 0 uxy uxy u 

(2) 

where the k coefficients are easily found from conventional 
laminate analysis. 

Let ay be a three-dimensional admissible stress field within 
the cracked laminate. By definition such a stress field must 
satisfy equilibrium, traction continuity, and traction bound­
ary conditions. For reasons of symmetry it is sufficient to con­
sider one half of the element of Fig. 2 defined by - a ^ x = 
a, — b ^ y = b, 0 = z = h, as will be understood from now 
on. We list required boundary and interface conditions 

ox»(x,y,0) = 0 c f j iW, 0) = 0 (3) 

d$(x,y,h)=0 d$(x,y,h)=0 (4) 

5%(x,y,h)=0 

a«(*j ' , f i ) = ffg,)(xo',fi) 

5y
i
z\x,y,tl) = 5$(x,y,tl) 

<j£\x,y,tl) = d$(x,y,tl) 

(5) 

dtyix, ±b,z) = 5f)(x, ±b,z) = 5$(x, ±b,z) = 0 

Here and from now on superscripts 1, 2 indicate the plies, 
equations (3) are symmetry conditions, equations (4) are free 
surface conditions, equations (5) express traction interface 
continuity, and equations (6) are zero traction conditions on 
the crack surface. There are still needed traction conditions on 
the faces x = ±a, t{ ^ z = h and y = ±b, Q = z = tx 

which shall be considered further below. 
The xy in-plane parts of the admissible stress fields are 

chosen in the form 

(7«) 

{lb) 

(7c) 

where <f> and ^ are unknown functions. The physical 
significance of these assumptions will be discussed further 
below. 

Force equilibrium of the undamaged laminate in the x and y 
directions requires 

^ = 4 » [ i -

ff<i?=<[i-

-</>,(*)] 

- IMJO] 

uxy 

4?=42>[i-4>2(*)] 

4?= <42) [1-iM.v)] 

-3$ = 0 

ox
X)ty+ox

1H2 = a°h 
(8) 

Examining force equilibrium in the same directions in the 
cracked laminate, in terms of the admissible stresses (7), we 
find 

(9) 
^t^,(y)+of>t^2(y)=Q 

This reduces the number of unknown functions from four to 
two. 

In view of equation (7c), the equilibrium equations for the 
admissible ply stresses assume the form 

dxx,x + ^BM = 0 

5yy,y + dyz,z=° 

5xz,x + 5yz,y + 5zz,z=° 

(10) 

where commas denote partial differentiation. 
We now define perturbation stresses afjm) for the plies, m 

= 1,2, by 

f!.'") =rj9.("<) 4-nU") (11) 

where af/m) are given by the undamaged laminate stresses (2). 
Insertion of equations (7) into (10) for each ply and systematic 
integration, with elimination of unknown residual functions 
by use of equations (3)-(5), and utilization of equations (9), 
leads to the results 

°£> =-<#>«(*) 

4'>=<7<»4>'(X)Z 

°&)=— 4 V (*)(*-«) 

am=a^H(y)z 

og=—o$Ho>)ih-z) 

(12a) 

(12/) 

(12ft) 

(12£) 

(12cO 

(12/) 
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<jg>=[4»<r M+ay
i^(y)]-—(htl -z2) (12e) 

og)=-i-[o<«)0' w+ol»t(y)}-L{h-z)2 (12y) 

where prime and dot indicate x and j derivative, respectively, 
and 

> = $ i V' = i/'i 
(13) 

It follows from equations (6) and (9) that </> and \p must 
satisfy the boundary conditions 

4>(±a) = \ 4>'(±a)=0 

i(±a) = l i/<(±6)=0 
(14) 

The above formulation determines the traction components 
on the faces x = ±a, tx ^ z = h and y = ±b,Q ^ z = tx. 
It is seen that the only nonvanishing traction component is 

g g ( ± f l ) = 4 ' ) ( l + / 1 / ^ ) (15) 

Thus the admissible tractions are continuous across all com­
mon faces of adjacent elements, regardless of their a, b dimen­
sions. Therefore, the stresses (11)—(12) rigorously satisfy all 
conditions of admissibility. 

Variational Formulation 

Next we evaluate the complementary energy functional Uc 

associated with the admissible stresses. In the present case 
where tractions are prescribed everywhere 

Ue-- . Sijk!5ij°kldV (16) 

where Vis laminate volume and SjJld are local compliances. It 
has been shown in Hashin (1985) that for any cracked body 

where 

Uc = U% + U'c 

Uc~\sijkla;jo'kldV 

oiJ = <jfj + <J[J 

(17) 

(18a) 

(186) 

(18c) 

Here afj are the actual stresses in the uncracked body, i.e., in 
the undamaged laminate; thus U° is the actual stress energy of 
the undamaged laminate. In the present case it is rigorously 
true that 

„2 

U°r=-
2EZ 

(19) 

where E° is the Young's modulus in the x direction of the un­
damaged laminate. Furthermore, the stress energy Uc of the 
cracked laminate can be rigorously expressed in the form 

U<=-2%TV (20) 

where Ex is the effective Young's modulus of the cracked 
laminate. Also from the principle of minimum complementary 
energy 

Uc ^ Uc 

Combining equations (17) and (19)-(21) we have 

(21) 

1 
E° 

2U'C 

Va°2 
(22) 

which provides a lower bound on Ex. 
In the present case the stresses (12) are identified with the a'tJ 

in equation (18c). In order to evaluate equation (186) we list 
the local stress energy densities in the plies as referred to the 
common x, y, z system of the laminate 

IW* = ayf/EA + (o&>%o</)/2? r-<#(o£> 

+ ^)2vA/EA-o^^2vT/ET 

+ (axf+oyf)/GA+0xf/GT (23) 

1WV = o$2/EA + (off + o?f)/ET-o%(oV 

+ o$)2vA/EA-ofy»2VT(ET 

+ (°tf+otf)/GA+o?f/GT 

where the coefficients are in terms of the following properties 
of the unidirectional ply material 

EA = Axial Young's modulus (fiber direction) 

vA = Axial Poisson's ratio 

ET = Transverse Young's modulus 

vT = Transverse Poisson's ratio 

GA = Axial shear modulus 

GT = Transverse shear modulus 

Suppose a typical element, Fig. 2, has in-plane dimensions 
2am and 2b„. Then for half the laminate 0 % z = h 

Ucn=\a'" \ " ( ' W^dxdydz 
J —am J — bn JO 

+ \"m \" \ W^dxdydz 
J -a,„ J -b„ J( i 

(24a) 

C/c' = E t 7 ^ (246) 

which can now be evaluated in terms of equations (12). For 
simplicity in writing we shall perform detailed analysis for the 
case when am = a, bn = b and give results for the more 
general case of unequal intercrack distances at the end. When 
am and b„ are constant we can, without loss of generality, in­
terpret all preceding energies as those stored in an element 
with dimensions 2a, 26, h. Introducing equations (12) into 
(24a), performing all z integrations and using the nondimen-
sional variables 

i=x/tx i\=y/tx (25) 

we have 

2U^ = a°2t\\n P [k2
xA0<t>2 + 2kxkyB0 H 

+ k2
yC0t

2+Aik
2
x4>'2+B1kU2 

(26) 

+A2kx<j>(kx4>" +ky$) +B2ky4,(kx4>"+ky4>) 

+ C(kxct>" +ky4>)2]d£dr) 

where prime and dot now denote £ and t\ derivative, respec­
tively, and 

<t> = * ( * ) 
Pi =a/tl 

ky =£<" 

i 
Pi 

ky 

= *0j) 

= b/tl 

= ky» 
(27) 
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: 1/\EA + \/E7 B0 =-(\ + \/\)vA/EA 

A{ = (\/GA + l/GT)/3 5 , =(l/GA+\/GT)/3 

A2 =[(3\ + 2)vT/ET-\pA/EA]/3 ( 2 8 ) 

B2 =IQ\ + 2),A/EA-\PT/ET]/3 

C= (X+ 1)(3X2 + 12A + 8)/60£> 

and the boundary conditions (14) now assume the form 

<M±P,)=1 0 ' ( ± p , ) = O 

*(± /> 2 )= l i(±p2) = 0 

In view of (22) any functions <t> and \j/ which satisfy equa­
tions (29) will, when introduced into equations (24) and (22), 
provide an upper bound for \/Ex. To obtain the best bound 
U'c should be minimized. Using techniques of the calculus of 
variations we find that the minimum conditions of the integral 
(26) are the integro-differential equations 

d*4> cPQ kv B0 1 c»i 
+ 91* + - ^ ^ - - ^ — fdi, = 0 (30a) 

(29) 

f(v)=Chav g(v)=Chl3v (36) 

OM8 = J ( - 1 ±Vl -4q/p2)p/2 

where v is either £ or ij, andp and q are either of p , , p2 or ql, 

The case/?>0 is unlikely for the usual stiff fiber composites. 
To solve the problem (29) and (30) let equations (34) be ex­

pressed in the form 

!/<(?)) =D-J2 (ij) +F2g2(7))-m24' 

where/,, g, indicate solutions in terms of pi, qx and/ 2 , g2—in 
terms of p2, g2. Introducing equations (37) into (29) we obtain 
sets of linear equations for the constants D, F with solutions 

(37) 

dk 

rfr/4 

where 

-+p 

+Pi 

d? 

d2^ 

dr,1 + 1i^-

C 2p2 

Bn 1 

A 

A, 
Px=~ 

Pi=-
C 

Qi-

C 

c 

^ = 0 (306) 

(31) 

(1 +/7?!V 

/ l (P l )g l ' (P l ) -

(1+/M 

'<)g[(Pi) 

-/i '(Pi)£i(Pi) 

'ilfX/i<Pi) 

fl(P l)g'l(Pl)-f'dP l)g liP l) 

(\+m2j>)g2(p2) 

fl(Pl)gl(P2)-

(l + m 

-fl(Pl)g2<J>2) 

h&fllPl) 

(38) 

fl(j>l)gl(P2) -fl(P2)g2(Pl) 

Now average bo th sides of equat ions (37) as in (33). The result 
can be written in the form 

where 

Solution of the Integro-Differential Equations 

Obviously the solut ion of equat ions (30) with (29) is insen­
sitive to change of sign of independent variables. Therefore , 

Now define the mean values 

«dt = * -z— P 0tfij = tf (33) 

Then the general solutions of equations (30) can be written in 
the form 

4> + ml\[>=Dlf1+F1g1=(l + m1\[>)ai 

$ + m2j)=D2f2+F2g2 = (.l+m24>)u}2 

f\g[(Pi)-f'i(P\)g\ 

(40) 

/i(Pi)£i(/°i)-/iG°i)gi(Pi) 

f2g2(P2)-/2(P2)g2 

fl(j>l)g\{Pl) -fliPliglifil) 
(41) 

1 f"l 

2p j J - P ! 

Since expressions (41) are k n o w n , equat ions (40) can be solved 
for 4> and i/<. Thus 

- o)[ — ml(l — a)i)co2 

^ = ^o(v)-m2(j) 

, Bn Bn 
mi =-

An 

(34a) 

(34Z>) 

(34c) 

1 -OT1W2(1 - O ^ X l - U 2 ) 

M!- f f !2( l -U2)Ul 
* = • 

l - m 1 « 2 ( l - c o , ) ( l - c o 2 ) 
(42) 

where the terms with subscripts zero are general solutions of 
the homogeneous versions of equations (30) and the remaining 
terms are particular solutions. A homogeneous differential 
equation of type (30) has four independent solutions which 
may be arranged into two symmetric and two antisymmetric 
ones. In view of equations (32) only symmetric solutions need 
be retained. These are: 

when 4q>p2 

f(v) = ChavcosPv g(v)=Shavsm(3v (35) 

a = <71/4cos(0/2) (3 = <71/4sin(0/2) 

tan 6 = \/4q/p2-l 

when4<7</?2 p<0 

These results together with equat ions (30)-(39) determine the 
solution (37) of equat ions (29) and (30). Specific results for the 
two cases (35 and (36) are given in the Append ix . 

The per turba t ion stresses (12) now assume the form 

„(!)= _„(1) 4"<M£) T<2) = 
1 

4"^(?) 

4?=4° -g- z/h o%-L 4» J±-{h-z)/h 

o<y=--41V()j) °#=— 4'V(u) (43) 

n « : -W-^-z/t, rr»> = Td) 
dr) 

dyj, 

di\ 
(h-z)/tl 
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<$= ( ^ 

«g>= (41 

-+CT1 cP-4> 

tf£2 -

(1) 
d2^ 

^(hti-z2)^-

<»-01)(*-z)V2*? 

Effective Young's Modulus £,. and Poisson's Ratio vxy 

It is first necessary to evaluate the minimum value of the in­
tegral (26) and to introduce it into (22). Direct evaluation of 
the integral (26) in terms of the functions <j> and i/< which have 
been determined above is a formidable undertaking which can 
fortunately be avoided. The best way to proceed is to integrate 
equation (30a) multiplied by 4> from — p, to px and, similarly, 
equation (306) multiplied by \p from - p 2 to p2 . These in­
tegrals obviously vanish and when transformed by integration 
by part with use of the boundary conditions (29) they can be 
identified with substantial parts of the integral (26). As a result 
of this procedure we find the simple result 

U' = - 2 / ? / c [ ^ p 2 f (P,) + £ > J(p2)] (44) 

To evaluate the third derivatives in equation (44) we 
evaluate the mean of equation (30a) with respect to £ within 
[ — Pii Pil and of equation (30b) with respect to r\ within [ -p 2 , 
p2]. Noting that the means of the second derivatives vanish 
because of equations (29) and taking into account equations 
(31) we obtain 

Pi kx 

(45) 

-C = C0\// + ——Ba<j> 
Pi ky 

Substituting equations (45) into (44) and (27) we have 

t/c'min = 2tiabo°2 [<kxA0 + kyB0)kxj> + (kxB0 + kyC0)kyfo (46) 

Thus the minimum energy has been expressed in terms of 4> 
and \[/ which are explicitly determined by equations (42). Since 
the reference volume in the present case is 

V=4abh = 4ab(t1+t2) 

we have from equations (46), (47), and (22) 

1 
< 

1 1 
El 1+X 

(Kx4> + Kj) 

(47) 

(48) 

Kx = (kxA 0 + kyB0)kx Ky = (kxB0 + ky C0)ky 

This provides a rigorous lower bound on Ex in the event that 
all cracks are equidistant. If this is not the case let inter-crack 
distances be 2a„, in x direction and 2b„ in y direction, respec­
tively. Then the admissible stress fields employed are still valid 
in each laminate element of dimensions 2a,„, 2b„, h. The com­
plementary energy functional is now equations (24) and each 
term in the summation is expressed in terms of functions 4>m 

and \p„, in the form equation (26), leading to extremum condi­
tions of form (30) for each of these functions, subject to 
boundary condition of type (29) 

< M ± P i m ) = l 0m(±Pim)=O 

VU±P2„) = 1 W(±P2»)=0 
where 

P\m~am^\ P2n=b„/t1 

(49) 

(50) 

This defines means 4>,„ and \pn which are precisely 4> and $ ex­
pressed in terms of (50). Thus 

and the relevant laminate volume is now 

m n 

(51) 

(52) 

Introducing equations (51) and (52) into (22) we obtain again a 
lower bound for Ex. 

This result can be put into more compact form if the inter-
crack distances are random variables a, b, assuming values am, 
b„. Then (50) are the values of associated random variables p, 
and p2 with joint probability density function P(px, p2). In 
this event (22) will assume the form 

1 < 
1 Kx<plp2<j>(p1)>+K <pip2\j/(p2)> 

(53) 
Ex El (1+X)<P!P 2 > 

where < > indicates probability average. It can probably be 
assumed that p ( and p2 are independent random variables. In 
this event 

P(pl,P2) = Pl(pi)P2(p2) 

and (53) assumes the form 

' < ' + ' k <4,(Pl)>
 +Ky Ex E°x 1 + X L x < p , > y 

where 

(54) 

<*(P2)>1 { 5 5 ) 

< P 2 > J 

S
OO ft OO 

P ^ ^ P i d p , <p2> = \ P2(p2)p2dp2 (56) 
— OO J —OO 

and also 

<Pi> = <a>/tl <p2> = <b>/t2 

The effective Poisson's ratio vxy is defined by 

"*=—^- *„=-£- (57) 
^xx ^x 

Since vxy cannot be bounded by variational methods we 
evaluate it in terms of the approximate stresses resulting from 
our variational treatment. For the case of equidistant cracks in 
the x and y direction 

1 
Aabh O

a p i p / j p a p b p h ~\ 

-AA^dxdydz+\-a\-X^dxdydz\ (58) 

It follows from the ply orientations and the stress-strain rela­
tions of the ply material that 

4 ' = - <®»A /EA + o%/EA - am vA /EA 

e% = - °&>A /EA + of}/ET - og) vT/ET 

(59) 

Next we introduce the stresses (11) and (12) into equations (59) 
and the resulting expressions into equation (58). We observe 
that: (1) The stresses af/m) produce the Poisson's ratio vxy of 
the undamaged laminate; (2) The contribution of azz to equa­
tion (58) vanishes since 

J_ L <t>"(x)dxdy = 2bV </>" (x)dx = 2bW (x)]a_a 

and this vanishes because of equations (14). A similar result is 
true for the integral of i/- over the rectangle. An easy calcula­
tion then yields the result 
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Table 1 Properties of unidirectional material. Moduli in 
GPa. 

Glass/Epoxy 
Graphite/Epoxy 

"xy = "°xy 

41.7 
208.3 

13.0 
6.5 

3.40 
1.65 

4.58 
2.30 

VA 

0.300 
0.255 

£° 1+X 

0.420 
0.413 

(60) 
ET EA / 

where \f/ is defined by equations (33). Evaluation of vyx is of 
course entirely analogous. 

Results, Discussion and Conclusions 

The approximate nature of the analysis which has been 
developed here is contained in the assumed form of the 
stresses (7) which certainly cannot be correct. Indeed from ex­
perience with crack field solutions one would expect local 
singularities at the crack tips, which are absent from equations 
(7). But it should be remembered that in the usual structural 
laminates we are dealing with very thin plies of thickness of 
order 0.2-0.4 mm. Typical glass and carbon fiber diameters 
are 0.01 mm. Assuming for the sake of argument that fibers 
are arranged in regular hexagonal arrays, we find that at the 
usual 0.60 fiber volume fraction the ply thickness can accom­
modate about 16-32 fibers. Now the basic assumption in 
laminate theory is that plies are homogeneous anisotropic with 
elastic properties equal to the effective elastic properties of the 
unidirectionally reinforced ply material. But it should be 
remembered that the concept of effective modulus is based on 
stress and strain averages over representative volume elements 
(RVE) which by definition must contain many fibers. It 
follows that a ply can accommodate perhaps 2-3 RVE sizes 
across its thickness. Therefore, a severe gradient of local 
average stress or strain through the thickness is impossible. 
This does not present a problem for the simple cases of un­
damaged laminates when the stresses are constant or linear 
across ply thickness, but the situation is very different in the 
case of an intralaminar crack. If it is assumed that the fields of 
the homogeneous ply model are averages over RVE, then the 
crack tip singularities of fracture mechanics and their 
associated large stress gradient cannot exist. If this assumption 
is not made, there remains the choice between two difficult 
alternatives: (a) The crack tip is in the matrix and recognizes 
the adjacent fibers as distinct heterogeneities, thus creating an 
intractable problem in crack mechanics; (£>) The crack tip 
vicinity is governed by a nonlocal elasticity theory of unknown 
nature or with many unknown elastic constants. None of these 
alternatives is useful or practical and it would therefore appear 
that the simple assumptions (7), with their resultant gentle 
through-the-thickness variations of the stresses, are less severe 
than would perhaps appear at first sight. 

All of these considerations apply also to finite element 
analysis. The number of finite elements allowable through the 
thickness must be severely limited and singular elements raise 
the same problems as the crack tip singularities discussed 
above. 

Highsmith and Reifsnider (1986) have treated the problem 
of orthogonally cracked cross-plies in terms of a refined 
laminate theory advanced by Pagano (1978) in which stress 
variation through ply thickness is restricted to be linear. The 
treatment is of necessity restricted to equidistant cracks and 
requires extensive numerical analysis. Their results, Highsmith 
and Reifsnider (1986) show that the stress o^ depends only 
weakly on y, the stress ayy depends only weakly on x, and axy is 
negligible. This is in accordance with our basic assumptions 
(7). Furthermore, the shear stress axz practically does not de­
pend on y and axz practically does not depend on x and this 
agrees with (12 b,d,g,i). 
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For purpose of numerical evaluation we have used 
glass/epoxy and graphite/epoxy laminates with unidirectional 
ply properties as in Hashin (1985). These are given in Table 1. 

Table 2 shows Young's modulus reduction and also 
Poisson's ratio for various laminates with equidistant cracks 
in both directions. Also shown by comparison are results of 
Hashin (1985) for the case when there are cracks only in the 
90° ply. It is seen that the effect of the cracks in the 0° plies is 
quite small, no doubt because of the small value of transverse 
ayy stress in the 0° plies due to tension in 0°, i.e., x direction. 
This is also in agreement with the results of Highsmith and 
Reifsnider (1986). The situation is quite different for the 
Poisson's ratio. It is seen that cracks have significant effects 
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Fig. 4 Variation of maximum axx, T, and azz with p 

on the value of this quantity and that the effect of orthogonal 
cracks can be very substantial as is evidenced in particular by 
the Graphite/Epoxy cross ply. 

For the loading case of uniaxial tension considered here the 
stresses of major interest are: o£> and of) which are transverse 
to the fibers in their respective layers and may thus produce in-
tralaminar cracks; the interlaminar shear stresses axz and ayz\ 
the stress azz normal to the plane of the laminate which is call­
ed peeling stresses when tensile. It is seen from the form of 
equations (12) and (43) that the shear stresses assume their 
maximum values at the interface of the plies and that azz 
assumes its maximum value on the midplane z = 0. However, 
the value of azz at the interface is also of importance, for the 
stress which produces interlaminar separation may be smaller 
than the one producing midplane transverse cracking. 

We have evaluated stress distributions for [0°/90°}s 
graphite/epoxy laminates assuming equidistant cracks a = b, 
for various crack densities defined by different ratios p = 
a/tt. We have observed the following significant phenomena: 

(1) The tensile stress cf) is much smaller than the tensile 
stress ax

l] in the load direction. It can, therefore, be assumed 
that during loading no new intralaminar cracks will develop in 
the 0° plies in the y direction. 

(2) The stresses ax
1} and ox

1} are close in value to the same 
stresses produced in the same laminate when only the 90 plies 
are cracked (Hashin, 1985). A comparison is shown in Fig. 3 
for the case a/tx = 2. 

(3) The maximum value of tensile transverse stress o£> is 
midway between cracks, is equal to the corresponding stress 
a^> in the undamaged laminate when distances between cracks 
are large, and decreases monotonically with increasing crack 
density (decreasing p) (Fig. 4). 

(4) The intralaminar shear stress ayz has significant values 
(Fig. 3) and therefore the important interlaminar shear stress 
is T = So-xz + <rjz. Figure 4 shows the value of rraax as a func 
tion of crack density. It is seen that this stress starts out with a 

Fig. 5 Variation of azz over midplane 

value of 0.48O-M which is certaintly significant. When the 
vlaue of <r£n is large enough to cause cracking, r may be large 
enough to produce shear delamination. It is interesting to note 
that increasing crack density decreases this shear stress. 

(5) The peeling stress azz assumes significant values. 
Figure 5 shows the variation of midplane azz over one quarter 
of the square defined by the intersection of two pairs of 
cracks. Observe the large tensile stress 1.08of in the middle of 
they = a edge. When ax

l) is large enough to crack the 90° ply 
transversely, this stress is certain to produce a crack in the xy 
plane. Note that for the present laminate azz at the ply inter­
face is one half of the midplane value. Depending on interface 
strength such a stress may also produce interface separation. 
The largest value of aa is always located on the edges y = ± a. 
For small crack density the maximum is close to the cracks x 
= ±« and its location moves to the center of the edge with in­
creasing crack density. Figure 4 shows the variation of max azz 
with intercrack distance. It would be of interest to analyze 
various other cases and also biaxial loading, which is easily 
carried out by superposing the results of two uniaxial loads in 
the x and y directions. 
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Effective Medium Approach to 
Matrix-Inclusion Type Composite 
Materials 
This paper addresses a problem of finding the effective medium that exhibits the 
same overall response as a given composite material reinfored by unidirectional 
short-fibers (chopped fibers). The expression for the displacement field in com­
posites is obtained by converting the equilibrium equation into an integro-
differential equation using the quasi-static Green's function for a homogeneous 
medium. The "effective medium" is chosen that the ensemble averaged displace­
ment field for the composite is equal to that of an equivalent homogenous medium. 
The "effective stiffness" and the "effective mass density" are defined as those 
properties of the effective medium. This is a first preliminary attempt to analyze the 
elasto-dynamic effect of matrix-inclusion type of composites. The obtained result 
for the effective stiffness is new and is not symmetrical with the interchange of the 
matrix phase and the fiber phase, unlike previous models. The result is also 
favorably compared with experimental data for spherical-inclusion reinforced 
composites. 

Introduction 
This paper introduces an analytical technique to find an 

equivalent homogeneous medium with a given composite 
material using a statistical approach with the intention of ex­
tending the method to elasto-dynamic analysis of composite 
materials. The composite material in this paper consists of a 
homogeneous matrix medium in which ellipsoidal-shaped in­
clusions (short-fibers, discontinuous fibers, chopped fibers) 
are embedded. Modeling short-fibers as ellipsoidal inclusions 
is advantageous because by changing the inclusion aspect ratio 
(major axis/minor axis), they can cover a wide range of fiber 
geometries from spherical particulates (aspect ratio = 1) to 
short fibers (intermediate aspect ratio) to long-continuous 
fibers (aspect ratio = oo). 

The study of finding the effective modulus of composites 
has a long history dating back to the beginning of the century 
and numerous solution methods have already been proposed 
as more composite materials are being used in industries (see a 
recent review of Hashin, 1983). The self-consistent mechanics 
of Hill (1965) and Budiansky (1965) was adopted to calculate 
effective elastic moduli of various types of composites in-
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eluding short-fiber composites by Laws and McLaughlin 
(1979) and Chou et al. (1980). The limitation of the self-
consistent approximation used in those works is that it 
overestimates effective moduli of composites at higher fiber 
volume fractions due to the assumption that the immediate 
surrounding of a single fiber has the properties of the com­
posite, not the matrix. Most available experimental data also 
show lower values of effective moduli than those predicted by 
the self-consistent method (e.g., Blumentritt, 1974). 
Christensen and Lo (1979) developed a model of three phase 
composites with long continuous fibers and spherical inclu­
sions to take the matrix phase into account. However, their 
method cannot be directly applied to other shapes of fibers 
due to analytical complexity. 

In this paper, the effective modulus and the effective mass 
density of fiber composite materials are obtained by introduc­
ing an analytical model based on the micromechanical ap­
proach overcoming some of the above difficulties inherent to 
existing solution techniques. In addition, this is a first 
preliminary attempt to treat elasto-dynamics of composites. 
An integral equation for the displacement field in the com­
posite is derived by introducing the quasi-static Green's func­
tion for a homogeneous medium. An "effective medium" is 
sought that exhibits the same overall response as the com­
posite for the same boundary condition by a self-consistent 
approximation by Berryman (1979) and Gubernatis et al. 
(1979). The above scheme yields a set of algebraic equations 
for the effective elastic modulus and the effective mass dens­
ity. The obtained result yields lower values of effective moduli 
than those by previous models. They are also favorably com­
pared with available experimental data for spherical inclusions 
as a special case. 
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Formulation 

The elastic equilibrium equation for a particular composite 
material denoted by <x without body force when the elastic 
modulus and the mass density are functions of position is ex­
pressed as 

(Cijki(r,a)uk(r,t,a)j)j-p(r,a)d2ui(r,t,a)/dt2 = 0 . (I) 

where _,- denotes the partial derivative with respect to xh 

CjJki(t, a) and p(r, a) are anisotropic elastic moduli and mass 
densities of a particular composite denoted by a, respectively. 
The summation convention is used throughout. 

The elastic modulus and the mass density can be decom­
posed into a reference part and a fluctuating part as 

Cijkl(r,a)=Ctjk, + 5Cukl(r,ol) (2) 

p(r,a)=p* + 5p(r,a) (3) 

where CfJkl and p* are a constant elastic modulus and a con­
stant mass density of a reference medium which is not 
specified yet and SCyk,(r, a) and 5p(r, a) are fluctuating 
quantities from those of the reference medium. Substitution 
of equations (2) and (3) into equation (1) yields 

CfjkiUk(r,t,a)jj-p*d2ui{r,t,a)/dt2 = 

~(.(8Cijkl(r,a)uk(r,t,a)j)j-dp(r,oi)d
2ui(T,t,a)/dt2) (4) 

It is convenient to Fourier transform equation (4) as 

uk(r,t,a)exp(-iwt)dt (5) 

Equation (4) now becomes 

CJwt4(r,c*),u + coV£/,(r,oO 

= -((5C ( /W(r,a)C/ t(r,Q:) | /),J. + a J
26p(r,a)t/ ;(r>a)) (6) 

where for brevity, oi in Uk notation is dropped henceforth. 
In order to solve equation (6), the time-reduced Green func­

tion (quasi-Green function) is introduced as 

C!jk,gkp(r-r')jj + o,2p*gip(r-r') = -&ip&(r-r') (7) 

where 8ip is the Kronecker delta and 5(r) is the Dirac delta 
function. With equation (7), equation (6) can be solved for­
mally by regarding the right-hand side of equation (6) as an 
imaginary body force as 

Up{r,a) = U$(r) 

+ \(SCijkl(r' ,a)Uk(r' ,u) y)j> gpi(r- v')dt' 

+ co2\5p(r',a)Ui(t',a)gpi(i-r')dr' (8) 

where Up (r) is Fourier transform of a displacement field in a 
homogeneous medium with C,*w and p* that satisfies the 
displacement boundary condition. The integral range in equa­
tion (8) is over the whole material points. It should be noted 
that by converting the differential equation into an integro-
differential equation, the continuity of the displacement and 
traction across the phase boundary is automatically taken care 
of. Equation (8) can be rearranged using integration by parts 
to 
Up(T,a) = UA(r) + \bCiJkl(r' ,<x)Uk(t' ,a)fgpi(r-T')jdr' 

+ u
2\5p(r',a)Ui(r',a)gpi(r-r>)dr' (9) 

Note that equation (9) is formal because it contains Up (r, a) 
in both sides. 

Effective Medium 

When the composite has N kinds of fibers embedded in a 
homogeneous matrix phase, it is convenient to rearrange 
8CjJk/ (r, a) and p (r, a) as 

N 

SCijkl(r,a) = (CflH-Cfa) + E (Cuk,-Cf/kl)iJr,a) (10) 

N 

5p(r,«) = (p '«-p*)+ £ (p"-p>")*„(r,a) (11) 
« = i 

where the quantities with the index m denote those associated 
with the matrix phase, C"Jk/ and p" are the elastic modulus and 
the mass density of the nth kind fiber, respectively, and $„ (r, 
a) is the characteristic function of the nth kind fiber phase 
defined as (Kroner, 1977; Nomura, 1982) 

0 if r t z'th phase 
* i ( r , « ) - . . . e ., , (12) 

1 if r e ith phase 
z=l ,2 , n 

The ensemble average of a stochastic function / ( r , a) over the 
sample space is defined as 

</(r,a)> = J/(r,a)P(rfa) (13) 

where P(da) is a probabilistic measure defined over the sam­
ple space where each element represents the actual composite 
(see Nomura, 1982, for detail). By taking the ensemble 
average of equation (9) after substituting equations (11) and 
(12), we have 

<Up(r,a)) = UA
p{x) 

+ (Cljkl-Ctjkl)\(Uk(x',a)/)gpi{r-r')Jdr' 

N 

+ E (Q«-q7«)i<*»o,'.«)I/*<r'>./> 
n=l 

gpi(X-x')Jdx'+W2(pm-p*)\{Ui{T'))gpi{T-r')dT' 
N 

+ "2 E (pH-Pm)\<*„(r',a)UtWgpl(r-r')dt' (14) 
7 1 = 1 

So far Cfjkl and p* were not specified yet. We now adopt a self-
consistent scheme that Cfjkl and p* are chosen in such a way 
that the ensemble average of Up (r, a) is equal to Up (r). For 
such a situation, the "effective" elastic modulus CfJkl and the 
"effective" mass density p* are defined as the properties of 
the "equivalent" homogeneous medium (effective medium) 
that produces the same ensemble averaged displacement as the 
composite as 

<tf„(r,a)> = £#( r ) (15) 

We further adopt the following replacement of each quantity 
in equation (14) as 

<l/ t(r,«) i /> = t ^ ( r ) , 1 (16) 

<*„(r,fl)l/ t(r,a), ;> = VnAklij{t)Uf (x)j (17) 

<$„(r,c*)[/,(r,a)> = K„[//(r) (18) 

where V„ is the volume fraction of the «th kind fiber, A\$ is a 
proportionality factor of the displacement gradient inside the 
nth kind fiber when a single fiber is placed in a homogeneous 
medium with the displacement gradient Ufj applied at remote 
distances as a boundary condition. 

Equation (16) is a direct consequence of equation (15) where 
differentiation on space is interchanged with the ensemble 
average. In equations (17)-(18), we adopt the "ergodic 
assumption" that the ensemble average can be replaced by the 
spatial average 

\f(,i,a)P(da) = l/V\f(T + T',a)dT' (19) 

where Kis the volume of the composite. Equation (19) is ex­
pected to be valid for small a>. Equation (17) implies that the 
displacement gradient field inside each fiber is approximated 
by the displacement gradient field when a single fiber is placed 
in a homogeneous medium subjected to a boundary displace­
ment gradient Up. This approximation is called quasi-static 
approximation (Berryman, 1979) which is correct to O(o>4) 
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Fig. 1 The variation of axial shear modulus G£/Gm with V, for GfIGm 

= 21.538, pm = 0.4, and vf = 0.3 where G and v are the shear modulus 
and Poisson's ratio, respectively, for composites with long continuous 
fibers {lid = °o); solid line: present theory; broken lines: upper and lower 
bounds of Hashin and Shtrikman (1965); chain-dotted line: conventional 
self-consistent model of Chou et al. (1980). 

exact as u—0 (Gubernatis et al., 1979). In equation (18), 
displacement field inside each fiber is approximated by a 
boundary displacement. Equations (17) and (18) can be 
justified because the displacement field is continuous through 
the composite while the displacement gradient has discontinu­
ity across the phase boundary. Therefore, by combining equa­
tions (14)—(18), we obtain the following equations for C*Jk/ and 
p* as 

Pm-P*+ £ V„(p"-P'")=0 (20) 

q?«-Q«+ E KA}fPl(C"pgkl-c^k,)=o (2i) 

Fiber Aspec t Rat io 

Fig. 2 The variation of E£ (axial Young's modulus)/£m versus the fiber 
aspect ratios. Vt = 0.3, EfIEm = 20, vm = 0.4, and vf = 0.3 where Vf is 
the fiber volume fraction, E is the Young Modulus, and v is the Poisson 
ratio. 

0.2 0.3 0.4 0.5 

Equation (20) can be solved for p* for two-phase com­
posites as 

p*=Vmp" + Vlfi' (22) 
Although equation (21) can be derived in a simpler manner 
from elastostatic consideration, it should be noted that our ap­
proach makes elasto-dynamic analysis possible. Equation (22) 
shows that the effective mass density follows the rule of mix­
tures, which can be also derived by considering the balance of 
mass. Equation (21) yields a system of nonlinear algebraic 
equations since A\^n is a function of Cfjkl, CfJkh and C"Jkl as 
well as the fiber aspect ratio (major axis/minor axis). 

Numerical Calculations 
The solutions to equation (21) for C*jk] can be obtained 

numerically by iteration for several types of composites. The 
proportionality factor A\"k) was obtained by Lin and Mura 
(1973) when the shape of the fiber is ellipsoidal and the matrix 
phase is transversely-isotropic. Those expressions can be 
found in the book by Mura (1982) and is cited in modified 
form in the Appendix. 

Figure 1 shows the comparisons of the effective axial shear 
modulus normalized by the matrix shear modulus, with the 
conventional self-consistent model (Chou et al., 1980) denoted 
by a chain-dotted line and upper and lower bounds, derived by 
Hashin and Shtrikman (1965), denoted by broken lines for the 
composite reinforced by long^continuous fibers. Although 
both the matrix phase and the fiber phases are isotropic, the 
whole composite renders transversely isotropic. It is seen that 

Fiber Vo lume F r a c t i o n 

Fig. 3 The variation of E*/Em with Vf for EfIEm = 37, »m = 0.44, vf = 
0.21 and I Id = 1; solid line: present theory; broken line: conventional 
self-consistent model (Chou et al. 1980); solid circles: experimental data 
of Richard (1975). 

the present approach predicts lower values than the conven­
tional self-consistent method. The present prediction lies be­
tween the upper and lower bounds of Hashin and Shtrikman 
up to the fiber volume fraction of 0.95 and falls below the 
lower bound beyond this limit. However, it should be noted 
that the closest packing factor of the cylindrical fibers in the 
composites is about 0.9 and beyond this volume the physical 
significance is lost. Each curve beyond this point is shown just 
for completeness. 

Figure 2 shows the variation of the effective axial Young 
modulus (normalized by the matrix Young modulus) with the 
fiber aspect ratios. As seen from Fig. 2, the effective axial 
Young's modulus exhibits the "rule of mixtures" as the fiber 
aspect ratio goes beyond 50. For all practical purposes, the 
fiber aspect ratio greater than 50 can be identified as the long-
continuous fibers as far as the mechanical properties are 
concerned. 

Figure 3 is the result of the present theory (solid line), the 
conventional self-consistent method (broken line), and the ex­
perimental data tested by Richard (1975) for the spherical in­
clusion composite (aspect ratio = 1). It is seen that the present 
prediction coincides very well with experimental data. 

At high frequency regions, it is expected that the effective 
elastic modulus depends on the frequency. In such a case, the 
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transient effective quantity must be defined and treated. Fur­
ther analysis will follow subsequently. 
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A P P E N D I X 

The strain field inside an ellipsoidal inclusion surrounded by 
an unbounded and homogeneous medium can be solved by 
Eshelby's method. According to the solution by this method, 
the strain e;l is uniform inside the inclusion and can be ex­
pressed as 

6=[I + S ( ( C m - C , ) S - C r a ) - 1 ( C / - C m ) ] < 6 > G41) 

where I is the identity tensor whose components are Iijkl = 
(8ik5ji + bjibjk)/2. The inverse of the fourth rank tensor Aijkl is 
understood as AjjklAk^ml = Iym„. The fourth order tensors C,„ 
and C, are the elastic moduli of the surrounding medium and 
the inclusion, respectively. The second rank tensor <e> is the 
strain field applied to the material at infinity. The fourth order 

tensor, S, is called the Eshelby tensor and its explicit form was 
given by Lin and Mura (1973) where the surrounding medium 
is transversly isotropic. It is assumed that the x, axis coincides 
with the major axis of the ellipsoidal inclusion expressed by 
(x{/t)

2 + (x2)
2 + (x3)2 = 1. The quantity, t, is the inclusion 

aspect ratio. 
According to Lin and Mura (1973), it is convenient to 

decompose S as 

Sikmn = Cflmn (MikJI + Mkul)/&ir (A2) 

The fourth order tensor M is a function of Cm and t. The 
nonzero components of M are given below: 

A f l m = 4 i r [ At2x2{d(\-x2)+ft2x2}[e(\-x2) 
Jo 

+ft2x2}dx 

M2222 =Mlm = TT/2 j Q A(l -x2)[[f{l-x2) 

+ ht2x2}{(3e + d)(l-x2) + 4ft2x2} 

-g2t2x2(l-x2)]dx 

M232i =Mnn = TT/2 j o ' A(l -x2)[{f( \-x2) 

+ ht2x2}[(e+3d)(\-x2) + 4ft2x2} 

-lg2t2x2(\-x2)]dx 

M2121=M3131 = 7r/2f At2x2[{(d+e)(l-x2) 

+ 2ft2x2}{f(\-x2) + ht2x2} 

-g2t2x2(l-x2)]dx (A3) 

Mlm=Ml2l2 = 2Tr\l A(l-x2)[d(l-x2) 
Jo 

+ft2x2}{e(l - x2) +ft2x2} dx 

M22il = TT/2 [ ' A(l -x2)2[g2t2x2 - (d-e) (/(1 
Jo 

-x2) + ht2x2}]dx 

Mnn=M22n=(-2Tr)\aAgfx2{\-x2){e(\ 

-x2)+ft2x2)dx 

where 

A-l = {e(l-x2)+ft2x2}[{d(l-x2) 

+ft2x2}{f(\-x2) + ht2x2)-g2t2x2{\-x2)] 

It is known that there are five independent components for Cm 

when Cm is transversely isotropic. They are denoted as 

" - L-2222 - ^mi 
e = \C2222 — C22i3)/2 

f= Q"l2 = C O B (A4) 
a — Cm — Cm 

S - ^ 1 1 2 2 _ l- '1212 

h — Cm 

" — '--1111 
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Introduction 

In modern technology thin membranes are often used as 
construction elements. Examples can be found in aircraft and 
spacecraft applications. The building industry also uses mem­
branes (fabric constructions). The objective of our research is 
to study the force transmission from muscle to bone near the 
elbow joint. The connective tissue structures which connect 
contractile elements from the muscle to the bones often consist 
of thin membrane-like structures. Because of their geometry 
the membrane-like tissues will wrinkle easily. This wrinkling 
has much influence on the stress state and the force 
transmission. 

Models describing the mechanical behavior of membranes 
are usually based on the assumption that membranes have 
zero flexural stiffness. In normal membrane theory, however, 
negative stresses are possible. A membrane theory which ac­
counts for wrinkling does not allow any negative stress to ap­
pear. When a negative stress is about to appear the membrane 
will wrinkle. A model for the stress field after wrinkling is a 
so-called tension field. By definition a tension field is uniaxial 
in the sense that it has only one nonzero principal stress com­
ponent. In the direction perpendicular to the lines of tension 
the membrane is wrinkled. 

The modelling was apparently started by Wagner (1929). He 
tried to explain the behavior of thin metal webs and spars car­
rying a shear load well in excess of the initial buckling value. 
Many authors (for example Reissner, 1938; Kondo et al., 

The Wrinkling of Thin 
Membranes: Part I—Theory 
A method to describe the stress situation in a wrinkled membrane is presented. In 
this paper it will be shown that a special deformation tensor can be chosen which 
leads to the correct stress state of a membrane after wrinkling when it is substituted 
in the constitutive equation. The method can be used for anisotropic membranes in 
geometrically and physically nonlinear analysis. The case of simple shear and 
stretching of a membrane is considered to illustrate the potency of the method. 
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1955; Mansfield, 1970, 1977) contributed to the geometrically 
linear analysis. This modelling is based on the theorem that 
the lines of tension in a wrinkled membrane are exactly in a 
direction for which the strain energy of the membrane is at a 
maximum. In this situation the wrinkling of isotropic and 
anisotropic membranes can be described (Mansfield, 1977). In 
geometrically nonlinear theory the analysis is more complex. 
Wu (1981) presented a model describing the wrinkling of 
membranes in finite plane-stress theory. He modified the 
deformation tensor by introducing an extra parameter. The 
value of this parameter was determined by the condition that 
the stress in wrinkling direction is zero. The modification of 
the deformation tensor was chosen in a way that the principal 
Cauchy directions did not change because of the wrinkling, 
which is only true when the material is isotropic. 

Since the connective tissue structures we study may show 
large deformations and anisotropy, it was necessary to 
develop a new model capable of dealing with these 
phenomena. In this paper a detailed discussion of the theory is 
given. 

Theory 

Let us assume that: (a) Plane-stress theory can be used; {b) 
Flexure of the membrane does not introduce stresses in the 
membrane; (c) The membrane is not able to support any 
negative stress. If a negative stress is about to appear the mem­
brane will wrinkle at once. 

Although not essential for the theory we restrict ourselves to 
materials which behave "Cauchy-elastic". Thus, if it is taken 
into account that constitutive equations have to be objective, 
we are allowed to write for the Cauchy stress tensor a: 

< T = 1 / 7 F . H ( E ) . F C (1) 

with: F the deformation tensor; / = det(F) the Jacobian of the 
deformation tensor; E the Green-Lagrange strain tensor; and 
H a tensor function of E. 
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Notice that the deformation tensor F can only be used in 
equation (1) if it contains the real deformations of a mem­
brane. If however, a theoretical model does not account for 
wrinkling, deformations F may occur which result in negative 
Cauchy stresses. In reality these deformations will not occur 
because the membrane will wrinkle. The exact shape of the 
membrane after wrinkling is not definable with our theory. 
However, it is possible to use a special modified deformation 
tensor in the constitutive equation which results in the real 
Cauchy stresses. 

Consider a small part of a membrane (Fig. 1) in the 
neighborhood of position x. Vector if is a vector tangent to the 
midsurface of the membrane. In mathematical terms the 
assumption that no negative stresses occur can be represented 
by: 

a»a»a>0 (2) 

The tensor a is the real Cauchy stress tensor. 
Inequality (2) means that, in equilibrium, there can be no 

direction with negative Cauchy stress. There is an infinite 
number of inequality conditions because if is arbitrary. It can 
be proved, however, that the following finite number of ine­
quality conditions are necessary and sufficient in order to 
satisfy equation (2): 

/Tj "O-"/?! > 0 

n2'(j'ti2>Q 

iiy'O'nj =0 

(3) 

(4) 

(5) 

where nl and n2 are orthonormal vectors denoting the prin­
cipal directions of the real Cauchy stress tensor. So, if the 
membrane wrinkles, these vectors give the a priori unknown 
directions of the principal Cauchy stresses in the wrinkled 
membrane. The two inequalities represent the condition that 
neither of the principal Cauchy stresses can be negative. These 
conditions are necessary because a negative principal stress 
would contradict the assumption that negative stresses are not 
possible. These conditions are sufficient because determina­
tion of the stress in an arbitrary direction a: 

a-a-a= [(a*/?,)/?*, + (tf»n2)fl2].<M[(<f.fl1)«1 

+ (a-n2)n2] = (a'Hl)
2nl 'o^ + {a-n1)

ln1'a-n2 (6) 

always leads to a positive stress in direction a if conditions (3) 
and (4) are true. 

Considering conditions (3), (4), and (5), the following situa­
tions are possible. If both the principle stresses are positive the 
membrane is taut. If both the principle stresses are zero the 
membrane is slack. The only possibility left is the situation in 
which one principal stress is zero (for example, in the /?, direc­
tion) and the other principal stress (in the n2 direction) is 
positive. In the latter case conditions (3), (4), and (5) are 
transformed into: 

n^'a'n^ = 0 
n2-vn2>0 
nx*(fn2 = 0 

(7) 

(8) 

(9) 

In this situation the membrane may be wrinkled. In Fig. 2 a 
wrinkled membrane part is shown. The deformed configura­
tion of this membrane part, if it would not have wrinkled, is 
indicated by the dotted lines. The dotted membrane part 
would be the result of the deformation tensor F corresponding 
with a theory which does allow for negative principal stresses. 
In this figure n{ again is the a priori unknown direction in 
which the real principal Cauchy stress is zero. The problem to 
be solved is the determination of the principal stress in the 
direction of the unit vector n2. Because of the second assump­
tion, the stresses in the membrane part stay the same if we 

vl—midsurface 

Fig. 1 Vector a is touching the midsurface of the membrane 

wrinkled 

, '/ / fictive 
// / non-wrinkled 

Fig. 2 A wrinkled membrane part with deformed length V and de­
formed width S. Also the fictive nonwrinkled membrane part is shown 
(dotted lines) with length L<L' and width B. 

Fig. 3 The wrinkled membrane part straight in the plane determined by 
/?•] a n d n*2 

straighten it (by flexure only) in the plane determined by Hi 
and «2 (Fig- 3). 

The deformation tensor which would have given the mem­
brane part of Fig. 3 is a deformation tensor which corresponds 
with the real stresses, because that membrane part contains the 
real stresses as we argued above. Since the membrane part of 
Fig. 3 has the same shape, but is only longer in the /f, direction 
in comparison with the fictive nonwrinkled part, that defor­
mation tensor has to be of the form: 

F ' =(I + /3«i«i)-F 

the unit tensor. The 

(10) 

with I denoting the unit tensor. The tensor (I + ^nlnl) 
lengthens the fictive nonwrinkled membrane part to become 
just as long as the real wrinkled membrane part. 

It should be noticed that, when the material is anisotropic, 
the principal directions after wrinkling in general differ from 
the principal directions in the fictive nonwrinkled situation. 

Journal of Applied Mechanics DECEMBER 1987, Vol. 54 / 885 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e3 e i 

Fig. 4 Simple shear and stretching of a membrane 

The parameter /S and the direction of the principal frame have 
to be determined by using the coupled nonlinear conditions (7) 
and (9). The parameter /S, which is never negative, is a measure 
of the wrinkliness of the membrane. 

Summarizing we may state that the real stress state in a 
wrinkled membrane can be determined by using the modified 
deformation tensor F ' in the constitutive equation: 

< J ( F ' ) = 1 / 7 F ' . H ( E ' ) . F ' C (11) 

where: 

E ' = : 1 / 2 ( F ' C ' F ' - I ) ; 7=det(F ') (12) 

and where j8 and the direction of the principal frame have to 
be determined by making use of the equations (7) and (9). 

At this point there is only one problem left. Suppose a 
deformation tensor F is given which, using constitutive equa­
tion (1), generates one or two negative principal Cauchy 
stresses. It is not immediately clear what the condition of the 
membrane shall be. To be able to determine whether the mem­
brane is wrinkled or slack, the Green-Lagrange strain tensor 
based on F should be considered. When both the principal 
values of this strain tensor are negative, there are no directions 
at which material is stretched, so the membrane part is slack. 
If, however, in this situation, one of the principal values of 
this strain tensor is positive, there are directions at which 
material is stretched, so there are positive stresses, thus the 
membrane part is wrinkled. 

Notice that no assumptions, such as geometrical linearity or 
isotropic material have been made. The preceding formulation 
is generally applicable. 

Example: Simple Shear and Stretching of a Membrane 
In this example a membrane is deformed by simple shear 

and stretching (Fig. 4). Fl and F2 are the forces required to 
shear the membrane over a distance u and stretch it over a 
distance v. Material coordinates are denoted by £ ;(0<£,-<l ; 
i= 1,2,3). The initial position vector of a material point is 
given by: 

x0 = i2B0e2 + ^lL0el+^}D0e3 (13) 

where B0 is the initial width, L0 is the initial length and D0 is 
the initial thickness of the membrane. 

If no wrinkling takes place, the displacement field is given 
by: 

u = ^2ue2 + ̂ ive1+^we3 (14) 

where u is the shearing distance, v is the stretching distance, 
and w is the variation in the thickness of the membrane. This 
leads to the deformation tensor: 

Fig. 5 The direction of the principal frame is indicated by the angle a 

In simulating transversely isotropic material, the following 
representation of the tensor function H(E) with respect to the 
frame ei, e*2, e*3 is chosen: 

Hn = „ , ..1 „.A K* " vWu + "(Eh +Eh)] 
(l + u)( l-2u) 

Eh 

m. 
E 

(l + v)(\-2v) 

E 
33 ~ (1 + u)(l - 2u) 

E 
HI = El, / not equal j J 1 + v J 

•Kl-vW22 + v(Eii+Ei3)] 

Kl-v)Eii + v(Eil+Ee
22)] 

(16) 

(17) 

(18) 

(19) 

Efj are the components of the Green-Lagrange strain tensor 
with respect to the frame ei, e*2, e*3. The factor/determines the 
measure of anisotropy of the membrane (if / = 1 then the 
membrane is isotropic, i f / > 1 then ei is the stiffest direction). 

If the membrane wrinkles the real Cauchy stresses have to 
be determined by using the following set of equations: 

F ' =(I + j3«1/f,)»(I + «/L0e*2ei + v/LQelei +w/£>0e3e3) (20) 

ff(F')=l/./F'.H(E')'F>c (2i) 

where: 

J=det (F ' ) ; E ' = 1/2(F'C .F ' -I) (22) 

and in the equations (16) to (19) £?• is replaced by £"?.. 
Denoting the direction of the principal frame by the angle a 

(Fig. 5), the parameters a, j3, and w have to be determined by 
using conditions (23) and (24): 

nl-a{¥')'ni = 0 

nl'o(¥')'n2 =0 

and the plane-stress condition: 

e*3»ff(F')»e*3 = 0 

(23) 

(24) 

(25) 

F = I + u/L0e2e'l + v/L0?x ?x + w/Dge'^ (15) 
Using equations (20) to (22) with the conditions (23) to (25) 
leads to three nonlinear coupled equations in the unknowns a, 
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Fig. 8 The force F1 as a function of the stretching distance v for dif-
Fig. 6 The angle or as a function of the stretching distance v for dif- ferent values of the anisotropy parameter r 
ferent values of the anisotropy parameter I (see equation (16)) 
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Fig. 7 The parameter /3 as a function of the stretching distance v for 
different values of the anisotropy parameter f 

/3, and w: 

hl(.a,0,w) = O (26) 

h2(a,P,w) = 0 (27) 

A,(a,ftw) = 0 (28) 

The unknowns a, |3, and w can be solved numerically by using 
equations (26) to (28), for example by means of a Newton-
Raphson procedure. 

We have chosen the following numerical values for the 
model parameters: 

L0 = 100[mm]; B0 = 100[mm]; Da = l[mm]; 

£'=100[N/mm2]; v = 0.3 

The membrane is sheared with u = 5 [mm] and then stretched 
until v=i.2 [mm]. Results for the geometrically nonlinear 
analysis are given in Figs. 6 to 9. 

In Fig. 6 it can be seen that if the membrane stiffens in ej 
direction the lines of tension tend to this direction. Notice that 
if the stretching is strong enough the wrinkles are pulled out of 
the membrane. This is the point at which the parameter (3 
becomes zero (Fig. 7). If the membrane stiffens, the forces 
necessary to the deform the membrane increase (Fig. 8 and 
Fig. 9). 

For isotropic materials (f= 1) the formulation of Wu (1981) 
would generate the same results because, in this situation, 
equation (10) degenerates to the same modification of the 
deformation tensor as Wu proposes in order to describe the 
wrinkling of isotropic membranes. The results for anisotropic 
materials, however, can only be found by making use of the 
theoretical model given above. 

Similar figures can be found in a geometrical linear analysis. 
These results turn out to be the same as results found by 
geometrical linear formulations, for example the formulation 
of Mansfield (1977). 

® wrinkled 
x taut 

Fig. 9 The force F2 as a function of the stretching distance v for dif­
ferent values of the anisotropy parameter f 

Conclusions 

The model given above is easy to understand and pretends 
to describe the general situation of the wrinkling of 
anisotropic membranes in geometrically nonlinear analysis. 
However, the preceding analysis of wrinkling membranes is 
only theoretical. A confrontation between this theory and ex­
periments still has to be done. 

In situations in which no analytical solutions to problems 
are known we want to use numerical approximation methods. 
We choose to use the Finite Element Method. Based on the 
theoretical method, a membrane element which is able to 
wrinkle has been developed. We plan to discuss this element in 
a paper to follow. 
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Introduction 

Force transmission from muscle to bone near the elbow 
joint takes place by means of connective tissues which connect 
contractile elements from the muscle to the bones. They often 
consist of thin membrane-like structures. Because of their 
geometry, the membrane-like tissues will wrinkle easily. This 
wrinkling may have much influence on the stress state and the 
force transmission. In Roddeman et al. (1987) a mechanical 
model of wrinkling membranes has been presented. Wrinkling 
is accounted for by replacing a given deformation tensor, 
which would result in negative Cauchy stresses in the mem­
brane, by a modified deformation tensor which results in the 
correct stress situation. With this model the wrinkling of 
anisotropic membranes in geometrically nonlinear analysis 
can be described. In this paper a membrane element will be 
derived which can be used for the modelling of thin structures. 

The Equilibrium Conditions 

The equilibrium conditions in local form may be formulated 

The Wrinkling of Thin 
Membranes: Part 11—Numerical 
Analysis 
Using a weighted residual method, a geometrically and physically nonlinear mem­
brane element is derived, which can be used in the analysis of anisotropic mem­
branes. What is special about the formulation is that the wrinkling behavior of the 
element is incorporated. If wrinkling occurs the stress situation in the element is 
determined by making use of a modified deformation tensor. A structure may have 
completely slack regions, leading to a singular stiffness matrix. Because of this we 
have chosen to use a restricted step method for the iterative solution procedure. A 
simple shear test is used to compare numerical and analytical results which show 
good agreement. 

as: 
V-<r = 0 (1) 

where V is the gradient operator with respect to the deformed 
configuration and a is the real Cauchy stress tensor which is 
symmetric: a=ac. 

For a finite element model an integral form of equation (1) 
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is needed. Taking the inner product of the local equilibrium 
conditions with an arbitrary vector function h and integrating 
the result over the deformed volume V leads to: 

( (V»o)-MK=0 (2) 

The integral form of equation (2)_ is equivalent to the 
equilibrium conditions (1), as long as h is arbitrary. Partial in­
tegration and the application of Gauss' theorem leads to: 

[ \a:{vh)c dV= f 7iA'[o-h]dA (3) 

where HA denotes the outward unit normal on the deformed 
surface A of the body. Since the volume V and the surface A 
are a priori unknown, equation (3) is transformed to the initial 
configuration, for which the volume V0 and the surface A0 are 
known: 

fo 
[a-.((R^-V0)hy]JdV0= nA.[vh]J"dA0 

JA0 

J" = dA/dA 

(4) 

with J=dV/dV0; J" = dA/dA0; and V0 is the gradient 
operator with respect to the initial configuration. 

R denotes the real deformation tensor of the body. It should 
be noticed that in a wrinkled membrane with no flexural stiff­
ness R is indefinite. It can be shown that an equivalent for­
mulation of equation (4) is: 

[(R~l.Ja):(V0hy]dV0 L "A •[<fh]J<>dA0 (5) 

The term R~'"./<T in equation (5) is called the first Piola-
Kirchhoff stress tensor ir. If a membrane wrinkles (in a prin­
cipal direction, for example given by unit vector n{) the exact 
shape in wrinkling direction is not known, and so the real 
deformation tensor R is unknown. It can be demonstrated 
however that R may be replaced by a similar deformation ten­
sor S, which is known. 
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ficrive non- wrinkled 
configuration 

Fig. 1 The total deformation R is divided into F and G 

Consider the deformation of a wrinkled membrane, as a 
deformation from the initial configuration to an imaginary 
nonwrinkled membrane (with corresponding deformation ten­
sor F), followed by the wrinkling of the membrane, with cor­
responding deformation tensor G (Fig. 1). So, we write: 

R = G-F (6) 

where: 

G = «2«2 + £ l l « l « l + <?13»l"3 +g31«3«l +£33«3"3 (7) 

The frame nx,n2, n3 is the principal Cauchy frame where n3 is 
perpendicular to the plane of the fictive nonwrinkled mem­
brane. The unknown terms g,y«,n; only cause deformations in 
the plane determined by nx and n3 and define the wrinkles of 
the membrane part. Using the fact that there are only stresses 
in the n2 direction, it is obvious that: 

Ja=(Ja22)n2n2 (8) 

and it can be shown that: 

ir = R-1»(/ff) = F - ' . G - 1 . ( / f f ) 

= F - ' . {« 2 « 2 +#„«!« ,+g B n 1 «3+g3 I n 3 n 1 

+ g33«3"3 }-l-(Ja22)n2n2 = F~l'(Ja22)n2n2=¥-l'(Ja) (9) 

In a similar way the deformation tensor F can be regarded to 
be a deformation from the initial configuration to a non­
wrinkled membrane, still with initial thickness D0, with cor­
responding deformation tensor S, followed by a change of the 
thickness from D0 to its real value D: 

F = («1n1+«2«2+-D/Do«3«3) , s (10) 

After substituting equation (10) in (9) it is found that: 

TT = F " ' '(Jo) = S~'•(/?!«! + n2n2 +D/D0n3n3)~
l •{J<j22)n2n2 

= S-l'(Ja22)n2n2 

thus: 

ir = S-1.(^<f) (11) 

It is easy to show that the last equation is also true in case the 
membrane does not wrinkle. The advantage of equation (11) is 
that S does not contain variations in the membrane thickness 
anymore, which will prove to be useful for the linearization of 
the equations to follow. 

The integral form of the equilibrium conditions now can be 
written as: 

f 
J F 0 

*:(V0A)crfKt o = I * o ' hdAn (12) 

where it is given by equation (11) and kQ = J"nA »a, which is the 
force on the deformed surface transformed to the undeformed 
surface. 

\ 3 

Fig. 2 A three-noded element. ^ , £2, a n d £3 a r e material coordinates. 

An estimated solution of the equilibrium condition in in­
tegral form (12) is marked with a superscript *. In general the 
estimated solution will not satisfy equation (12) exactly, so a 
better solution is searched for. The difference between the 
estimated solution and a solution satisfying equilibrium condi­
tion (12) is indicated by a delta, so: 

ir = TT* + 8ic 

, etc. Thus equation (12) may also be written as: 
(.ir* + 8Tr):C70h)cdVi °~L (k^ + 5k0)'hdA0 (13) 

Until now equation (13) is perfectly equivalent to the 
equilibium conditions (1). The difference between the 
displacement field satisfying the equilibrium conditions and 
the estimated displacement field is regarded to be the primary 
unknown of equation (13). Let us assume that the estimated 
solution is close to the real solution. Then equation (13) can be 
linearized with respect to the primary unknown. 

According to equation (11), the difference in -K in the 
estimated solution and equilibrium is approximately given by: 

5ir = r J ( S - 1 ) ' 0 ) * + S * - 1 - S O ) (14) 

Since: 

fi(S-1)=-S*-,««S.S*-' (15) 

it is easily shown that linearization of equation (13) leads to: 

( [ | ( V 0 A > . S - ' ) : ( « ( A ) ) 

{.S*-'•(/*)*•( v0A)c):{S*-1.8S)]rfK0 

( 8*0' hdA0--
^0 

•K*:(V0h)cdV{ • • + L 
J An 

k*0-hdA0 (16) 

We will solve (16) by means of the Finite Element Method. 
The observed mechanical system is divided into a number of 
elements of finite dimensions. Often it is possible to define all 
kinds of elements and to give a general derivation of the equa­
tions without considering the type of the element. In the 
present case however it is convenient to have an element with 
constant strains and stresses. Otherwise the element might be 
divided into wrinkling and non wrinkling zones, which would 
make the analysis unfeasible. Thus, we have decided to use a 
triangular, three-noded, constant strain element and specialize 
the derivation for this element. In Fig. 2 the element is shown. 
Equation (16) will be analyzed for one element (thus V0 is the 
initial volume of the element and A0 the initial surface). 

The position of a material point of the element is given by: 

x = 4>kxk + t3Dn3 (17) 

where \j/k are shape functions, £3 is the material coordinate in 
the direction perpendicular to the plane of the membrane, and 
xk are position vectors of the nodal points. D denotes the 
thickness of the membrane. The Einstein summation conven­
tion is used, i.e., when an index occurs twice in a product 
term, this implies summation with respect to all its possible 
values. Normally the possible values of an index are 1, 2, and 
3. However, indices which are Greek characters only can take 
the values 1 and 2. 
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Fig. 3 The direction of the principal Cauchy frame is indicated by the 
angle a 

The shape functions depend on the material coordinates £ t 

and £2: 

1̂1 = f i ;02 = f 2;03 = i - Si - €2 (is) 
First, an expression will be derived for the increment 5S (equa­
tion (16)). Base vectors in the initial configuration are given 
b y : 

c0l = dx0/d£ 1 = ^ 0 1 - *<» (19) 

c02 = dx0 /d% 2 = x02 - xm (20) 

cm=dx0/d£3=D0nm (21) 

where the subscript 0 denotes values in the initial configura­
tion. The reciprocal vectors are given by: 

701 = 1/^02*4 (22) 

(23) 

(24) 
702 = 1 /C C03*C 01 

703 = 1/CCoi *C02 

where 

c = cm>(cm*c02) (25) 

It can be derived that F is given by: 

F = dtk/dHTxky0T + Dn3ym (26) 

From equations (10) and (26) it follows that: 

S = dtk/dHrxky\ + D0n3fm (27) 

Using equation (27) leads to: 

5S = d+k/dtT6uk%T + A)S«37o3 (28) 

where uk is the nodal displacement of node k. Secondly, ex­
pressions will be derived for the increment 5n3 (equation (28)) 
and the increment 5(Ja) (equation (16)). 

In Roddeman et al. (1987) it is shown that the real stresses in 
a wrinkled membrane can be determined by modifying the 
deformation tensor in the constitutive equation: 

(/ff) = F ' - H ( E ' ) . F ' c (29) 

with: 

F ' = ( I + /S«,«,).F (30) 

where I is the unit tensor. The direction of the principal 
Cauchy frame is denoted by the angle a (see Fig. 3). 

The parameters a and |3 and the element's thickness D are 
determined numerically by using the coupled conditions: 

(a) there is no stress in wrinkling direction: 

nl'(Ja)-ni=0 (31) 

(b) the frame «'lr n2, n3 is the principal frame: 

nr(Ja)-n2=Q (32) 

(c) membranes are in a state of plane stress: 

n3-(Ja)-n}=0 (33) 

Using equations (29) to (33), it is possible to derive expressions 
for the increments in n3 and Ja, which can be represented by: 

8n3=*X$k-5uk (34) 

h(Ja)^o*k>huk (35) 

Thus, increments in these terms are depending on increments 
in the primary unknown nodal displacements, via equations 
(34) and (35). The second order tensor N*ft (in equation (34)) 
and the third order tensor 3ak (in equation (35)) depend on the 
current estimation of the nodal displacements. Using equa­
tions (34) and (35) the discretized form of equation (16) may 
be written as: 

JK [{(Vo^s-MM^'fiMj-fS-'.o/,,)* 

•8w,f03))]dKo- ( 6k0.hdA0« - \ TT*:{V0hYdV0 

\ icS'hd + \ kX-hdAn 
*0 

(36) 

Because of the approximation for the displacement field it is 
no longer possible to fulfill exactly equation (36) and the 
boundary conditions. However, an approximation can be 
made by choosing well determined weighting functions for h. 
Often good results can be obtained by using the shape func­
tions, introduced in equation (17), as weighting functions. So 
we introduce: 

H=Mi (37) 
where h, is the value of the function h in the nodal point /. 

Using equation (37) and the fact that all terms in the volume 
integral in expression (36) are constant over the volume, ex­
pression (36) may be replaced with: 

-V0di,,/dZvdtkmr70T-ep(Joy-S*-c.epy0v-S*-> 

- tVW, /9£„703 -ep (J<T)*-S* ~c-epy% -S* - ' 

3*]•««*- ( Sk0-i!dA0» - ( *•:(V0h)cdV0 •N 

I k a'hdAn (38) 

in which use has been made of the identity: 

(3A rc.w)-v= (3A-y )-w 

where w and D'are arbitrary vectors. Furthermore e\, e'2, and 
e3 denote an orthonormal set of vectors. The first term on the 
right of equation (38) will be written as: 

[ **:(VoA)crfKo = A ; . [ |Vb^ , /a f „ fo • * * ' ^ ] = * ; ' / / (39> 

in which the vec tor / , is defined, which is the equivalent nodal 
force in node / due to the stresses in the membrane. We only 
consider constant forces on the nodal points. Thus: 

and: 

k'*0-hdA0 = hrfi 

(40) 

(41) 

where / , is the prescribed nodal force on node /. 
According to equations (39) to (41), expression (38) may be 

written as: 

hrKfk.8uk^hr[f;-^] (42) 

where Kfk contains the term [Va U^k] from equa­
tion (38). Equation (42) is satisfied by arbitrary hl if: 
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side d 

e3 e i 

4) 
Fig. 4 Simple shear and stretching of a membrane 

K , W « * » / , - / , (43) 
The matrix representation of the first term on the left side with 
respect to a certain base is called the stiffness matrix of the ele­
ment. The right side contains the residual nodal forces. 

Logical Structure of the Element 

Given a new estimation of the nodal displacements, the ele­
ment decides on the following criteria whether it is taut, 
wrinkled, or slack. If both the principal Cauchy stresses in an 
analysis without wrinkling are non-negative, the element is 
taut. In this situation the stiffness matrix and the equivalent 
nodal forces are determined by normal analysis (i.e., without 
wrinkling terms). If at least one of the principal Cauchy 
stresses in the analysis without wrinkling would be negative, 
and one principal Green-Lagrange strain in the analysis 
without wrinkling would be positive, the element is wrinkled. 
Then the new stiffness matrix and equivalent nodal forces are 
determined on the basis of wrinkling analysis. Otherwise the 
element is slack and the stiffness matrix and the equivalent 
nodal forces only contain zeros. 

The Iterative Process 

Choosing a base, assemblage of the equations (43) of all the 
elements of the body and elimination of prescribed nodal 
displacements leads to: 

K*.bu=f-f* (44) 

with 

K* the stiffness matrix of the structure; 
Zu the total column of incremental free nodal 
displacements; 
/ t h e total column of prescribed forces on the body; 
/* the total column of equivalent nodal forces due to the 
stresses in the elements. 

Since there may be completely slack regions in the structure, 
the total stiffness matrix may be singular and Newton-
Raphson iteration cannot be used. A globally convergent 
iterative procedure, based on a minimization problem, which 
can be used, for example, is a restricted step method where the 
column bu is the solution of: 

{2K*T'K* + ei)-bu = 2K*T-{f-f) (45) 

The parameter 6 is chosen each iteration step such that (2 
K*T'K* + 6T) is positive definite (which is true if 6 is positive) 
and such that the norm of (/-/*) decreases. For a theoretical 
background see Fletcher (1980). 

side c B0 side b 

L0 

side a 

Fig. 5 An element mesh with 18 elements 
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Fig. 6 The force Ff as a function of the stretching distance v for dif­
ferent values of the anisotropy parameter 1 
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Fig. 7 The force F2 as a function of the stretching distance v for dif­
ferent values of the anisotropy parameter f 

Test Problems 

In Roddeman et al. (1987) the analytical solution of the 
wrinkling of a membrane deformed by a simple shear and 
stretching is derived. In Fig. 4 the simple shear test is 
illustrated. 

Again we have studied the behavior of the membrane when, 
with constant simple shear, the membrane is stretched. An ele­
ment mesh with 18 elements is used (Fig. 5). The nodes on the 
sides of the mesh are prescribed displacements according to 
the analytical solution, so the nodal displacements in the inner 
area should converge to the analytical solution and the 
analytical results should be regained. Figure 6 and Fig. 7 com­
pare analytical and numerical results. Tranversally isotropic 
material is used for the membrane. The parameter / deter­
mines the measure of anisotropy (see Roddeman et al., 1987). 
If / = 1 then the membrane is isotropic, i f / > 1 then e\ is the 
stiff est direction. It can be seen that the agreement between 
the analytical and numerical results is very good. 
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Conclusions Acknowledgments 

The Finite Element Method can be used in geometrically 
nonlinear analysis of anisotropic membranes which wrinkle. 
Test problems show good agreement between analytical and 
numerical results. Since completely slack regions in the struc­
ture lead to a singular stiffness matrix, the iterative procedure 
should be chosen with care. Comparison between numerical 
and experimental results still has to be done. This is part of 
our present work and will be published later. 
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Bisynchronous Torsional 
Vibrations in Rotating Shafts 
In this study, the intrinsic behavior of rotating shafts with residual unbalance is con­
sidered. The longitudinal component of the angular momentum caused by syn­
chronous precession (whirling) induces torsional vibrations with a frequency of 
twice the rotation frequency (bisynchronous). The nonlinear term which represents 
this coupling is characteristic of the asymmetrical aspect of rotating shaft 
kinematics. This result has been obtained analytically and confirmed 
experimentally. 

1 Introduction 
The effect of the mutual influence between transverse and 

torsional vibrations of a turbogenerator shaft on the stability 
of its motion has been investigated by Tondl (1965). Taking 
into account a synchronizing torque acting on the rotor of the 
alternator, the author shows that there are speed intervals 
where the vibrations due to the residual unbalance of turbine 
and generator rotors are unstable. Broniarek (1968) rightly 
shows the importance of the kinematic properties of the 
system considering the possibility of using Euler's angles in the 
case of rotating shafts. The disturbances in the system are 
caused only by the rotor unbalance. The main result is that 
torsional vibrations are excited parametrically by transverse 
vibrations. However, the quantitative expression of this result 
is complicated and does not allow concrete conclusions to be 
obtained. A shaft with a continuous mass distribution and a 
residual eccentricity has also been considered by Gasch et al. 
(1979). As in the Laval-Jeffcott rotor, which is not subjected 
to the gyroscopic effect, torsional vibrations can be caused on­
ly by one nonlinear coupling term, proportional to the eccen­
tricity. It is shown that this term does not oscillate and 
therefore can cause only quasi-static shaft torsion, in a first 
approximation. Inversely, Kellenberger (1980) shows that in 
the presence of an oscillator driving torque, transverse vibra­
tions can be induced by torsional vibrations if these are suffi­
ciently large. However, a numerical application makes it 
possible to consider that these combined oscillations are not 
dangerous, because they have no particular influence on the 
dynamic behavior of shafts. Cohen and Porat (1985) consider 
an unbalanced gyroscopic rotor, driven by a shaft rigid to 
bending and flexible to torsion. The nonlinear equations of 
motion are investigated by an asymptotic method. This ap­
proach does not yield a closed solution, but permits deter­
mination of the stability conditions at the combination 
resonances and gives an indication that in certain cases, 
superimposed damping causes considerable enlargement of 
the instability zones. 
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Fig. 1 Model of rotating shafts: oxyz: fixed (inertial) Cartesian frame 
OXYZ: Cartesian frame translating in O in relation to oxyz 

The aim of this paper is to show a coupling phenomenon 
related to the gyroscopic effect, which consequently is able to 
induce torsional vibrations whose frequency is double that of 
the rotational frequency (i.e., bisynchronous). This result is 
obtained analytically and verified experimentally. This coupl­
ing problem requires a careful examination of the kinematic 
aspect of rotors. 

2 Equations of Motion 
The rotating shaft used as a reference in this paper has 

distributed mass M(x), flexural stiffness EI(x), torsional 
stiffness GP(x), and eccentricity e(x) (Fig. 1). With regard to 
transverse vibrations, the elastic (isotropic) behavior of de-
formable parts with circular cross-section is governed by the 
Euler-Bernoulli beam theory. 
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main small. Introducing the relationship between the position 
of the geometric center O and the mass center G and taking in­
to account that the rotations can be put equal to displacement 
slopes, the kinetic energy of the complete model is obtained 

(x,0,0) 

Fig 2 A disk of infinitesimal thickness dx, located by the displace­
ments yG and zG of its mass center and by angles i/>, 0, and 0 

As in the book written by Lalanne et al. (1983), the 
kinematic description of the shaft is performed cautiously. 
Any disk of the shaft is located first by defining a fixed (iner-
tial) Cartesian frame oxyz; its position corresponds to the end 
of the shaft in equilibrium. Its axis ox coincides with the 
geometric centers curve of the model (or theoretical spin axis). 
Another Cartesian frame GXYZ, translating in relation to ox­
yz, is placed at the mass center G of the disk (Fig. 2). A third 
Cartesian frame Gxyz is rigidly bound to the disk and follows 
all its movements. The axis Gx remains constantly perpen­
dicular to the faces of the disk and coincides with GX and ox 
in equilibrium. 

The three Cartesian frames of reference are defined above 
in the same way as in the study of the dynamic behavior of 
airplanes and ships, where reference is made to the "nautical 
and aeronautical" axis (Lur'e, 1968). The orientation of the 
moving frame Gxyz is defined by the angles </>, 8, and \p, call­
ed, respectively, angle of roll, angle of pitch, and angle of yaw 
in the case of airplanes or ships. The angle 4> characterizes the 
rotation of the shaft itself. 

It is very important to take care that, contrary to ap­
pearances, from a dynamics point of view angles yp and 8 do 
not play a symmetrical role. In fact, the angular velocity vec­
tor \j/ is situated on the GYaxis which is constantly parallel to 
oy when the angular velocity vector 8 is on the moving axis 
Gn. This is valid even for small deviations from equilibrium of 
the disk, when the angles 8 and \j/ can be considered as small. 
This fact is frequently ignored in many studies of rotating 
shafts, even in recent ones (Cohen and Porat, 1985). The angle 
4> includes the "global" rotation of the shaft; it varies from 
zero to infinity. The a priori dissociation of rotational tor­
sional vibrations is not only pointless when formulating the 
problem, but also limiting, as shown in the work done by Ber-
nasconi and Francois (1982). 

According to Bernoulli's assumption, plane and circular 
cross-sections of beam subjected to torsion and pure flexion 
remain plane. The model (Fig. 1) can thus be divided into an 
infinity of infinitesimal disks dx. The investigation of the 
behavior of one single disk makes it possible to write, after in­
tegration, the energy of the whole system. 

The inertia tensor matrix (diagonal) of a disk is expressed 
simply in the moving axis Gxyz bound to the disk. The in­
fluence of the eccentricity on the moment of inertia of the 
principal axis Gy and Gz is neglected. In the same moving 
axis, the most general form of the instantaneous angular 
velocity vector can be simplified because the angles 8 and \j/ re-

^ = L {-^M(-y2+i2s>+-2 - „ • ~ , • 2 [J(y'2 + z'2) + Jpj>2] 

-(Jp-Me2)cj>z'y' +Me4,[zcos{(j) + a)-ysm{<j) + a)]\clx (1) 

where / is the diametral mass moment of inertia, Jp the 
longitudinal (polar) mass moment of inertia (both per unit 
length), e and a the eccentricity amplitude and phase of the ec­
centricity. Taking into account the assumptions concerning 
the elastic behavior of the model, its potential energy is equal 
to: 

r' 1 
U=\ —[GIP<f>'2+EI(y"2+z"2)]dx (2) 

As the shaft is subjected only to the rotational torque (per unit 
length) C{x,t), the last energy form of the system is the work 
W of the external torque: 

(3) W= C(x,t)4>(x,t)dx 

The application of Hamilton's principle allows the equations 
of motion to be obtained, writing Euler's equations for the 
variational problem. These equations form a nonlinear partial 
differential system which characterizes the basic aspect of the 
dynamic behavior of circular cross-section shafts with a 
residual unbalance, for transverse and rotational vibrations, 
when the shaft is subjected to an external driving torque 
C(x,t): 

My + -^- (EIy")-—J(y'+2J>z') 

= Me—-[4> sin(0 + a)] 
at 

Mz + -jjj (EIz')-—Uz'-2J>y') 

= -Me — [</> cos(0 + a)] (4) 
at 

J"i~~ (GI"^) = C+jp~ U'y') 
dx dt 

+ Me\y sin(<ji + a) — z cos(<j> + a)] 

The unknowns of this differential system are the 
displacements y and z of the geometric centers curve as well as 
the rotation angle <j> (including torsion). In the general case of 
stepped shafts, the derivatives should be understood in the 
sense of distributions (Bernasconi, 1986). This differential 
system includes a large number of particular cases found in the 
literature. 

The combination of eccentricity with the transverse motion 
of the mass center G produces an "inertia moment" which ap­
pears on the right-hand side of the third equation. It can be 
seen that this coupling term can be calculated in the following 
way: 

Mdxri\e = ixMedx[y sin(</> + a) — z cos(4> + a) ] 

The second coupling term in the rotation vibrations equation 
is the one which is at the origin of the phenomenon described 
in this paper. It results from the term of the kinetic energy ex­
pression which causes the gyroscopic effect. It can be split up 
as follows: 
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Fig. 3 Longitudinal component of the angular velocity vector i-

J>-ZT (z'y')--
at at 

= -J" 4T W sing) = - A (JP^) = -Mf 
o? at 

•ij/x and Afj are the projections of i/< and M on the j? axis (Fig. 
3). The equation, therefore, expresses the rate of change con­
sidered in time of the longitudinal component of the angular 
momentum, which is not caused by the rotation of the shaft 
but by the rotations during precessions. In accordance with 
the angular momentum equation, it induces a longitudinal 
moment. It, therefore, characterizes a typical dynamic effect, 
but is also a reminder that the angles 6 and ip, even if they are 
assumed to be small, do not play an equivalent role. This fact 
is partially dissimulated by equaling these angles to the 
displacement slopes. 

3 Torsional Vibrations Induced by Transverse 
Vibrations 

If there is a coupling it means that transverse vibrations in­
duce torsional vibrations and vice-versa. In this paper, we ex­
amine only the possibility of transverse vibrations creating tor­
sional vibrations. 

If the transverse inertia and gyroscopic effect are neglected 
in the first two equations of the differential system (4), then y 
and z are removed from the equations and introduced in the 
eccentricity coupling term of the last equation, the differential 
system becomes 

My + ~ {EIy") = B^-[j> sin(« + «)] 
bxL dt 

Mz + - ^ (EIz')--

J"4>—r- (GFV) 
ox 

-5—[4>cos(0 + a)] at 

at 
(5) 

r 32 d2 , s . 
+eidxT {EIZ,,) c o s ^ + a > ~ ^ r (EIy )sin(*" 

•a) 

with B(x) the amount of unbalance per unit length ( = Me). 
The method chosen consists of uncoupling the two first 
nonlinear equations of this last differential system (5), which 
is possible using a small approximation, as shown by Gasch et 
al. (1979). 

Whatever movement is made by the shaft, the unknown 
functions can be expanded into orthogonal series in the modal 
bases concerning flexion and torsion, 

i t = i 

00 

* = i 

(6) 

the functions Vk and $,„ being the mode shapes of the flexural 
and torsional vibrations. Taken to be distinct of the natural 
frequencies, the required ordinary differential equations can 
be obtained: 

J{fZ+R{Tl=Jg ™ [</>0 sin(0o+a£)] 

J{tl+R{Tl=-Jb
k A [4>0 cos«>0 + aH)] 

** m -* m ' -*vw •* m ' s: Cimdx+Y L -^ i 
/ = i i = i dt 

(TfTJ) (7) 

00 

+ D <Jbn,„m cos«>0 + a»nm) - 7-J sin(4>0 + a*,,,)] 
« = i 

The terms Jk,a^, Jb„m, ab
nm and Jp

mij are defined in the Appen­
dix. The function 4>0(t) represents the rigid-body mode. Thus 
the three coupled partial differential equations are replaced by 
an infinity or ordinary differential equations; those which 
represent the tranverse motion are uncoupled. 

The general start-up problem of rotating shafts and their 
passing through critical speeds is in many cases of great prac­
tical interest. The calculation of the rigid-body mode is im­
mediate if the coupling terms opposite the "useful" terms are 
neglected. The first two equations, or family of equations, of 
the above differential system are those for elementary 
oscillators subjected to sinusoidal actions whose amplitude 
and frequency vary slowly, if rotation vibrations are 
neglected. If the rotation torque is constant, the particular 
solutions of these equations can be written as follows: 

7? = 7V(/)cosfe0(0+«j? + a t ( 0 ] 

n = fk(t)sm[ct>0(t)+a^ + ak(t)] (8) 

The functions tk(t) and dk{t) vary slowly. The kth modal 
phase difference increases from zero to IT; its value is ir/2 
when the excitation frequency of the system is near that of a 
natural flexural frequency. 

It is now possible to evaluate the nonlinear coupling terms 
which can induce torsional vibrations. As regards the eccen­
tricity coupling term: 

T% cos(0o + ab
mn 

(9) = f„ (t) [sin(0o + a* + a„ (t)) cos(4>0 + < „ ) 

- cos((/>0 + <xb
n + a„ (t)) sin(<£0 + «*,„)] 

= fn(t)sm[a,b + a„(t)-ab„J 

Taking into account the nature of the functions T and a, 
which vary slowly, it is clear that this coupling term does not 
have an oscillatory component. It is, therefore, not able, in a 
first approximation, to induce torsional vibrations. 

When the machine starts up, the transverse modes 
predominate one after the other. Then the torsional vibrations 
induced by the gyroscopic coupling terms are defined, in a 
first approximation, by the equation: 

Jm Tm + Rm Tm = - J"mm 7% (t)4>2
0 (t) sin 2[0O (/) 

+ ab + a„(t)] (10) 
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Fig. 4 Characteristics of the vertical experimental device: material: 
steel; density: 7850 Kg/m3; elasticity modulus: 210 GPa; shear modulus: 
82 GPa; mass of the disk: 10 Kg; longitudinal (polar) mass moment of in­
ertia of the disk: 0.112 Kg m2 moment of inertia of the support (spindle 
and driving system): 0.314 Kg m2 . Measured value of the natural fre­
quencies: flexion (fi = 0): 9.27 Hz; torsion: 17.78 Hz. 

Without forgetting the modal superposition (6), it can be seen 
that the excitation amplitude is proportional to the square of 
the speed of rotation. Finally and most important, the excita­
tion frequency corresponds to twice the speed of rotation. It 
induces bisynchronous torsional vibrations. 

Indeed, when the shaft moves in synchronous precession, 
the motion of a disk is such that the angles 6 and \p follow 
sinusoidal laws with an angular frequency equal to the fre­
quency of rotation 0, and with a phase difference TT/2. With 
reference to Fig. 3, it is easy to be convinced that \j/ is 
"modulated" in a certain way at the frequency Q. The compo­
nent P\j/6 of the angular momentum, therefore, oscillates with 
a frequency of twice the rotation frequency; the torsional mo­
tion also results. 

4 Verification by Experiment 

The question is how important are these bisynchronous tor­
sional vibrations in reality? To answer this question, an ex­
perimental assembly has been constructed (Fig. 4) in the form 
of a disk, the longitudinal moment of inertia of which is 
relatively high. It is situated at one end of a vertical steel shaft. 
This shaft is imbedded in the front-end of a machine-tool spin­
dle, which is very rigid rotating system with a low perturbation 
level. The whole rotating system is driven by a direct current 
electric motor through a highly elastic driving belt. The speed 
of rotation of the system can be varied from 0 to 600 rpm (0 to 
10 Hz). 

The shaft is equipped with strain gauges. Torsional vibra­
tions are measured by four strain-gauges with grids set at an 
angle of ±45 deg in relation to generating lines. A corre­
sponding full-bridge assembly makes it possible to eliminate 
all the flexural vibrations. These are obtained using one single 
strain-gauge in the direction of a generating line. The signals 
are transmitted to the analyzers by telemetry. 

In order to have an appropriate configuration of the system 
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Fig. 5 Spectral representation of the measurement of the bisyn­
chronous component of the torsional vibrations for several steady-state 
values of the frequency of rotation (parameter) 

for our purpose, the system has been approximately tuned into 
the internal resonance. Indeed, the natural frequency of the 
torsional vibration model (17.8 Hz) is close to the double 
natural frequency of the lateral vibration mode. The measure­
ment of the natural frequency of the flexural vibration mode 
when the shaft is not turning gives 9.3 Hz, the critical speed of 
the rotation calculation corresponds to 10.5 Hz. 

The experiment shows that the bisynchronous excitation of 
the torsional vibrations has a considerable effect only when its 
frequency is in the region of the natural frequency. In other 
words, when the speed of rotation is near, or equal to, half the 
natural frequency of the torsional vibrations, their amplitude 
increases visibly and spectacularly. Recording the spectrum of 
the torsional vibrations using an HP-5420 Frequency Analyzer 
makes it possible to extract the amplitude corresponding to 
twice the constant speed of rotation. This was done with dif­
ferent values of the rotation frequency and the amplitudes are 
shown in Fig. 5. 

In a similar way, with a very slow rotation sweep speed be­
tween 7 and 10 Hz and by memorizing the maxima, we obtain 
a "frequency response curve" shown in Fig. 6. During the ex­
periment it is easy to see that the peak near the natural fre­
quency (17.78 Hz) appears only when the rotation frequency is 
near 8.9 Hz. It is not the result of a deterministic or random 
external excitation because the highly elastic band between the 
electric motor and the machine-tool spindle is very flexible. 
The corresponding rotational (rigid-body) natural frequency is 
less than 1 Hz. 

5 Conclusion 

Torsional vibrations are considered in the general context of 
the dynamic behavior of rotating shafts. The kinematic 
description of the model, an aspect often neglected in the 
literature, is dealt with carefully. The torsional vibrations 
described in this paper are caused by transverse vibrations. 
The coupling is intrinsically related to the dynamic behavior of 
rotating shafts subjected to the gyroscopic effect. The kinetic 
energy expression of the system is absolutely classic, except 
that it includes an eccentricity term, and that the rotation 
angle is unknown, as are the displacements. The equations of 
motion of the continuous shaft are obtained using Hamilton's 
principle. This differential system includes a large number of 
particular cases found in the literature. It comprises two 
nonlinear coupling terms in the rotation vibrations equation. 
The first is due to the residual unbalance and the second gives 
the variation rate expressed in time of the longitudinal compo-
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Fig. 6 Spectral representation of the bisynchronous component 
measurement of the torsional vibrations with a rotation speed sweep 
from 7 to 10 Hz 

nent of the angular momentum resulting from the precession 
(whirling) of the shaft. If the gyroscopic effect is not taken in­
to account a priori, this last term does not appear. 

For the sake of simplicity, only the univocal possibility for 
transverse vibrations to induce torsional vibrations by cou­
pling is investigated. It is shown that the gyroscopic coupling 
term plays a more important role in the dynamic behavior of 
shafts than the eccentricity one. The first can induce torsional 
vibrations whose frequency is equal to twice the rotation 
frequency. 

Finally, this result is verified experimentally. In order to in­
crease the effect of the second order gyroscopic nonlinear 
term, the experimental device has been approximately tuned 
into the internal resonance-natural frequency of the torsional 
vibration mode is close to the double natural frequency of the 
lateral vibration mode. In this situation, measurements show 
that a shaft subjected to the gyroscopic effect can induce ex­

tensive torsional vibrations when the rotation frequency is 
equal to half the natural frequency of the torsional vibrations. 
It is a resonance phenomenon in which the torsional vibration 
amplitude depends essentially on the damping of the cor­
responding mode. 
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A P P E N D I X 

The following terms are defined as follows: 
Amplitude and phase of the kth modal unbalance: 

• / * = [ ( [ BcosaVkdx) + ([ B sin aVkdx) J 

B sin a Vkdx a*=Arctg • 

B cos aVkdx 

Amplitude and phase of the Mth modal unbalance weighted by 
the mth torsional mode: 

Jb 
u tin 

a*„,=Arctg-

l\ B sin a$m V„dx) 

+ l\ B sin a*„, V„dx) 

s: 

2 -l 1/2 

B sin a$,„ V„dx 

B cos cv$m V„dx 

Mth longitudinal modal moment of inertia weighted by the rth 
andyth flexural modes: 

JPmU=^JP^mVl'VJdx 
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Closed-Form Analysis for Elastic 
Deformations of Multilayered 
Strands 
Closed-form solutions are developed for elastic deformation characteristics of 
multilayered strands under tensile and torsional loads. These analytical results are 
successfully applied to obtain expressions for the effective extensional and torsional 
moduli of rigidity for the strands. Finally, a simple design criterion is established for 
"nonrotating" cables. 

Introduction 
The uses of stranded cables in conventional engineering ap­

plications are well recognized. For rope-selection and han­
dling, practicing engineers have long depended upon extensive 
experimental results, such as those compiled by Scoble 
(1920-1928) that began to appear in the early 1900s. More 
recently, the Wire Rope Board and federal agencies (1980) 
have utilized the available empirical data to provide general 
guidelines for rope selection. Attempts to correlate the ex­
perimental data have met with some success (Drucker and 
Tachau, 1945), yet these fall short of an in-depth under­
standing of the effects of various wire-rope parameters on 
their static and dynamic behavior. In view of the recently pro­
posed applications of the wire ropes for augmentation of 
structural damping in large space structures, the importance 
of such theoretical static and dynamic investigations has in­
creased considerably. 

In many of the earlier theoretical static analyses, simplifying 
assumptions of questionable validity have been made. For ex­
ample, Hall (1951) assumed that each wire in a stranded cable 
is subjected to simple tension. Hruska (1951-1953) criticized 
this analysis for neglecting friction altogether. He also 
disagreed with Hall's assertion that the wire core is less 
stressed than the helical wires wrapped around it. His improv­
ed analysis led to expressions for tangential, radial and tensile 
forces in the wires. Leissa (1959) and Starkey and Cress (1959) 
were the first to recognize the importance of contact stresses. 
Bert and Stein (1962) and Machida and Durelli (1973) examin­
ed the effects of bending and twisting moments. Chi (1976) 
looked into the problem of extension of wire ropes with fixed-
end strands. However, in his analysis, the effects of the con­
tact forces were neglected. 
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Costello and Phillips (1973, 1974) adopted a more basic ap­
proach to investigate the static behavior of the cables. They 
treated the cables as groups of separate curved rods (Love, 
1944) in the form of helices. Huang (1975, 1978) also made use 
of this approach in his studies of extension of yarns and 
cables. Costello and associates (1976-1985) developed the 
theory of cables further to study the various aspects of static 
deformation characteristics for cables with complex cross sec­
tions. The study was extended to account for the effects of 
bending moments (Costello and Buston, 1982) as well. 

Costello's analysis, although based on conventional linear 
theory of deformations, involves several nonlinear geometric 
deformation relations. The complete set of governing equa­
tions is solved simultaneously using Newton-Raphson 
algorithm. That severely limits the utility of the analysis, 
however, as it depends on computational results obtained for 
particular cases of cable data. For design, it would be far more 
desirable to have the solution in an analytical form that can 
provide an insight into the influence of the various wire rope 
parameters on its deformation characteristics. Such analytical 
results may be of even greater significance for the future in­
vestigations of wire rope dynamics. In an earlier study, the 
present authors obtained such approximate analytical results 
for the simple case of a single strand wire rope with fibrous 
core (Kumar and Cochran, 1987). A comparison of these 
closed-form solutions with the corresponding numerical 
results obtained by Costello and associates established the 
validity of the approach used in developing those solutions. In 
this paper, we utilize the same approach to obtain the 
analytical solutions for the various deformation 
characteristics of a more complex wire rope model that has a 
metallic wire core and is wrapped around by a number of 
layers of helical wires each having its own direction and 
magnitude of lay. 

Analysis 

We consider a single strand cable with a straight metallic 
wire core wrapped around by successive layers of helical wires 
(Fig. 1). It is assumed that the diameter of the core wire is 
large enough to prevent the helical wires in a layer from 
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Fig. 1 Rope geometry showing metallic core wrapped around by layers 
of helical wires 

touching each other, although these wires remain in contact 
with those in the adjacent layers. An axial force, say F, and an 
axial moment, say M, when applied to the rope cause it to 
undergo elongation as well as "twist." Here, our objective is 
to obtain the approximate analytical relations governing the 
elastic deformations of this single strand cable model. 

Let us assume the cable to be made up of n successive layers. 
Let the z'th layer have /w, helical wires, each of radius i?,- and a 
right lay angle a,. Let the helix radius of the /th layer be 
denoted by /•,-. Since the metallic core is treated as the first 
layer in the analysis, we have 

mi = l, a.l=ir/2, /- ,=0. 

Also from simple geometrical considerations 

r2=Ri+R2 

rJ=r2+R2+R3=Rl + 2R2+R} 

and, in general, 

ri~Rl+2^lRj+Ri; ( = 2 , 3 , . . n. (1) 
; = 2 

Strain Relations. Let e and /3 denote, respectively, the 
longitudinal and rotational strains of the wire rope, while the 
variables £,, /3, are taken to represent the corresponding 
strains in the helical wires in the rth layer. Then, the analysis of 
the deformed configuration of the wire-helix in the /th layer 
yields the following relation between the longitudinal strains 
£ ,• and e: 

1; /= 1, 2 , . . .n. (2) e = (1 + £,)(sin a//sin a,) 

Here, the deformed configuration parameters are distinguish­
ed by using primes. This expression is linearized in Aa, to get 

£, = e — Aa,- cot a,; i=\,2,...,n (3) 

where 

Aa,- = a/— a,-. 

Similar analysis for the rotational strain in the helical wires 
yields 

/3,- = (/•,//•/)/(l + e)cot a / - c o t a,-; / = 1, 2, . . . n. (4) 

The consideration of changes in the various wire-radii as a 
result of elongation leads to the following general expression 
for the deformed helix radii: 

y'=2 

; - i 

=i?,(i - ^ , ) + 2 X) iRj(i - rtj) 1 +R,V - "Si); 
7 = 2 

i=2, 3, . . . ,n. 

where v stands for the Poisson's ratio of the wire material. 
Through some simple algebraic manipulation, we now show 

(r//r ;) = l + 6; 

where 

i - i 

5, = - vki + 2vJ2 [ (# / ' • / ) c o t «;AayI + v(Rt/r,)cot a,- Aa,-. 
y = 2 

On substituting for (/•///•,-) and 5,- from these relations into 
equation (4), collecting Aa, terms together and performing 
considerable algebraic manipulation, we obtain the following 
first-order result: 

Aa,- = e(l + v)(l - y,)sin a,- cos a,- 1 

' " ' "I T 
- 2 D I (rj/r,)Vj} -P(r,/R) (1 - e,-)sin2a,. 1 

- 2 J 

l - l -. 

- 2 cot a,- X) (vj (r/r,)2tan a,) 

j = 2 

(5) 
> = 2 

where 

and 

v^viRj/r^cos2 at 

R = the radius of the wire rope. 

Force and Moment Relations. This part of the analysis is 
based on the fundamental theory of wire ropes developed by 
Costello and Phillips. For completeness, the equations govern­
ing the internal forces and moments in helical wires are stated 
below (Love, 1944; Phillips and Costello, 1973): 

(dTln /ds) - TibT! + Tia A/ + Q,H = 0 

(dTib/ds) -TiaK; +Tinr[ +Qib =0 

(dT,a/ds) -T,\I +TibK; +Qia =0 

(dG,H/ds) -GlbT,' +Gia\; ~Tib+N,n =0 

(dGib/ds) -GiaK< +GinTl +Tin+Nib = 0 

{dGia /ds) - Gin \; + GibK/ + N,a = 0 

where 

Tj, G,=the resultant internal and external forces 
and moments, respectively, in helical wires 
in the rth layer. 

Qi, Nj = the resultant contact forces and moments 
per unit length, respectively. 

«̂> Vb, Ka = the components of the vector V along the 
wire normal, binormal and axial directions, 
respectively; V — Th Gh Q, and A',-. 

G, G, ,G, =(.vRfE/4) « - « , ) , (irRfE/4)(\/-\) and 
[iri?f£'/{4(l + v))](j;-Tj), respectively. 

T, =wRmi-
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E = modulus of rigidity of wire material. Or simply, 

K,-, K,'=the components of initial and final cur- F=Fle+Flll3 (6) 
vatures of the centerline of the helical wire 
in normal direction, respectively, both are 
zero. 

where 

Fe = 'ElmiRjsm ai[\-{\ + v)pi cos2 <*,-)]/£[/«,•/??] (7) 
X,, X/=the components of initial and final cur­

vatures of the centerline of the helical wire 
along the binormal direction, which are 
(cos1 «,//•,) and (cos2 a///-/), respectively. ^ = £ L . / j f o ( l . / / R ) s i n 2 a. c o s a.U 

Tj, T/=(sm a,- cos a , / r , ) , (sin a/cos a[/r[); the in- ' 
itial and final angles of twist per unit 
length, respectively. 

a f, rt = helix angle and helix radius of the wire in 
the /th layer. 

cot a, £ HRj/r,)2sin 2ay]]l / £ « , / ? ? ] . (8) 
7 = 2 J J i 

* = distance along the centerline of the deform- T h e t e r ™ F* • ^ ^present the dimensionless longitudinal and 
0J •__ rotational strain derivatives of the axial force. 

Similarly, on substituting the expressions for the various 
We now assume deformations to be small, tension along the terms obtained earlier and making suitable simplifying ap-

length of the cable to be constant, and bending moments in- proximations, the expressions for the moments can be written 
troduced through line-contacts to be zero; i.e., Nin = N, = as 
0. Then the governing force and moment equations may be 
reduced to: 4M,r,/(•KR]E) = e cos a, 14(r,/J?,-)2 - 1 + 

2<« = Tia(
cos2ai/ri) ~ Tib(

sin «/ cos a'i/r't) 

Tj =(Gj (cos2a//r, ')-G,- (sina/cosa///•/) „ w , . ,, , (, „ v-i , . ,")"] 
Q = Q =Af. =0 - ( l + ^ ) ( ^ - l + - ' / s i n 4 a / ) [ l - 2 ^ ( ^ A ) j J 

Now, ignoring the pairs of nonzero but equal and opposite ,-_ x 

contact forces denoted by Q, (as these cancel each other and + 0 ( r / / R ) s i i i a l L f l - 2 ^ [vAr/nftan a, cot a,]] 
hence do not affect the overall rope equilibrium), the total ax- L <- JT2 ) 
ial force and moment on the helical wire can be written as 

^ , = (7-, s i n a / + r , cosa/) -„ | -, 
, , . _ • , , „ , , , . -f 2(\-vfs\rr aA J, {vAr-./r,) 2(sin a./sin a,)}] M,= (G, sin a/+G,- cos a / + r ; /y cos a/—r,-7-/sin a/). v J u i^ i j \ j n \ j * " j 

Q O Q O J — £ 

Incorporating the first-order approximations, as before, in 
conjunction with the approximate analytical results obtained where 
above, we find that: q. = ( 1 _ „.) [4(r./R.)2cos2 a. + 1 _ c o s 4 a . 

T,a ~irRlE(e-Aa, cot a,) + „ /Sm4 a. c o s2 a ; ] 

Gia = frRfE/ {4( 1 + v) rt} ] [Aa,- cos 2a,- - 5, sin a, cos a,] B y adding up the contribution of the internal moments of all 
G, — [irRfE/ {4r,} ] [ - Aa,- sin 2a ; - 8,- cos2 a,-] the wires in the rope and dividing the total moment M by ER3, 
T . n 4 E , . , . , , , , . , ,, „ . the expression for the corresponding dimensionless moment, 
T,- =[7r/?/£/(4rf )][Aa, cos2 a , ( l -y , -cos 2a,) „> i ^ / m i u -^ 

'» . . , , ^ M = M/ER?, can be written as 
+ CfO,- sin a ; cosJ a,] 

M=Mtt + M$ (9) 
where , 

where 
Vf = v/(\ + v) 

On substituting these in the expression for Fh summing the Mt = (-K/A)jl_d^miRi{Ri/ri)cos a,^4(/-,/7?,) 
forces Fj over all the wires and performing suitable algebraic ' 
manipulations, we obtain the following dimensionless force - 1 + jysin4 a , --( l + v) (<?,- 1 -fey-sin4 a,) 
deformation relation: 
F= eD[w , . i? 2sin atll-(l+v)pfiOS*ai)v'ElmiR2] {^^"j^/r,)]}]] (10) 

MS = (T/4>5'«/^fsin a, [9/ [ l 
+ fi22[miRjp,(rj/R)sixi2aicos a,{ 1 

i - l 

- p cot a,- J ] [i?//-,)2sin 2aj]) ] / ] ] [/n,/??] 
y=2 i 

i - i 

where 

~2 X) ['v(' 'y / r/)2tan ay c o t a 'M + 2 ( ! 

j = 2 

i-l 

-VfSin4 a,-) 2^ [p/-(/
-_/-/r/)

2(sin ay/sin a,)] 
7 = 2 

(11) 

F= (F/AE) and 

p, = (1 - p,)[l - (l/4)(/?,//-,)2(l - V / cos 2a,)cos2 a,]. 
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To achieve a clearer insight into the effect of various wire 
rope parameters on the force and moment derivatives, name­
ly, Fc, Fp, Mf and M@, the above expressions were simplified 
using suitable approximations. For practical values of v and 
dj, the terms involving vj (/)//",) and vj (rj/rf)2, usually 
- 0 . 0 1 , can be neglected in comparison to unity. Incor­
porating this approximation reduces the above analytical 
results to: 

Fe = ^[ffi,i??sin a,(sin2 a ; - v cos2 «,)]/^[OT,i?2] (12) 

F9~ X)[>"/i??C(/i?) sin2 a, cos a ; ] /^ [m, i? f ] (13) 

M^-Ki^imfi] cos ai{(ri/Ri)(sin2 <xt 
i 

-» /cos 2 a , ) - ( l /4)( i? , / r , ) ) ] (14) 

Mp = irlj[>niR'} sin a,{(r,/J?,)2 cos2 a, 

+ (1/4)(1 + Oy-sin4 a,- cos 2a , ) ) ] . (15) 

Results and Discussion 

The analytical results obtained here provide considerable in­
sight into the static behavior of strands. The results are rather 
general and apply to any arbitrary end-conditions. The 
analysis fully covers the strands with an arbitrary number of 
layers having right as well as left lay angles. However, for each 
of the layers with left lay, its helix angle a, must be replaced by 
the corresponding obtuse angle (ir —a,) in the above expres­
sions. The method of computation is illustrated through an ex­
ample. Considered here is a three-layered cable with the 
following data: 

Ri=R2=Ri=a; 

mx = \, m2 = 6, m} = 12; 

a!= i r /2 , a2 = ^(right l a v); «3 = T —a (left lay). 

Strictly speaking, R2 has to be slightly less than R{ in order 
to preserve the geometry of the multilayered strand under con­
sideration; however, for practical computational purposes, 
the radius R2 has been taken to be the same as R{. On 
substituting these data in equations (12)—(15), we obtain the 
following results: 

F£ = (l/19)[l + 1 8 s i n a ( l - ( l + i>) cos2 a}] 

F& = - (36/95) sin2 a cos a 

M€= — (36ir/125)(sin2 a — v cos2 a)cos a 

Mp = (2167r/625)[sin a cos2 a + (1/48) sin a(\ + vf sin4 a 
cos 2a) + ( 1 / 8 6 4 ) / ( 1 + J0). 

These analytical results are of considerable significance. We 
can directly make use of these expressions to study the rota­
tional and extensional strains and hence the relative influence 
of the various cable parameters such as the number, size, and 
lay angle of helical wires in each layer on the cable deforma­
tion characteristics. 

Next, we demonstrate the usefulness of the analytical results 
by applying these to study some important extensional and 
torsional stiffness characteristics of the wire ropes. 

Applications 

Effective Modulus of Rigidity. Two commonly en-
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Fig. 2 Modulus of ridigity as affected by the helix angle 

countered conditions are investigated separately. In the first 
one, the ends are constrained against rotation while in the 
second, the cable ends are free to rotate. 

Case 1. No end rotation, i.e., /3 = 0. In this practical situa­
tion, the equations (6) and (9) reduce to: 

F=Fee 

M=Mce. 

(16) 

(17) 

Equation (16) directly yields the expression for the effective 
modulus of rigidity (£): 

(E)0=o=Fe = ^lm,R2sin <*/ (sin2 a, 

-XCOS2O:,.)] /X]L>M,#2] . (18) 

Equation (17) provides the axial moment required to prevent 
any twist when the rope undergoes the axial strain e. 

Case 2. Cable ends free to rotate; i.e., M=0. In several 
applications, the cables are not restrained against rotation. 
For this end condition, the axial moment can be assumed to be 
zero. Hence, to study this case, we substitute M = 0 in equa­
tion (9) which yields 

/S=-(M«/Afff)e. 

This in conjunction with equation (6) leads to the following 
expression for the extensional modulus of rigidity: 

(E)M.0=Fl-(FpMt/Mll). 

On substituting the expressions for Fe, Fp, Me, and M& into 
the above two relations, we get: 

@~ _ e Z/ [ / M i - ^ / c o s a<( (r;/^;)(sin2a ; 

- c c o s 2 a , ) - ( l / 4 ) ( i ? , / r , ) ) ] 

/X)[w,^ 4 sin a,{ (r,/i?,)2 cos2 a,-
J 

+ (1/4)(1 + jysin4 a, cos 2a ;)) ] 

and 
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-*>cos2 a , - ) ] / ^ (/«//??] 

- 2J[/w/^(/ ,
/-/7?)sin2a/cos a,] 

J j l / n ^ J cos a,( (/•,/&,) (sin2 a/ 

- r c o s 2 a,)-(l /4)(*,/ /V) } ] / [ £ [ « , * ? ] . 

2^|>w,i?4sin a,{ (rj/Rj)2 cos2 a,-
i 

+ (l/4)(l + j ' /sin4a,.cos2Q:,))]l. (19) 

An application of these equations is illustrated through the 
earlier example of the three-layered cable for which we obtain 
the following results: 

[E)0=o = (1/19)[1 + 18 sin a(sin2a - v cos2a)] 

(E)M=0 = (1/19)[1 + sin a(sin2a - v cos2 a ) 

{12 sin a cos2 a + (3/8)sin a(l + vf sin4 a cos 2a) 

+ (l/48)/(l + v)}/{sin a cos2 a + (l/48)sin a(l 

+ jy sin4 a cos 2a) + (l/864)/(l + v)}]. 

The results of analysis for the case under consideration are 
presented in Fig. 2. It is evident that, for both the end condi­
tions, the modulus of rigidity increases with a. Furthermore, 
the modulus of rigidity is smaller for the rope under free end 
conditions. 

Effective Torsional Rigidity of Cables. On substituting 
for 6 from equation (6) into (9), we get 

M= (Me/Fe)F+ (M9 -M^/F^p. 

This equation shows that the plot of dimensionless moment M 
versus rotational strain 0 for any specified tensile force 
represented by F is a straight line as expected. The common 
slope of this family of straight lines defines the torsional stiff­
ness. The expression for the torsional rigidity in the dimen­
sionless form can be written as 

6 = Af„-MlFf,/Fl. 

On substituting the expressions for Ft ,Fp, Me, and M$, we get 

G = w\'^miRjsm a,f (/•,/JR,)2cos2 a, 

+ (1/4)(1 + c /sin4a,cos2a /)) 

- 2J[/w,-K,3cos «,((/-,/i?,)(sin2 u-,-v cos2 a,) 

-(l/4)(/} //r /)}]^[ffi,J?f(i- ///?,)sin2 a, cos a,] 

/^[m,R2m\ a,(sin2 a , - c cos2 a,-)] . (21) 

For the cable data assumed earlier, it is relatively easy to show 
that 

G = (21 6TT/625) [sin a cos2 a {1 + 12 sin a(sin2 a 

- v cos2 a ) ) / {1 + 18 sin a (sin2 a — v cos2 a) ] 

l<LD 

o 
t -

Fig. 3 Torsional stiffness as affected by the helix angle 

+ (1/48) sin a(\ + vf sin4 a cos 2a) 

+ (1/864)7(1 + »>)]. (22) 

Figure 3 illustrates the effect of a on the torsional stiffness. 
For the practical values of a in the range 50 deg < a < 9 0 deg, 
the torsional stiffness continuously decreases as a approaches 
90 deg. In the limit, a = 90 deg, the dimensionless parameter 
G becomes rather small attaining a value of 0.0018. These 
analytical results can be utilized readily for generating design 
data for any general single strand cable configuration with 
metallic wire core. 

Nonrotating Rope. When the rope is loaded by a tensile 
force, in general, its extension is accompanied by rotation. A 
suitable axial moment is therefore required if the rope under 
tension is to be held in the "unrotated" configuration. This 
moment must balance the sum of the end moments con­
tributed by the inside and outside layers. If the inside and the 
outside layers have the opposite lays, their individual twisting 
moment contributions will be of opposite signs and neutralize 
each other under certain specific conditions. Such a rope 
where the pure tensile force causes no end rotation is called 
"nonrotating." It is easy to see that the criterion for 
"nonrotating" rope can be stated simply by 

Me = 0. 

Referring to equation (16), we have 

l^WiR] cos a,{ (/•,/i?,)(sin2 a, — v cos2 a,-) 

-(1/4)OR,.//-,.))] = 0. (23) 

By applying this to a common particular case of a cable having 
a central metallic core with two layers-an inner and 
outer - we get 

cos a3 = - (m2/m3)(R2/R3)
1 cos a2[(r2/'i?2)(

sm2 a2 

- v cos2 a 2 ) - (l/4)(i?2/r2)]/[(/-3/i?3)(sin2 a3 

-»<cos2aj)-(l/4)(i?3 / /-3))]. (24) 

To first order in a3, this expression can be approximated by 

cos a3 = - (m2/m3)(R2/Ri)
2(r2/>3)cos a2. 

On substituting this into the right side of the more accurate ex­
pression for cos a3 , we get 
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Fig. 4 The choice of a3 as affected by a2 for the "nonrotating" cable 

cos a3 — — (rn2l'm3)(R2/'R3)
2(r2/r3)cos a2[l 

- (1 + JOCOS2 a2 - (l/4)(i?2/r2)2]/[l 

- (1 + v)(m2/m3)
2(R2/R3)

4(r2/r3)
2cos2 a2 

-(W4)(R3/r3)
2]. (25) , 

Now, we apply this result to a more specific, three-layered 
cable with the following assumed data: 

Rl=R2=R3 = a; 

mx = \, m2 = 6, m3 = l2; 

a1=Tr/2, a2 = a2. 

By substituting these data in equation (24), the expression for 
a3 can be written as 

cosa3 = - c o s a 2 [ 1 5 - 16(1 + v) cos2 <x2] 

/[63-4(\ + v)cos2a2]. 

Further iterations were unnecessary as the residual errors in­
volved here would be much smaller than those introduced 
through the earlier approximations. 

For a better appreciation of the analytical results obtained 
here, a plot of a3 versus a2 for the "nonrotating" rope is 
presented in Fig. 4. The plot shows how the choice of a2 

changes that of a3 for the "nonrotating" rope. It is evident 
that as a2 approaches 7r/2, so does a3 . Furthermore, in 
general, a3 would be much closer to 7r/2 than a2. The results 
of this investigation should prove to be quite useful in design­
ing a "nonrotating" cable. 

Conclusion 

The dimensionless analytical force and torsional moment 
relations developed here for multilayered cable with metallic 
wire core are rather general. The explicit form of results is 
found to be useful in predicting the rope stiffness against 
elongation as well as rotation. The effects of the layout of 
layers, number of wires in each layer, and of course the direc­
tion and magnitude of lay angles on these important deforma­
tion characteristics are clearly brought out. The simple form 
of the analytical results is found to be equally useful in the 
analysis of "nonrotating" cables. Finally, the examples con­
sidered here demonstrate the computational ease and effec­
tiveness with which the closed-form solution can be utilized in 
various studies. 
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A Method to Improve the Modal 
Convergence for Structures With 
External Forcing1 

The traditional approach of using free vibration modes in the assumed mode 
method often leads to an extremely slow convergence rate, especially when discete 
interactive forces are involved. By introducing a number of forced modes, signifi­
cant improvements can be achieved. These forced modes are intrinsic to the struc­
ture and the spatial distribution of forces. The motion of the structure can be 
described exactly by these forced modes and a few free vibration modes provided 
that certain conditions are satisfied. The forced modes can be viewed as an extension 
of static modes. The development of a forced mode formulation is outlined and a 
numerical example is presented. 

1 Introduction 

A great deal of work is currently underway with regard to 
the analysis and control of flexible structures. Such work 
often involves discrete interactive forces between flexible com­
ponents and/or discrete constraints of flexible components to 
a base. Two examples are flexible robot arms and serially con­
nected flexible space structures (Book, 1984; Baker, 1984; 
Nurre et al., 1984). The motions of such structures are often 
expressed in terms of some assumed modes of their individual 
flexible components. Even though the configuration space of 
a flexible structure is infinite dimensional, numerical con­
siderations dictate that only a finite number of assumed modes 
be used to express the flexible motion. The errors of such an 
approximation can lead to an inaccurate estimation of the ac­
tual motion; indeed with regard to flexible structure control, 
such errors lead to "spill-over," which can deteriorate the 
stabilitiy of the entire system. A question therefore arises as to 
the assumed mode set that produces minimal errors with the 
least computational effort. This demand is especially keen 
when we are confronted with a real time control problem, in 
which both stability and speed are crucial. 

Free vibration modes are the most frequently used assumed 
modes. A relatively simple analytical formulation can be 
achieved in most cases, due to the orthogonality of the modes. 
However, using only free vibration modes can often lead to in­
tolerably slow convergence, as will be shown. This is especially 
true when the discrete forces and/or moments become large. 

The static modes of a system, which are proportional to the 
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displacements due to the external forces, are often used 
(Craig, 1985) as a means of accelerating the computational 
convergence rate. Another technique to increase the con­
vergence speed is the modal acceleration method (Bisplinghoff 
and Ashley, 1962). The forced modes to be discussed in this 
paper can be considered as an extension of the above men­
tioned methods. 

2 Forced Modes 

Consider a uniform bar fixed at one end and subject to a 
tension at the other end, as shown in Fig. 1. The equation of 
motion is 

d2 

dxi u(x,t)=a2-^-u(x,t) 

with boundary conditions 

where 

u(0,t)=0, — « ( / , ? ) = / ( 0 
ax 

, m Fit) 
a2=^, / ( * ) = -

(1) 

(2a) 

EA- - l ' EA 

and the initial conditions are 

u(x,0) = <j>(x) 

Area of Cross Section: A 
Density: p 

(2b) 

1 F(t) 
EA 

Fig. 1 
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The following transformation is utilized: 

u(x,t)=ul(x,t)+f(t)Yl(x) (3) 

where 

Yx (x) =x (4) 

in this case. By so doing, we are using the modal acceleration 
method (Bisplinghoff, 1962). Equations (1) and 
transformed to 

S2 , a2 , cPf(t) 
dx2 Ui(x,t)=a2

 df ul(x,t)+a2Yl(x) df 

w,(0,0=0, — Ml(/,/)=0 
ox 

ul(x,0) = 4>(x)-f(0)Yi(x) 

(2) are 

(5) 

(6a) 

(6b) 

The system has thus been converted into a distributed force 
system. Since the function Y{ (x) = x is more readily ex­
pressed by a linear combination of free vibration modes, a 
modal decomposition of the solution of the system involves 
fewer modes of high mode number. Notice also that the free 
vibration modes are comparison functions now instead of 
general admissible functions (Meirovitch, 1975). 

The preceding procedure can also be carried out on equa­
tions (5)-(6) to further accelerate the convergence rate. Let 

, (P-fit) 
ul(x,t)= u2(x,t) + a2 

dt2 Y2(x) 

where 

Y2(X)-

The equation for u2 is thus transformed to 

a2 , d2
 A d4f(t) 

- ^ u2(x,t) =a ~^r u2(x,t)+a* d(4 Y2(x) 

with 

«2 ( 0 , 0 = 0 , — H 2 ( / , 0 = 0 
ox 

u2(x,0) = <t>(x)-f(.0)Ys(x)-a2 (ffm 
dt2 Y2(x) 

This process can be continued to obtain 

u(x,t)=u„ (x,t) +f(t) Y, (x)+a2 - ^ { t -
dt2 Y2(x) 

Suppose the solution of u„ can be expressed approximately by 
a linear combination of m free vibrational modes of the 
system, (equations (1) and (2) w i t h / ( 0 = 0), 

M * , 0 = Y^r,j(t)Uj(x) 
J = I 

Then 

«(*.') = Y,Vj(t)Uj{x)+ £i,{t)Y,{x) 
y = i / = i 

where 

a2( '-'>/(0 
£,(0=« _„2( i - l ) 

af2(/-o 

( i i ) 

(12) 

(13) 

From equation (12), u(x,t) is expressed as a linear combina­
tion of two sets of space functions: the free vibration modes, 
(J,- (x), and the forced modes, Yj (x). 

The forced modes are intrinsic to the structure and the 
distribution of the external forces and are independent of the 
time characteristics of the forcing function. The solution u 
(x, 0 can be expressed as a linear combination of a few forced 
modes and a few free vibrtation modes provided that the forc­
ing function/(0 is a polynomial function and the initial con­
ditions are such that the u„ (x, 0) are a linear combination of 
the free vibration modes. In general, it is expected that using 
forced modes can greatly accelerate the convergence rate, thus 
requiring fewer free vibration modes. The forced modes con­
verge to the first free vibration mode very quickly (see Appen­
dix for a heuristic proof). Therefore, it is generally sufficient 
to take only a few forced modes. 

In many real problems, the structure is often a component 
of a complex system, and f(t) is an unknown interactive 
force. It is also possible t h a t / ( 0 is too complex to differen­
tiate explicitly. In spite of this, since the linear combination 
form of u(x, t) is known, as in equation (12), Lagrange's 
equations can be applied to derive the equations of motion. 
The forced modes can also be normalized for numerical 
consideration. 

Forced modes do not satisfy orthogonality in general. The 
set of forced modes and free vibration modes can be or-
thogonalized with respect to either the mass or stiffness 
matrix, but not both. An orthogonalized assumed mode set 
(either with respect to the mass or stiffness matrix) is recom­
mended in applications, since it avoids the numerical errors 
caused by a linear combination of very similar mode shapes. 

+ a" 
cP"-2At) 

dt2"-2 Y„(x) 

where u 

dx' 

satisfies 

-5^-«„(*.') = 
d2 d2"f(t) 

—r un (x,t) + a2" — ^ - Y„ (x) 
dt2 dt2" 

" , , (0 ,0=0, —uH(l,t)=0 
ox 

and the iteration formula for Yk is 

b2 

(7) 

(8) 

(9) 

a*Ifl"y" 

y*+ i (o)=o, 

(x)] = a2*Yk(x) 

d 

"to" , ( 0=o 

The corresponding initial condition is 

un(x,0) = <t>(x)-f(0)Yl(x)-- • --a2' 
dt2"~2 Y„(x) 

(10) 

3 General Case 

We now state the results for a general flexible structure. The 
equations of motion are 

Lx[u] = m(x)-^j-+/(OY0(x), *€D (14) 

Lx[u]=/(0Y„(x), xedDj (15a) 

U ( J C , 0 = 0 , xedD2 (\5b) 

u(x,O)=0(x) (15c) 

where x is ^-dimensional position vector, u is n-dimensional 
displacement vector, L and L are time independent linear dif­
ferential operators, D is the domain of the structure, dDl is 
the portion of boundary with a stress boundary condition, and 
dD2 is the portion of the boundary with a displacement boun­
dary condition. Both discrete and distributed external forces 
can be applied as long as they depend on a single time func­
tion, / ( 0 - n is the dimension of D. n = 3 in three-dimensional 
problems, 2 in plane problems, and 1 in beam or other one-
dimensional problems. The general case of a nonuniform mass 
distribution is considered. 
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Area of Cross Section: A 
Density: p 

Fig. 2 

In an analogous manner to the previous simple case, the 
forced modes, ¥, , are found from the following equations: 

Lx[Y1(x)] = Y0(x), xeD 

Lx[Y,(x)] = Y0(x), X69D, 

Y,(x) = 0, x€3D2 

Y1=Y1/IIY1II 

LxIYl + 1(x)] = m(x)Y1(x), x6D 

Lx[Yi+1(x)] = 0, xedDx 

Y1+1(x) = 0, x€9D2 

Y i + 1=Y i + 1 / l lY i + 1 l l 

•w-1 

(16) 

(16a) 

(166) 

(16c) 

(17) 

(17a) 

(176) 

(17c) 

i=l,2,-
where II • II is some norm defined on the function space of all 

the possible displacements which do not violate the geometric 
boundary condition. The function u is expanded as 

u (x ,0=u . (x ,0+c 1 / ( / )Y , (x )+ . . - + c„ ' ) ' Yn(x) 
dt2"~ 

where the c,- are constants introduced to account for the fact 
.that the forced modes are normalized, c,+ 1 = c,llYi+1ll, c, = 
11^ II. 

The equation for un(x, t) is 

d2u d2"~2f(t) 
LJu n ] = m ( x ) — ^ + c„ _ /_ \ ' Yn(x), at2 dt2"-

xeD (19) 

h (x) = 

<- 315 15 

1 

€ / ( 0 = c , 
dF-
dt2' 

-At) (21) 

The remarks of the last three paragraphs of the last section 
are also true for the general case. 

It should be noted that the forced modes in the general case 
may not have a closed form expression and that a numerical 
solution will have to be employed. The discretization of equa­
tions (16) and (17) results in a large set of linear equations. 
Several methods are available that efficiently address this pro­
blem (Lanczos, 1950; Wilson and Itoh, 1983; Parlett, 1980; 
Nour-Omid et al., 1983). 

4 Numerical Example 

The system to be considered is shown in Fig. 2. The pinned-
pinned beam represents the structure, while the torsional 
spring represents the interactive force. This system was 
previously studied (Pierre, 1985) for separation phenomena. 
To keep the formulation simple, the position constraint in the 
midspan of the beam is removed. The natural frequencies and 
the natural modes of the whole system are computed by means 
of a Rayleigh-Ritz formulation. 

The deflection of the beam is expressed as 

w(x,t)= X)<7,(0 </>;« + Y^Pi(Mi(x) 

where 

0 , ( 0 = sin- iirx 

T' 
/= 1,2, ,N< 

(22) 

(23) 

are the free vibration modes of the pinned-pinned beam. The 
<7,(0's are the corresponding modal coordinates. The \lfj(x)'s 
are the forced modes due to a force couple exerted on the 
beam at x = a. For example, 

(18) * , (*) = 
x(l-3b2-x2), for x<a 

-x3 + 3(x-d)2 + (l-3b2)x, for x>a 
(24) 

is the shape of deflection due to a couple applied &tx = a. In 
equation (24) and the following, b = I — a, and the variables 
with a bar represent the corresponding variables divided by /. 

The deflection due to the distributed forces of i/'i (x) ap­
plied to the pinned-pinned beam is given by: 

12 20 arM 
1 

45~ "6~ + _6~ 

120 

., / 1 a a1 \ x 

V 60 20 40 / 840' 

/ 4 a1 a4 a6 \ d4x2 , / 
+ x( + ) + + xi\-

V 315 15 12 120/ 8 V 

a2*4 

120, 

1 

45~ 
a'-

~6~ 

— ) 
24 / 

— ) 
24 / 

for x<a 

(25) 

, / 1 a \ x6 x1 

+ xs( 1 + , 
V 60 4 0 / 120 840 

for x>a 

with 

Lx[u„] = 0, xedDj 

un(x,0 = 0, x€dD2 

u„(x,0)=<Mx)-c1 /(0)Y1(x)-- • • 

(20a) 

(206) 

The kinetic energy of the system is 

I f ' / dw \ 2 

- c « ^ 2 ^ Y „ ( x ) 
(20c) 

"1 «2 /v2 

1=1 /=i y=i 

If un can be approximately expressed in the form of equa­
tion (11), then u can be expanded in the form of equation (12), +2 T] YJ mr9iU)p-U) 
with ;=i j=\ 

(26) 
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where " 2 

m1=pA\ 4>}(x)dx 

m\=pA^ <t>i(x)\Pj{x)dx 

c= L «/*/(«) + £*/*/'(«) (39) 

(27) 

From equation (38), 

c?=Sc (40) 

Solving equation (36) for «,, and considering equation (40), 
gives 

The potential energy is 
I f ' / a2™ \ 2 

1 

1 f' / d2w \2 1 

/V, N2 N2 

/ = i 1=1 y = i 

1 w 2 
+ 2 E iklq,(t)pjU)\+-^rS[w'{a)]2 

y = i ; = i J Z 

/t?-w?o>2 Lj1 

r"2 

u2)bj + S(l>;(a)c (41) 

Substituting equations (40) and (41) in equations (37) and (39) 
gives: 

2 r 

I. m kj ~~ '"kj mho>2)- YJ 
1 

(28) 
; = i j=\ 

*- ; _ i 

( 4 - m > 2 ) S 0 / ( « ) 

F - r ( k \ -m)ku>2){kI - w?co2) 

*? 
where 

0,,2 

kl = kji^Ei^j'i'(xH;\X)dx 

kl=El\oW(x)tf{x)dx 

l c = 0, fc=l,2, . . . ,N2 

(42) 

gN<^t^f$?% 
(29) 

-KS -»H (43) 

A constraint 

/=*'(«)- E«,(fl*i'(a)- EA-(OW«)=O (30) 

is imposed to account for the spring interaction and is in­
troduced to the Lagrangian by means of the Lagrange 
Multiplier jt: 

L = T-P-nf (31) 
Applying Lagrange's equation yields: 

N2 N2 

m°Qi + YJ muPj + ^91 + Z) kljPj + ^ / ( « ) = 0, 
y = l y = l 

/=1,2, . . . ,7V, (32) 
N 2 N{ N2 N{ 

E w ^ + I ] ™j/<7y + H &uPj + H, tfiQj + wM«) = 0, 
y = i ; = i 7 = i 7=1 

' =1 ,2 ,Af2 (33) 

H-Sw'(a)=0 (34) 
/V, 7V2 

W (a) = £ 9,(0*/(fl) + £/» , (0^ ' («) (35) 
/ = i i = i 

Let 

#,- = aie
iut, pi = bie>ut, w' (a)= ce1"1, /T. = rfe7'™' 

After cancelling the factor ekat, equation (32)-(35) become 

~2 

W-ff l?u2) f l (+ ^ ( 4 - f f l | u
2 ) 6 ) + ^ ( f l ) r f = 0 (36) 

7=1 

£) (kjj-/n2,^ )fy + £ ( * ? , - m > 2 ) « ; + y,{a)d=0 (37) 
7=1 7=1 

Equations (42) and (43) comprise a set of homogeneous linear 
equations in the variables bjtj = 1, 2, . . . ,iV2 and c. Setting 
the determinant of the coefficients of these equations to zero 
gives the natural frequencies of vibration. A corresponding 
nontrivial solution can be substituted into equation (41) to 
find the corresponding a;'s. This allows a mode shape to be 
computed from the relation 

L ; = i 7=1 

(44) 

Three kinds of assumed mode sets are used in the following 
computations: (1) Free vibration modes of the pinned-pinned 
beam only; (2) one forced mode and several free vibration 
modes; (3) two forced modes and several free vibration 
modes. The numerical values of the parameters used and the 
results of the numerical computation are summarized in Table 
1. In order to compare the shapes of the natural modes, 19 
evenly distributed points are selected such that 

x,=— I, '=1,2, ,19 

X, in equation (44), is chosen such that 

1 
19 f 

£ »*(*/) = ! 

d-Sc = 0 (38) 

The odd order frequencies contain smaller errors, due to the 
fact that the slopes of these modes at x = a = 0.49 are very 
small, and therefore the interactive force has relatively little 
effect on the modes. It is seen that using only vibration modes 
give relatively poor numerical results. To bring the second fre­
quency to within 1 percent error requires more than 50 modes; 
to bring the first two modes shapes to within 1 percent error 
requires more than 100 modes. Even 200 assumed modes can­
not bring the fourth mode shape to within 1 percent error. 
Significant improvements are achieved by using one forced 
mode: one forced mode plus 5 free vibration modes give the 
first 4 frequencies to within 0.5 percent error. To find the first 
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Table 1 Results of computation f 

A. Frequency Errors 

Number of 
Modes Used 
N, + N2* 

10 + 0 
SO + 0 

100 + 0 
200 + 0 

1000 + 0 
5 + 1 
6 + 1 
7 + 1 
4 + 2 
5 + 2 

True Values 

First 
Frequency 

Error 
0.00129 
0.00003 
0.00001 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
1.00115 

Second 
Frequency 

Error 
0.56524-
0.10383 
0.05027 
0.02499 
0.00498 
0.00018 
0.00001 
0.00001 
0.00000 
0.00000 
6.22834 

Third 
Frequency 

Error 
0.00773 
0.00274 
0.00130 
0.00064 
0.00012 
0.00001 
0.00000 
0.00000 
0.00000 
0.00000 
9.03366 

Fourth 
Frequency 

Error 
1.9861 
0.3340 
0.1598 
0.0790 
0.0157 
0.0889 
0.0044 
0.0037 
0.0086 
0.0005 
20.1359 

B. Mode Shape Errors** 

Number of 
Modes Used 
Ifl + N,* 

10 + 0 
50 + 0 

100 + 0 
200 + 0 

1000 + 0 
5 + 1 
6 + 1 
7 + 1 
4 + 2 
6 + 2 

First 
Mode Shape 

Error 
1.5 x IO - 3 

3.2 X 10"* 
1.5 x IO"4 

7.8 x 10-5 

1.6 X 10"s 

< 10-5 

< 10-5 

< io-» 
< io-5 

< io-5 

Second 
Mode Shape 

Error 
1.7 x 10_ 1 

2.6 x IO"2 

1.2 X IO-2 

6.4 X 10"3 

1.2 X 10"3 

1.4 X IO-3 

3.0 X IO"4 

2.0 X IO"4 

4.4 X 10- s 

< IO"5 

Third 
Mode Shape 

Error 
7.4 x IO-2 

1.1 x IO-2 

5.3 x 10-3 

2.6 X 10"3 

5.1 X 10-" 
6.5 X 10~4 

1.2 X IO"4 

8.5 X IO"5 

4.2 X 10~E 

< 10~5 

Fourth 
Mode Shape 

Error 
3.31 
6.3 x IO - 2 

2.9 X IO-2 

1.4 X 10~2 

2.8 X IO"3 

8.2 X IO-2 

1.1 X IO"2 

7.6 X 10-3 

6.0 X IO-2 

3.9 X IO - 3 

*Ari is the number of free modes, N? is the number of forced modes. 
tThe numerical values of the parameters used in the computation are: 

/ = 1, EI = 1, S = 500ir", pA = IT-', a = 0.49J 
" E r r o r s max |W(XJ) - W, tuc(xi)| 

4 mode shapes to within 1 percent error only requires 1 forced 
mode plus 7 free modes. Further improvements are observed 
by using 2 forced modes: two forced modes plus 5 free modes 
yield estimates of the first four modes with only half the error 
obtained by using one forced mode and 7 free modes. 

5 Extension and Conclusion 

In the above, only one independent interactive force was 
discussed. However, an extension to two or more independent 
interactive forces is straightforward due to the superposition 
principle. If one has N0 free modes and Nk forced modes for 
the kth independent interactive force, the displacement can be 
expressed as 

M Nk 

w(*.0 = E HtVfU)<f>f(x) 
k = 0 i = l 

where M is the number of independent interactive forces, 
tfix), i = 1, 2, . . . ,N0 are N0 free vibration assumed 
modes, and 4>f (x), i = 1, 2, . . . ,Nk is the set of forced 
modes due to the kth independent interactive force. 

The following conclusions can be drawn: 
1. The convergence rate of an assumed mode analysis, 

where only a few independent interactive forces are involved, 
can be greatly accelerated by including a few forced modes. 

2. The forced modes are intrinsic to the structure and the 
spatial distribution of the forces. An exact description can be 
achieved by use of these modes under appropriate conditions. 

3. It is usually adequate to use a few forced modes, since 
the forced mode shapes usually approach the first free vibra­
tion mode shape very rapidly with increasing mode number. 
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A P P E N D I X 

Equations (17) can be discretized by the finite element 
method to yield the equation 

K Y / ^ P i (Al) 

where Pj is the force vector obtained by considering m (x)Yj(x) 
as the distributed force. In accord with the virtual work princi­
ple, it is required that 

r / N 

(o*)TPi= j D (X)/Vj(x)5pTm(x)Y1(x)dx 

N » 

= JlSfI\BNi(x)m(x)Yi(x)<lx 

where Nj(x) is the global shape function for the system. This 
is the sum of all the elemental shape functions and is nonzero 
only in the neighboring elements of the nodey. 5* is the virtual 
displacement. Since 5* is arbitrary, they'th nodal value of the 
vector P; is expressed as 

Pij = \DNj(x)m(x)Yi(x)dx 

Yi(x) is a continuous function which can be approximated by 
its values at all the nodes multiplied by the shape functions: 

N 

Yi(x)= D/Vk(x)Yi 
k = l 

It follows that 

r N 

P i j = N^x)m(x)J^Nk(x)\;kdx 
J D k= i 

= L (JD™(xyVj(x)/Vk(x)dxl)Y/k 

The matrix in the parentheses is recognized as the jkth sub-
matrix of the mass matrix. Therefore: 
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£ MjkYi 
k = l 

Pi=MYi' 

Equation (Al) thus becomes 

KY,'+1=MY,' 

After substituting the displacement boundary conditions 
(176), several rows and columns can be cancelled from the 
singular stiffness matrix K and mass matrix M to yield 

KY, MY: (A2) 

where K and M are nonsingular. Therefore 

Yn=cBa-1Y1 (A3) 

where 

D = K - J M (A4) 

Equation (A3) is recognized as a power method, which tends 
to sort out the eigenvector corresponding to the dominant 
eigenvalue of the matrix D, provided that the expansion of the 
original vector Yj in terms of an eigengvector set contains this 
eigenvector. This eigenvector corresponds to the least eigen­
value (low frequency) of the system. When a sufficiently fine 
discretization is used, this approaches the first mode of the 
system (14)-(15). 
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General Dynamic Equations of 
Helical Springs With Static 
Solution and Experimental 
Verification 
The general dynamic equations of helical compression springs with circular wire 
cross section, variable pitch angle, and variable helix radius are derived. The equa­
tions are formulated by Hamilton's principle and a variational method. In contrast 
to previous studies, the effects of coil flexure bending, variable pitch angle and 
variable helix radius are taken into account. The general equations are shown to 
agree with dynamic equations found in literature when the general equations are 
reduced to simplified forms. For a specific helical spring and static loading, the 
equations are solved with both the predicted radial expansion and the predicted 
longitudinal spring compression force in excellent agreement with experimental 
data. 

Introduction 
The properties of helical springs have interested many 

researchers, dating back to early experimental work (Donkin, 
1929; Jehle, 1929; Lehr, 1933) conducted with internal-
combustion engine valve springs. To improve the performance 
of such springs, many phenomena related to the dynamics of 
the helical spring, such as resonance, radial expansion, and 
transient stress have been studied. 

Modern machinery, especially automotive valve trains and 
vehicle suspension systems, has relied on, to an ever-greater 
degree, helical spring designs that actively exploit variable 
pitch angle and variable helical radius. The current industrial 
practice is to use springs of variable pitch angle to thwart spr­
ing resonance and to provide progressive spring rates; the 
radial expansion of the spring helix is being occasionally used 
to provide coil vibration damping through coil contact with 
external, "cup," damping elements. This paper addresses the 
need to generalize the analysis of the dynamics of helical spr­
ings to include, simultaneously, both of these effects. 

In the classical works of Thomson (1883) and Love (1927), 
the geometrical relationships among spring parameters, such 
as pitch angle, static load, coil curvature, and radius of spring 
helix were analytically derived. Many investigators have ap­
plied and modified Love's equations, and experimental results 
in the literature appear to confirm the theory. Phillips (1972) 
and Stokes (1974), for example, used the geometrical relations 
among wire curvature, helix radius, and pitch angle in their 
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studies of spring response to impact. Chen (1983) rederived 
and used these relationships in his work on eigenvalue analysis 
and experiment. 

The combined effects of pitch angle and coil curvature were 
studied by Ancker and Goodier (1958), who found that pitch 
angle did contribute significantly to strain and stress. This 
conclusion supported the early investigation of Sayre (1936), 
which was purely a static analysis. Some of the assumptions 
made in the Ancker and Goodier analysis (1958) limit the 
theory to infinitesimally small pitch angle (for example, the 
cross section of coil cut by a vertical plane was assumed to 
always remain circular), despite the authors' intent to analyze 
the large pitch angle case. Other assumptions (for example, 
uniform force and moment assumed for all cross sections) 
limit the analysis to static, and not dynamic, stress 
determination. 

Wahl (1963) summarized spring research up to the year 
1963, noting that radial expansion could be analyzed for large 
static displacements, but only for the case of small and con­
stant pitch angles in helical springs. More recently, Wittrick 
(1966) extended Love's analysis to the large pitch angle case. 
In the analysis, however, the deformation due to tension and 
shearing forces in the coil, as well as the effect of curvature of 
the coil on the torsional and flexural rigidities, was neglected. 

Phillips and Costello (1972) modeled the impact response of 
helical springs, admitting large deflections into their analysis. 
A radial expansion variable was included in the two, coupled, 
partial differential equations, with coefficients linearized for 
small strain and small constant pitch angle. The effects of the 
varying pitch angle at the ends of the spring, and at the bound­
ary condition of the partial differential equations, were not ex­
plicitly stated in the research paper (Phillips, 1972). For a 
specific spring, the experimental results shown agreed well 
with the solution. In a later paper, Costello (1975) predicted a 
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Fig, 1 Helical spring with end effects 

much larger radial expansion than Love's theory. It was men­
tioned that the analytical result was tested in the previously 
reported dynamic experiment, but the spring analyzed was dif­
ferent from that previously reported in the experiment and the 
varying pitch angle was not considered in the analysis. 

In Kato's work (1974), a varying pitch angle spring model 
was proposed and solved in the way similar to the Stefan 
problem in melting and freezing phenomena. However, the 
spring model (the partial differential equation describing the 
dynamics) is the simplest linear wave equation, which could be 
derived from just one term of strain energy and one term of 
kinetic energy, with linear viscous damping. Nonlinearity was 
introduced solely by the solution technique, not by inclusion 
of additional energy terms. For simplicity of solution, one end 
of the spring had been assumed having the smallest pitch angle 
and the other end the largest, which is generally not the case in 
industrial applications. Experimental results in the paper 
showed that the maximum discrepancy between theory and ex­
periment could be well over ten percent. 

In this paper, the full dynamic equations for helical springs 
are derived, including variable pitch angle and variable helix 
radius. 

Geometrical Constraints Among Variables 

From the Frenet formula of differential geometry (Do Car-
mo, 1976) it follows that curvature, K{SJ), and torsion, 
r(s,t), (where 5 and t are independent variables for arc length 
and time, respectively,) can completely specify a curve in 
three-dimensional space. However, curvature and torsion are 
not convenient variables for engineering applications, and 
therefore other variables are defined in this paper for the for­
mulation and solution of the dynamic equations of helical 
springs. The intrinsic coordinate system for some of these 
variables is shown in Fig. 1. The relationship between cur­
vature and pitch angle can be derived as (Thomson, 1883): 

cos2\p(s,t)] 
/ c ( ' s ' / ) = — r r ; — (J) 

r(s,t) 
wherep(s,t) and r(s,t) are pitch angle and radius of the helix, 
respectively. Torsion, the relative rotation between cross-
sectional "slices" of spring wire, is defined by: 

sm[p(s,t)]cos[p(s,t)] 
T{s>t)= ^ 7 j (2) 

It should be noted that the rotation angle, *l/(s,t), of any cross 
section is the absolute rotation with respect to an inertial 
frame. This is not the same as torsion, r(s,t), which has been 
conventionally used in place of rotation, ^(sj). Here, \p(s,t) 
is defined as the integral of the rate of twist along the spring 
helix: 

+ (s,t) 

- ! . ' ( • 

sin[p(r,0]cos[p(f,/)] sin|>(r,0)3cos[p(r,0)] 
)rff(3) 

r(t,t) r(f,0) 
where the second term in the integrand is the initial torsion of 
the spring at the free length condition. By differentiating 
equation (3), and using the definition of r(s,t) in equation (2), 
a relationship between "rate of twist" and rotation is 
obtained: 

d\l/(s,t) 
as 

= T(s,t)-r(s,0) (4) 

The constraints in equation (1) through equation (4) can be 
used to define ic(s,t), \p(s,t), and r(s,t) in terms of p0(s), 
r0{s),p(s,t), and r(s,t). A constraint relating axial displace­
ment, y(s,t), and local pitch angle, p(s,t) can be stated as an 
integral: 

y(s,t)=\ sin\p(t,t)]d{ 0<s<Z, (5) 

For convenience, the axial motion forced at one end of the 
spring helix (where s = L) can be defined as: 

(5') Y(t)=\ sin[p(f,0]tff Jo 

where the interpretation of the above equation is that the total 
height of the spring equals the specified input, Y(t). Equation 
(3) and equation (5) are nonholonomic, rheonomic con­
straints, to which the Lagrange multiplier technique 
(Rosenberg, 1977) is applied in the adjoining of these con­
straints to the dynamic equations. This formulation of the 
dynamic equations of the helical spring utilizes four general­
ized coordinates with two nonholonomic constraints to fully 
describe the spring coil motion. 

Formulation of the Dynamic Equations 

The dynamic equations describing the motion of the spring 
with varying pitch angle and varying helix radius can be 
deduced from Hamilton's principle: 

j / '
2«(^r '-^ I / ')*= = 0 (6) 

where Tt is kinetic energy and [/,- potential energy due to 
elastic strain in the helical spring. To incorporate damping ef­
fects, the extended Hamilton's Principle is utilized: 

,'2 « ( E T i - E u ) d t + J'2 Ew<"=° (7) 

The second integral is thevirtual work done by all nonconser-
vative, damping forces, Fh which may be functions of time, 
space, displacement, and time derivatives of displacement. 
Since damping effects can be handled separately, the dynamic 
equations are first derived without taking damping into ac­
count. It is worth noting that before adjoining the constraint 
force arising from nonholonomic constraints, the system can 
still be treated as holonomic (Whittaker, 1944), although the 
inclusion of such damping and constraint forces can make the 
formulation of the dynamic equations proceed in a manner 
not traditionally associated with the principles of the calculus 
of variations (Leitmann, 1963). 

The total strain energy, ££/,-, was taken to be the sum of 
strain energies from three specific phenomena. The first 
energy term is expressed as: 
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u, o / ( i ^ 0 } : ds (8) 
£7 sin 2p(s,t) rcos2/?(s,t) cos2p0(s) 

where Ul is the strain energy due to the torsional twist of the 
spring wire, G is shear modulus of the spring material, and J 
polar moment of inertia of the wire cross section. This energy 
term is expected to dominate the three strain energy terms, and 
is always included even in simplest linear spring models. A 
change in local wire curvature (measured on t — h plane of the 
intrinsic coordinate frame) generates strain energy which is in­
cluded in the second energy term: 

U, 
fL 1 
Jo 2 

(s,t)-K(s,0)]2ds (9) 

where E is elastic modulus of the spring material, and / i s mo­
ment of inertia of the wire cross section. Finally, the strain 
energy due to the local change in pitch angle (corresponding to 
the curvature change on the I — b plane of the intrinsic coor­
dinate frame) can be written as: 

U3 = \^-^-EI\y"(s,t)]2ds (10) 

Here partial derivatives with respect to space variable, s, are 
denoted by primes. Note that equation (10) is based on the 
assumption that the normal to the spring wire, n, is oriented 
along the helical radial direction (Fig. 1) from spring coil to 
helix centerline. This assumption is accurate for the case where 
the spring coil experiences small changes in local curvature. 

Corresponding to the variables describing the strain 
energies, there can be considered three kinetic energy terms: 
Tu T2, and T3. The rotation of the wire about its own 
geometric axis can store the kinetic energy defined as: 

s:^m ds (11) 
2 ~'"\ dt 

where /,„ is mass moment of inertia per unit length of spring 
wire. The radial motion of the wire has kinetic energy of: 

-L 1 /dr(s,t)^2 *-i.-r-m ds (12) 

where m is mass per unit length of the spring wire, assumed 
constant. The kinetic energy of vertical motion, expected to be 
the dominant kinetic energy, can be expressed as: 

fL 1 /dy(s,t)\2 
r 3 = „ ^ « ( - ~ Z ) ds (13) 

This expression accounts, approximately, for the kinetic 
energy resulting from translational motion along a spring axis, 
and is the only source of kinetic energy considered in 
simplified analyses (Love, 1927; Wahl, 1963.; Kato, 1974) of 
the helical spring. 

The application of Hamilton's principle and the variational 
method results in four equations of motion, which are fully 
derived in Appendix A. Utilizing the Lagrange multiplier 
technique, the nonholonomic constraints, equation (3) and 
equation (5) are adjoined into the equations. The four equa­
tions that result are: 

md2 d^(s,t) EI d2t(s,t) 
-\2(s,t)=0 (14) dt2 l + v ds2 

d2y(s,t) d*y(s,t) 
m — — + EI—— X2 ( 5 , 0 = 0 

dt2 

d2r(s,t) 

-Xl{s,t)\l 

-EI 

ds4 

cos2p(s,t) cos2p0(s)l cos2p(s,t) 

(15) 

r(s,t) r0(s) 

cosp(£,t)smp{{,t) 

"1 coszp 

J r(s, t)2 

r(s,t)2 rff=o (16) 

r(s,t) 

-A,(V)J^ 

L r(s,t) 

cos2p(t,t) 

r0 (s) 

Jo 
d f - X 2 ( s , 0 cos/7(f,/)rff=0 (17) 

r{s,t) 

In above equations, v is Poisson ratio of spring material and 
the \i(s,t) are Lagrange multipliers. Since equation (17) is a 
natural result from the derivation, it must be satisfied by the 
solution that also satisfies equations (14)—(16). These equa­
tions, together with constraint equation (3) and equation (5), 
must be solved for unknowns \ l (s,t), \2(s,t), \j/(s,t), y(s,t), 
r(s,t), and p(s,t). To facilitate a numerical solution, coeffi­
cients cos(p) and sin(p) in these equations can be approx­
imated by: 

sin \p(s,t)]=p(s,t) (18) 

, , , , , . [P(s,t)]2 

cos \p(s,t)] = l (19) 

although for this research, the above approximation was not 
used. Note that the size of the dynamic equations is con­
siderably greater if second order terms in p(s,t) are kept, but a 
solution containing at least the second order terms should be 
attempted, since dropping second order terms of p (s,t) means 
ignoring energy terms Tx, [/,, and t/3. 

Geometric Boundary Conditions 

The geometric boundary conditions applied to the dynamic 
equations are determined intuitively, and require the specifica­
tion of various helical spring design parameters. The bound­
ary conditions concerning the local spring helix radius, r(s,t), 
were chosen with the assumption that sufficient friction with 
the mounting surface forces the two ends of the helical spring 
to remain fixed at all times. At the two ends of the 
spring, the radius of the helix is given as: 

r(0,0=/b(0) (20) 

r(L,t)=r0(L) (21) 

The radius at the spring ends is considered constant in time, 
and thus: 

r(0,t)=r(L,t)=0 (22) 

Here the time derivative is denoted by the dot. At initial time, 
the local helix radius is a design parameter, and is expressed as 
a function of distance, s, along the helix: 

r(s,0) = r0(s). (23) 

According to conventional industrial practice, helical 
springs have a near-zero pitch angle at the ends (due to "clos­
ed end coils") and larger pitch angle at the middle of spring. 
This reasonable consideration is used in specifying the initial 
pitch angle distribution. Symbolically, then, the boundary 
conditions chosen for the pitch angle, p(s,t), are: 

p(0,t)=p(L,t)=0 (24) 

Again, at initial time, pitch angle is a known function along 
the helix, specified by the spring designer: 

p(s,0)=p0(s) (25) 

The ends of the spring are assumed fixed against rotation, 
therefore, the boundary conditions on torsion and its time 
derivative can be set to zero at each end of the spring, as in: 

_ T ( 0 , 0 = T ( Z , , 0 = 0 (26) 

T(0,t)=i(L,t)=0 (27) 

Since the constraint among \p (s,t), r(s,t), and T(S,0) is known 
(Thomson, 1883), the required bounary conditions for ^(s,t) 
are found in equation (4) 
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~ds~ 

Pitch angle-radius relationship 

( 0 , / ) = T ( 0 , 0 = 0 

(L,t)=T(LJ)=0 

(28) 

(29) 

A time-varying boundary condition on the longitudinal 
displacement, y(0,t), is the dynamic input to one end of the 
helical spring: 

y(0,t) = Y(t) (30) 

y(0J) = Y(t) (31) 

The other end, where s = L, is assumed fixed at a specific 
value y0, which can be a displacment measured from the free 
length of the spring, because in cases where the spring is in­
stalled with a force preload, the maximum installed height is 
less than the free length. Thus, the displacement boundary 
conditions are: 

y(L,0)=y0 (32) 

y(L,t)=0 (33) 

Boundary conditions for^ ' and>>" are determined from con­
straint, equation (5), and the specifications of pitch angle 
boundary conditions: 

y'(0,t = smp(0,t) (34) 

y' (L,t)=smp(L,t) 

y"(0,t)=p'(0,t) cos/?(0,0 

(35) 

(36) 

y"(L,t)=p'(L,t) cos p(L,t) (37) 

This set of boundary conditions allows the model to function 
in circumstances where the helical spring is in contact with two 
mounting surfaces perpendicular to spring axis, one fixed in 
space and one with a prescribed motion parallel to the axis of 
the spring helix. To free the spring from initial stress, no initial 
displacement, y(L, 0) was assumed in this analysis. However, 
a precompression of the spring can be included in the solution 
of the dynamic equations by first solving a statical problem 
with input Y(t) zero and Y(t) constant. Then the static solu­
tion, namely, y(s,t0), \//(s,t0), andp(s,ta), can be used as the 
initial condition for the dynamic problem. 

Comparison with Existing Dynamic Equations 

As a check on the accuracy and generality of the derivation 
of the dynamic equations, comparisons were made with spring 

equations found in the literature. Since these dynamic equa­
tions are for cylindrical springs, i.e., for r0(s) = constant, a 
holonomic constraint relating radius, r(s,t), and pitch angle, 
p(s,t), can be derived (Appendix B) and used to simplify the 
general equations. This holonomic constraint is: 

r0(s) cos [p(s,t)] 
r(s,t)=- (38) 

cos \pQ(s)] 
and it can be interpreted physically as the local radial expan­
sion due to the change of local pitch angle. In fact, it is a form 
of conservation of mass, provided inextensible spring wire is 
assumed. Embedding of constraint equation (38) in the for­
mulation of dynamic equations, three nonlinear differential 
equations can be obtained: 

md2 d2t(s,t) EI d2i,(s,t) 

dt2 l + v ds2 -X, ( 5 , 0 = 0 (39) 

( 7-7-) \C0S p(S,t)(p(S,t)) 
V COS Pn (S) / L \ / COS p0 (S) 

+ sin p(s,t)p(s,t)\ sinp(s,t) 

cos_p0(s)\ 2 

o 

/ c o s p 0 ( s ) \ i r 
+ EI( — — 1 cos p(s,t)-cos p0( 

\ r0(s) / L 

r cos ptf.t) c o s p 0 ( f ) 
-X,(s,0 1 — 

Jo 

s) sin p(sj) 

Mf) 
dS 

-x2(s,/)jocosp(r,f)tfr=o 

my(s,t)+EI ^ ' ' -\2(s,t)=0 

(40) 

(41) 

Further simplifications can be made. For example, if the 
change of radius of the spring during the motion is to be ig­
nored, then the radius function, r(s,t) becomes a constant. If, 
in addition, the pitch angle is relatively small, then in the for­
mulation of the dynamic equations, one can let: 

sm[p(s,t)]=p(s,t) (42) 

cos[p(s,t)] = l (43) 

and neglect bending energies U2 and t/3 (equation (9) and 
equation (10)), and the entire set of three nonlinear differen­
tial equations reduces to the single linear differential equation: 

d2y 
= GJ -A- (44) (irr2 cf/A + /„,)-

dt2 dx2 

where w is the weight of per volume spring material. This is 
the undamped wave equation for a helical spring appearing in 
many texts, as well as in Wahl (1963) and Pisano and 
Freudenstein (1983). 

Another case to which comparison can be made is to 
Costello's equation (1972), which is stated verbatim: 

/ v . \ d2ii 
sma I 1 cos^a 1 -

V l + v / dx2 

d2v d2u 

l + v sm'a cosa • dx2 dt2 (45) 

in which v (defined as normalized azimuthal motion, or the 
rotation of a spring element around the spring axis, u) was 
normalized axial displacement, and a was small, constant 
pitch angle. Since v = 0 at two ends, constant radius and con­
stant pitch angle were assumed, v must be in higher order than 
u. Also it can be seen in equation (45), using v = 0.29, a = 0.1 
as assumed in the Phillips paper, the coefficient of d2f>/dx2 is 
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Fig. 3 Initial pitch angle distributions 

about 35 times smaller than that of d2u/dx2 and 450 times 
smaller than that of d2u/dl2. Therefore, terms involving v are 
less important. If only two energy terms, Ul and T3 are used 
to formulate the equations developed in this paper, then the 
result is: 

sin p d2y Mr2 d2y 

l + v dx2 hEI dt2 

where Mis total mass of the spring. Equation (46) is identical 
to equation (45), Costello's equation, without the v terms. 

Static Solution and Experimental Verification 

It is clear that the set of nonlinear dynamic equations is dif­
ficult to solve analytically for the general case. An analytical 
solution for the cylindrical spring and the static case, however, 
can be expressed in a compact form. Since the loading is static, 
all terms involving time derivatives are set to zero. The first 
equation, equation (39), with constraint equation (3) yields: 

sin \p(s,t)]-sin [p0(s,0)] = constant (47) 

If the initial pitch angle distribution is known, this equation 
has a unique solution, subject to constraint, equation (5), and 
boundary conditions: 

y(0,t) = 0 (48) 

y(L,t0)=Y{L,t0) (49) 

where Y{ tQ) is static loading such that the compression of the 
spring is equal to the specified displacement. Since the solu­
tion is unique, it must also satisfy the other equations, if the 
system of equations has a solution at all. The initial pitch 
angle distribution, p 0 (s), must be found in order to complete 
the solution. This was done experimentally on one of the valve 
springs taken from a Pontiac, 1.8L, overhead cam, 
automotive engine. The resulting pitch angle distributions are 
shown in Fig. 3. Since the original design specification for the 
spring is not very restrictive, some other smoothed and ap­
proximated distribution curves besides the one shown here 
may also be used without violating the design specification. 
Some small variations from the distribution shown were 
tested. The changes in the predicted force and radial expan­
sion are small. 

To verify the correctness of the derived spring model and 

Fig. 4 Force and moment diagram 

the solution under static loading, the applied force and mo­
ment produced by a given displacement were computed. In 
Fig. 4, a cross section of the spring wire in the middle portion 
of spring is shown. When a force, P, is applied, a torque, Mr, 
is produced at the cross section. This torque will be balanced 
by components of two moments resulting from strain energy 
U] and U2 (U3 is not counted here because the corresponding 
bending moment is approximately in the radial direction, and 
it does not contribute to either wind-up moment, Mw, or reac­
tion force to P.) £/, and U2 both have components in y axis 
direction, which is the wind-up moment. From energy equa­
tion (9) and equation (10), one can write directly: 

M„ — GJ sin p (-sin p cos p sinp0 cosp0^ 

EI cos p i -
/cos2p cos2p0^ 

(50) 

sin p cos p s inp 0 cosp 0
N 

cos2p cos-TV 

Mr = GJ cos p(-

E l s m p i ^ ^ - ^ ^ ) (51) 

where p and r are functions of compression solvable from the 
static solution. Actual force displacement data were taken on 
a tensile testing machine fitted with a compression cage. The 
resolution of the force measurement apparatus is estimated to 
be 4.5 Newtons. The force-displacement data are shown in 
Fig. 5. To emphasize the differences between curves calculated 
from different theories, the linear solution has been subtracted 
from all data so that the nonlinear effects are made clear. It 
can be seen that the error introduced by linear spring theory 
can be as great as 39 Newtons. The actual force curve is well 
matched by the static solution, equation (47), with a maximum 
error less than 11 Newtons, which is close to the limit of preci­
sion of the measuring instrument. 

It is shown in Fig. 5 that when end effects (varying pitch) are 
ignored, a large error in predicted force can result for the case 
of relatively large spring compressions. Figure 5 also shows 
the curve calculated by the Sayre-de Forest (1936) nonlinear 
formula using the same spring parameters. It can be seen that 
the nonlinear correction term has a very small effect on the 
result, and therefore the calculated force for Sayre-de Forest is 
basically linear but with a different slope than the linear 
theory. The resulting curve from the Phillips and Costello 
(1972) equations is not shown, since assumption of constant 

914/Vol. 54, DECEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



LINEAR THEORY 
LIN-PISANO NONLINEAR FORMULA 
EXPERIMENTAL DATA 
SAYRE-DE FOREST NONLINEAR FORMULA 

+ LIN-PISANO WITH CONSTANT PITCH 

14.78 

UJ 

z 

z 
o 
< 
t-f > 
a 
U4 

or 
o 

-50. 
10 15 

COMPRESSION (MM) 

20 25 

Fig. 5 Force-displacement curve comparison—deviation from linear 
theory 

1.25 

3: 
Z 1.00 

§ o 
a 
I 

a 
z 

75 

0.50 
at 

a 
at 
a 
t -

z 0, a 25 

0.00. 

EXISTING FRICTION TORQUE 
WIND-UP MOMENT 

5 10 15 20 
COMPRESSION (MM) 

25 

Fig. 6 Friction torque and wind-up moment versus compression 

pitch and constant radius by Phillips-Costello made the two 
partial differential equations completely linear. 

The friction torque and wind-up moment produced by the 
loading is shown in Fig. 6. It is clearly seen that the friction 
torque is sufficient to stop the axial end rotation caused by 
wind-up moment for coefficients of coulomb friction as low as 
0.1, and thereby justifies the assumption that the ends of 
spring are held fixed against rotation. 

The radial-expansion experiment was performed on a mill­
ing machine equipped with index head and a specially-
designed fixture. The radial position of eight points around 
one turn of the spring in the middle section were measured for 
every two millimeters of spring compression. The resulting 
data were processed by a nonlinear least-squares curve fit to 
determine the center coordinates and the radius of this coil. 
The results are shown in Fig. 7. 

It was found that spring coils experienced significant lateral 
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Fig. 7 Radial expansion verification 
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Fig. 8 Center locus during loading 

deflections in random directions even for static loads that do 
not instigate buckling. This phenomenon is expected to be ac­
centuated during the dynamic process. Since the magnitude of 
the center movement is larger than the radial expansion, it will 
make more sense to study the center motion whenever the 
radial expansion needs be taken into account. Figure 8 is the 
locus of the center of the measured turn of spring taken from 
one experiment during static compression. 

Conclusions 

The general dynamic equations of the helical compression 
spring are derived, including the effects of coil flexure, 
variable pitch angle, and variable helix radius. Although the 
size of the general dynamic equations is formidable, they can 
be reduced to simpler forms in most application situations. 
The equations can also be simplified by replacing coefficients 
sm[p(s,t)] and cos[p(s,t)] in the equations by a Taylor series 
expansion in pitch angle p (s,t). To observe nonlinear effects, 
at least second order terms must be retained. A static loading 
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experiment verifies the improvements over existing theories 
and formulas in predicting the nonlinear force-displacement 
relation and compression-radial expansion. Current research 
on the full dynamic solution of these equations is in progress. 
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A P P E N D I X A 

Variational Formulation of General Dynamic Equations 
To formulate the dynamic equations by Hamilton's princi­

ple, energy terms are processed one by one as follows: 

J^MMO'T- 7"* 2** 

Exchanging integration order, and integrating by parts, one 
can obtain: 

\'2 8Tt = \L (l,„m)J- f2 Ijh^ dtds 
J<i Jo 'l J / , 

_ r'2 rL md2 

)t, Jo 
\//S\j/ dsdt MD 

where/,„ = md1/?,, 8\[/ = 0 at t = tx and t = t2. Similarly, for 
the remainder of the kinetic and potential energy terms: 

!
'2 r '2 r *• 1 

8T2dt=\ 6 —mP-dsdt 

= \ \ —m'rhr ds dt 
J/1 Jo 

i2 f2 rL 

8T3dt = 
'1 

\ \ -my 8y ds dt 
J(, JO 

'2 _?L 1 _ . / d2t \ 2 

(A2) 

(A3) 

r'2 r'2 rL 1 / d v \ , , 

L^^L/L-n-i^)dsdt 

EI f'2 / d^ \ L [L d2\j; 

r'2 rL El d2i , 
-i- 8i ds dt 

hi Jo l + v ds2 

\ 2 8U2dt= \ 2 s\ -—EI(.K-n0)
2ds dt 

J/! J([ Jo 2 

(A4) 

^\L
oEI{K-Ko)5(^-^-)dsdt "2 n 

'1 

" 2 r L 

'1 

r '2 rL / - sin 2p cos2p \ 
= ] j EI(K-K0){ -8p ^-drjdsdt (AS) 

-M>-'-£)L'-J>(-£)*« 

J/, Jo 
^ a4v 
. EI — 4 - <5y ds dt 

<t Jo ds4 (A6) 

The vanishing of first term in second step occurs because 

8p = 0 

dy 

ds 
= sinp, for s = 0 and s = L (A7) 
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Nonholonomic constraint equations (3) and (5) can be written 
for virtual displacements as: 

* + J o 
sin p(£,t) cos p({,t) 

[r{S,t)\2 

[s cos 2p($,t) 
d$br - dtbp = 0 

Jo rtf,t) 

by- \ cos[ptf,t)]d?5p = 0 
Jo 

(AS) 

(A9) 

Then equations (14)-(17) are obtained by combining terms in­
volving by, bp, br, and b\j/. Coefficients of virtual 
displacements Si/-, br, and bp in equation (Al) were multiplied 
by X,, by, and bp in equation 048) multiplied by X2 and ad-
jointed to equations, just as if applying generalized forces to 
the equations. 

A P P E N D I X B 

Derivation of Constraints Between Radius and Pitch Angle 

Referring to Fig. 2, a relationship between radius r(s,t) and 
pitch angle p (s,t) can be derived as follows. Since, 

r0(s)dd = cos p0(s)ds (Bl) 

r (s, t)d6 = cos p(s,t)ds (Bl) 

and assuming that d8 and ds are constants during motion, 
dividing equation (Bl) from equation (B2) yields: 

r0(s) cos \p(s,t)] 
r(s,t)=- (53) 

cos lp0(s)] 

Experimental data resulted from applying this constraint to 
simplification of dynamic equations confirms that above 
assumptions are reasonable. 
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Identification of Nonlinear 
Vibrating Structures: 
Part I—Formulation 
A self-starting multistage, time-domain procedure is presented for the identification 
of nonlinear, multi-degree-of-freedom systems undergoing free oscillations or sub­
jected to arbitrary direct force excitations and/or nonuniform support motions. 
Recursive least-squares parameter estimation methods combined with non-
parametric identification techniques are used to represent, with sufficient accuracy, 
the identified system in a form that allows the convenient prediction of its transient 
response under excitations that differ from the test signals. The utility of this pro­
cedure is demonstrated in a companion paper. 

1 Introduction 

1.1 Background. The identification and modeling of 
nonlinear multidegree-of-freedom (MDOF) dynamic systems 
through the use of experimental data is a problem of con­
siderable importance in the applied mechanics area. Since the 
model structure in many practical dynamics problems is by no 
means clear, an increasing amount of attention has recently 
been devoted to nonparametric identification methods. 

One rather general nonparametric nonlinear identification 
approach is based on the expansion of the nonlinear restoring 
force functions in a power series or generalized Fourier series 
involving orthogonal polynomial functions. In applications, it 
is generally assumed that such series are rapidly convergent so 
that only a few terms need be retained for identification pur­
poses. In such an approach, the coefficients of the retained 
terms from the series become parameters of the system which 
may be identified by many well-known techniques, such as 
least-squares fit in the time domain. 

The origins of this basic approach are very classical and 
diverse, with roots in the theory of analytic functions and in 
the theory of Fourier series, and with applications in many 
engineering disciplines as well as operations research, 
economics, and the physical sciences. With regard to the 
engineering literature, the basic approach is outlined in the 
book by Graupe (1976). Applications of the method in the 
mechanical sciences appear to have originated in the early 
1950's in several NACA technical notes (Greenberg, 1951; 
Shinbrot, 1951; Shinbrot, 1952; Briggs and Jones, 1953; and 
Shinbrot, 1954) and in the papers by Hotter (1953) and Shin­
brot (1957). In the following years, interest in similar time 
series methods for nonlinear system identification of struc­
tures expanded, as attested to by the representative publica-
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tions of Kohr (1963), Hoberock and Kohr (1967), Sprague and 
Kohr (1969), Sehitoglu and Klein (1975), Masri et al. (1982), 
Natke (1982), Masri et al. (1984), Tomlinson (1985), and Hac 
and Spanos (1987). 

Most of the research in this area has been concerned with 
SDOF systems with nonhnearities of varying complexity. The 
basic identification method becomes generally impractical for 
complex MDOF systems due to excessive computation and 
computer memory requirements caused by slow convergence 
of the series expansions. However, Masri et al. (1982) 
demonstrated by example that rapid series convergence (and 
hence practical identification results) may be obtained in at 
least some MDOF structural applications by basing the iden­
tification procedure on a set of generalized coordinates cor­
responding to the mode shapes of a comparison linear struc­
tural system. 

In the paper by Masri et al. (1982), certain restrictions were 
made on the class of nonlinear structural systems to be iden­
tified. In particular, it was assumed that (1) the system mass 
matrix M is diagonal and known; (2) the equivalent linear 
system stiffness matrix K is symmetric and known; and (3) the 
excitation to the system is furnished through forces directly 
applied to the discrete mass locations. The requirement of 
knowing the linearized system parameters pertaining to M and 
K, as well as the exclusion of the class of problems involving 
support motion (such as in the case of earthquake ground mo­
tion), limited the utility of the approach in practical cases. 

The present paper further extends the above-referenced 
work by generalizing the approach to handle, approximately, 
the case of arbitrary nonlinear MDOF dynamic systems with 
multiple inputs and outputs under the action of force excita­
tions and/or nonuniform support motion. The method is 
based on the use of time-domain estimation techniques to 
identify the parameters of an equivalent linear model whose 
eigenvectors are then used to estimate the "modes" of the 
nonlinear system. Regression techniques involving the use of 
two-dimensional orthogonal functions are then employed to 
develop an approximate expression for the system generalized 
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Direct excitation 

^ * \ f Response 

ioM V J 
Interface motion ^^___ ^/ 

Fig. 1 Model of system 

restoring forces in terms of the corresponding generalized 
system state variables. 

Section 2 of this paper extends the work of previous in­
vestigators by presenting a unified approach for handling the 
time-domain identification of the system matrices associated 
with a variety of classes of linear problems arising in the field 
of structural dynamics. The formulation under discussion in­
cludes the cases of free vibrations as well as direct force 
and/or independent support motion. 

Section 3 incorporates the results of Section 2 in the iden­
tification of nonlinear vibrating structures. The "calibration" 
of this approach is accomplished in the companion paper 
(Masri et al., 1987) by applying the method under discussion 
to a representative multi-input/multi-output nonlinear system 
incorporating polynomial as well as hysteretic nonlinearities. 

1.2 Formulation of Time Domain Identification Pro­
cedure. Consider a discrete multi-degree-of-freedom 
(MDOF) system of the type shown in Fig. 1, which is subjected 
to directly applied excitation forces f [ (t) as well as prescribed 
support motions x 0 ( 0 - The motion of this multi-input/multi-
output nonlinear system is governed by the set of equations 

f7.(*,i,x) = f i ( 0 (1) 
where: 

iT = an nl column vector representing the total sum of 
all the inertia and restoring forces acting on the 
system, 

fi (t) = an nl column vector of directly applied forces, 
x(/) = (x,(/), x0(t))

T = system displacement vector of 
order (nl + n0), 

X[(0 = active degree-of-freedom (DOF) displacement vec­
tor of order nlt 

*o(0 = prescribed support displacement vector of order n0. 

Let f r ( 0 be expressed as 

tT{t)=%{t)+%(t)+Lt0(t) + st0{f)+tN{t), (2) 

where 

% (r) = M n x , ( 0 + C „ x , ( 0 + Knxx ( 0 , 0 ) 
sf, (:) =Mf,x, ( 0 + Cf,x, ( 0 +Ks

nxl (t), (4) 
Lt0(t) = Ml0x0 (t) + C,0x0 (/) + Klox0(t), (5) 
s f 0 ( r ) = M f 0 x 0 ( 0 + Cf0x0(f)+*foX0(0, (6) 

Mn,Cn,Kn = constant matrices that characterize the iner­
tia, damping, and stiffness forces 
associated with the unconstrained DOF of 
the system, each of order nx x nlt 

Mfx, Cxl, Kxl = r e sponse -dependen t mat r ices tha t 
characterize the inertia, damping, and stiff­
ness forces associated with the uncon­
strained DOF of the system, each of order 
nx x n,, 

M10, Cw, Km = constant matrices that characterize the iner­
tia, damping, and stiffness forces 
associated with the support motions, each 
of order n, x n0, 

A/f0, Cf0, Kf0 = r e s p o n s e - d e p e n d e n t mat r ices that 
characterize the inertia, damping, and stiff­
ness forces associated with the support mo­
tions, each of order nx x n0, 

Llx(t) = an rtj column vector of linear forces involv­
ing x , ( / ) , 

sf, (/) = an nl column vector of response-dependent 
forces involving x, (t), 

Lf0 (?) = an nl column vector of linear forces involv­
ing x 0 ( 0 , 

s f 0 ( 0 = an nx column vector of response-dependent 
forces involving xx (t) as well as x0(t), 

fN(t) = an nx column vector of nonlinear non-
conservative forces involving xx(t) as well 
asx 0 ( r ) . 

Making use of equation (2), the system equation of motion (1) 
can be expressed as 

Mf1x1(0+Cf1x1(0+^f,x,(0 + 
M\0x0(t) + C\0x0(t) +K\0x0(t) +fN(t) =il(t), (7) 

where: 

M*u=Mn+Ms
n, M% = M10+MS

10, 

Cfj = C n + C u , Cf0 = C10 + C10, (8) 

Ke
u=Kn+Ks

u, Ke
w=Kl0+Kfo, 

This study is concerned with a time-domain method for the 
identification of the system matrices appearing in equation (7) 
as well as the nonlinear forces acting on the system. The 
representation of the identifed system will be in a form that 
allows the prediction of its transient response under arbitrary 
excitations, by using conventional numerical techniques for 
initial-value problems in ordinary differential equations. 

Note that equation (7) can be expressed as 

x , ( 0 = [ M f 1 ] - 1 ( f 1 ( 0 - f I ( 0 - f / v ( 0 ) , (9) 
where: 

f i ( f ) = b , ( / ) + b 0 ( / ) , (10) 

b 1 ( 0 = C f 1 i I ( 0 + A t , x , ( 0 , (11) 

b 0 (0=M? 0 x 0 ( r ) + C?0x0(0+^?oXoa). (12) 

Thus, by introducing the state vector y of order 2nx where 

J V - i ^ i , (13) 

yii = Xi, / = 1 , 2, . . . , «, (14) 

standard time-marching techniques can be used to solve 

y = g(y,fi,xo). (15) 

2 Time-Domain Identification of Linear System 
Matrices 

The use of least-squares methods to estimate unknown 
parameters is a well known and developed approach which oc­
cupies significant portions of numerous books devoted to the 
subject of parameter estimation, particularly in the field of 
electrical engineering control and system theory (Mendel, 
1973; Graupe, 1976; Hsia, 1977; Sorenson, 1980). While this 
approach has also been frequently applied in the field of struc­
tural dynamics (Caravani and Thomson, 1974, 1977; Ibrahim 
and Mikulcik, 1973, 1976, 1977; Ibrahim and Pappa, 1982; 
Ibrahim, 1977, 1978, 1983; Junkins, 1978; Beck and Jennings, 
1980; Yao, 1985; Torkamani and Hart, 1975; Shinozuka et 
al., 1982; Rajaram and Junkins, 1985; Hac and Spanos, 
1987), there is a paucity of studies that are concerned with the 
problems encountered by this approach when applied to 
realistic problems arising in the vibration field. Consequently, 
the present section of this paper is devoted to presenting an in-
depth, unified, and efficient approach for using least-squares 
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parameter estimation methods to identify the needed system 
matrices associated with a wide variety of realistic situations 
commonly encountered when dealing with experimental 
measurements of vibrating structures. 

2.1 Formulation. Consider a linearized version of the 
system shown in Fig. 1, and assume it is governed by 

Muxl(t) + Cuxl(t)+Kuxl(.t) + 

MmxQU) + Cl0x0(t)+K10x0(t)=fl(t). (16) 

Let the response vector r (t) of order 3(n, + n0) be defined as 

r(t) = (xf(t),xl(t),xl(t),xl(t),xUt),xl(t))T. (17) 

For clarity of presentation, let the six matrices appearing in 
equation (16) be denoted by lA, 2A, . . . , 6A, respectively. 

Let (JAj) = /th row of a generic matrix-M, and introduce 
the parameter vector «,-. 

«,= « % > , <M,>, <M,>, <M ;>, <M ;>, < % » r . (18) 

Suppose that the excitation and the response of the system 
governed by equation (16) is measured at times t\, t2, • . ., tN. 
Then at every tk, 

M X l ( 4 ) + 2Axl(tk) + *Ax1(tk) +*Ax0(tk) + 

M x 0 ( ^ ) + M x 0 ( ^ ) = f , ( 4 ) ; k=l,2,...,N. (19) 

Introducing matrix R 

R = 

rT(tO 
rT(h) 

rT(tN) 

(20) 

and using the notation above, the grouping of the 
measurements can be expressed concisely as 

R& = b (21) 

where R is a block-diagonal matrix whose diagonal elements 
are equal to R, a = (af, a\, . . . , a^V, and b is the cor­
responding vector of excitation measurements. 

Keeping in mind that R is of order m x n where m = Nn{, 
and n = 3«, (nx + n0), then if a sufficient number of 
measurements is taken, this will result in m > n. Under these 
conditions, least-squares procedures can be used to solve for 
all the system parameters that constitute the entries in a: 

& = R<<b (22) 

where fr is the pseudoinverse of R (Golub and Van Loan, 
1983). 

Using the weighted least-squares approximation to 
minimize the cost function, / , results in the approximate solu­
tion 

ct = (RTWR)-lRTWX>, ' (23) 

where W is the error weighting matrix. 

2.2 Computational Efficiency. 
2.2.1 Decoupling. One way to reduce the order of equa­

tion (21) to a manageable level is by making use of the 
diagonal nature of partitioned matrix R, thus resulting in a set 
of «! decoupled matrix equations each of the form 

Rai = bi, (=1 ,2 , . . . , « , . (24) 

Comparing the order of R in equation (24) with that of R in 
equation (21), shows that the order of R is smaller by a factor 
of n\ compared to R. Least-squares techniques can again be 
used to obtain the components of the ni parameter vectors a,: I 

at=R%; i=l,2, . . . , « , . 

Note that R^ needs to be computed only once. 

(25) 

While the formulation in equation (24) is obviously superior 

to the corresponding formulation in equation (21), the former 
suffers from a significant (practical) limitation pertaining to 
the number of system DOFs simultaneously excited. 

2.2.2 Recursive Solutions. Suppose that a set of m equa­
tions 

Rka = h^ (26) 

has been used to obtain a weighted least-squares estimate for 
a, denoted by &<<r): 

&M = (RZWkRk)->RTWk\>lkK (27) 

Using an additional set of relations 

£(*+1)A = b<*+,> (28) 

a new estimate of a, denoted by &(*+1), can be obtained 
without reprocessing the whole set of equations involving 
(b<*>, b<*:+1')(Brogan, 1985). 

2.3 Special Cases. In the work of Masri et al. (1987a), 
special cases that influence the application of the method in 
practical situations are discussed and steps are provided for 
alleviating some of the problems appearing in realistic cases. 
Among these topics are the uniqueness issues, partial 
knowledge of system parameters, conditions under which the 
approach fails to yield desired results, symmetry assumptions, 
and recursive approaches to enhance computational 
efficiency. 

3 Identification of Nonlinear Systems 

Consider the nonlinear system governed by equation (1) and 
assume that the identification procedure discussed in Section 2 
has yielded the system matrices needed to determine the 
equivalent linear internal force vector f£ (0 appearing in 
equation (9) and defined by equation (10). 

3.1 Restoring Force Estimation. Solving equation (7) for 
the nonlinear force vector fN(t) results in 

fNU)=flU)-(Me
nxl(t)+fl(t)). (29) 

Since all the terms appearing on the right-hand side of equa­
tion (29) are available from measurements or have been 
previously identified, the time history of fN can be deter­
mined. Note from equation (29) that fN(t) can be interpreted 
as the residual force vector corresponding to the difference 
between the excitation vector f, (/) and the equivalent linear 
force vector composed of the inertia, damping, and the stiff­
ness terms. 

An alternative form of equation (29) is 

h (t)=tN(t)+PL (t) = f , ( 0 - M f l X l ( 0 , (30) 

where iR(t) represents the difference between the excitation 
and equivalent linear inertia forces associated with the active 
degrees of freedom. The force iR can be thought of as the 
"restoring force" of the system. 

Let hj(t) represent either the /th component of the 
nonlinear residual force vector fN(t) as defined by equation 
(29) or the restoring force vector fR (t) as defined by equation 
(30). In general, vector h depends simultaneously on all the 
components of the system acceleration, velocity, and displace­
ment vectors associated with the «, active DOF as well as the 
«0 support components: 

h ( 0 = h ( x , x , x ) . (31) 

, The central idea of the present method is that, in the case of 
nonlinear dynamic systems commonly encountered in the ap­
plied mechanics field, a judicious assumption is that each 
component of h can be expressed in terms of a series of the 
form: 

Mx,x,x)« L ^ K ' . ^ ' ) (32) 
7=1 
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where the i^'s and y2 's a r e suitable generalized coordinates 
which, in turn, are linear combinations of the physical 
displacements, velocities, and accelerations. The approxima­
tion indicated in equation (32) is that each component A, of 
the nonlinear force vector h can be adequately estimated by a 
collection of terms h\J), each one of which involves a pair of 
generalized coordinates. The particular choice of combina­
tions and permutations of the generalized coordinates and the 
number of terms 7max. needed for a given h-, depends on the 
nature and extent of trie nonlinearity of the system and its ef­
fect on the specific DOF i. 

3.2 Eigenvector Expansion. If h,(t) is chosen as the /th 
component of fN(t), then the procedure expressed by equa­
tion (32) will directly estimate the corresponding component 
of the unknown nonlinear force. For certain structural con­
figurations (e.g., localized nonlinearities) and/or relatively 
low-order systems, the choice of suitable generalized coor­
dinates for the series in equation (32) is a relatively straightfor­
ward task. However, in many practical cases involving 
distributed nonlinearities coupled with a relatively high-order 
system, an improved rate of convergence of the series in equa­
tion (32) can be achieved by performing the least-squares fit of 
the nonlinear forces in the "modal" domain as outlined 
below. 

Using the identification results for the linear system dis­
cussed in Section 2, the eigenvalue problem associated 
with Mfi'JT,, is solved resulting in the eigenvector or modal 
matrix $ and the corresponding vector of generalized coor­
dinates u: 

hjJ+ "(x, x, x) = /;<» (x, x, x ) - h W (uf!>, vtf); 

h,(u,ii) = * % ( 0 (33) 

with 

where the Ckt's are a set of undetermined constants and Tk(.) 
are suitable basis functions, such as orthogonal polynomials. 
Let hf\ the deviation (residual) error between hj and its first 
estimate /j(n, be given by 

/f>(x,x,x) = / ! / (x 1 , x 1 ) xO-AS 1 >(^4 ; ) ) - (36) 
Equation (32) accounts for the contribution to the nonlinear 
force hj of generalized coordinates v\l) and v$ appearing in 
the form (v[l))k(v$))'. Consequently, the residual error as 
defined by equation (32) can be further reduced by fitting h{2) 

by a similar double series involving variables v\2) and v2
2): 

hW(x,x,x)~hfHv??,v%) ' ' (37) 

where 

h?\v\», ^>) = £ £0>C#>Tk(v[»)T((v%). (38) 
k t 

By extending this procedure to account for all DOFs that 
have significant interaction with DOF /, equation (32) is ob­
tained with 

where 

and 

7 = 1 , 2 , . 

/!Jn(x, x, x) = hj (x, x, x), 

(39) 

(40) 

u ( r ) = * - 1 x ( r ) (34) 

With this formulation in mind, equation (32) can be viewed as 
allowing for "modal" interaction between all generalized 
coordinates, taken two at a time. Note that the formulation in 
equation (32) allows for "modal" interaction between all 
"modal" displacements, velocities, and accelerations. 

3.3 Series Expansion. The individual terms appearing in 
the series expansion of equation (32) may be evaluated by us­
ing the least-squares approach to determine the optimum fit 
for the time history of each hj. Thus nf1 may be expressed as a 
double series involving a suitable choice of generalized coor­
dinates: 

SJ'W/. »£?)- D ^CJ^TM^TM1}) (35) where 

'hU) („jy>t vy>)B "E^Cttniv^TM?)- (41) 
k I 

Note that, in general, the range of the summation indices k 
and l appearing in equation (41) may vary with the series index 
j and DOF index /. Similarly, 7max., the total number of series 
terms needed to achieve a given level of accuracy in fitting the 
nonlinear force time history, depends on the DOF index ;'. 

3.4 Least Squares Fit for Nonlinear Forces. Using two-
dimensional orthogonal polynomials Tk{.) to estimate each hj 
(x, x, x) by a series of approximating functions hjJ) of the 
form indicated in equation (41), then the numerical value of 
the Ckt coefficients can be determined by invoking the ap­
plicable orthogonality conditions for the chosen polynomials. 
While there is a wide choice of suitable basis functions for 
least-squares application, the orthogonal nature of the 
Chebyshev polynomials and their "equa l - r ipp le" 
characteristics make them convenient to use in the present 
work. 

Let each generalized coordinate v appearing in equation (32) 
be normalized to lie in the range - 1 to 1: 

V = [V- ( t W + ^min) /2] / [ (y m ax ~ Vmin)/2]. 

If the Chebyshev polynomials, given by 

r„(£) = cos(rtcos-'£), - 1 < £ < 1 

and satisfying the weighted orthogonality property 

(42) 

(43) 

w(x)T„tt)Tm(H)dti--

0, 

ir/2, 

n = m = 0 

(44) 

where w(x) = (1 — x2)~1/2 is the weighting function, are used, 
then the Ckl coefficients would be given by 

(^ki 

(2/rfSkl, 
(2/TT2)Skt, 

(l/TT2)Skl, 

k and 1*0 

k or 1=0 

k and £=0 

i 7T f* 7T 

h 
o Jo 

(45) 

(cos- 'y , , cos-iv2)Tk(e1)Tl(62)d8lde2 (46) 

and 

Vj = COS ( / = 1 , 2 . (47) 

Note that in the special case when no cross-product terms 
are involved in any of the series terms, functions h can be ex­
pressed as the sum of two one-dimensional orthogonal 
polynomial series instead of a single two-dimensional series of 
the type under discussion. 

4 Summary and Conclusions 

An approximate time-domain method is presented for the 
identification of nonlinear multi-degree-of-freedom systems 
subjected to arbitrary direct force excitations and/or not-
necessarily-identical support motions. This self-starting 
method uses recursive least-squares parameter estimation 
methods, combined wtih nonparametric identification techni­
ques, to generate a reduced-order nonlinear mathematical 
model suitable for use in subsequent studies to predict, with 
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good fidelity, the response of the test article under arbitrary 
dynamic excitations. The utility of this procedure is 
demonstrated in a companion paper. 
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Identification of Nonlinear 
Vibrating Structures: 
Part II—Applications 
A time-domain procedure for the identification of nonlinear vibrating structures, 
presented in a companion paper, is applied to a "calibration"problem which incor­
porates realistic test situations and nonlinear structural characteristics widely en­
countered in the applied mechanics field. The "data" set is analyzed to develop 
suitable, approximate nonlinear system representations. Subsequently, a "valida­
tion" test is conducted to demonstrate the range of validity of the method under 
discussion. It is shown that the procedure furnishes a convenient means for con­
structing reduced-order nonlinear nonparametric mathematical models of 
reasonably high fidelity in regard to reproducing the response of the test article 
under dynamic loads that differ from the identification test loads. 

1 Introduction 

1.1 Background. In the study by Masri et al. (1987b), 
henceforth referred to as the "companion paper," the authors 
presented the formulation of a time-domain method for the 
identification of arbitrarily nonlinear multi-degree-of-
freedom (MDOF) vibrating systems undergoing free vibra­
tions or subjected to direct force excitations and/or support 
motion that is not necessarily uniform. This paper applies the 
identification procedure in the cited reference to a "calibra­
tion" problem which incorporates realistic test situations and 
nonlinear characteristics. Subsequently, a "validation" prob­
lem is considered to invesitgate the range of validity of the 
identification/prediction procedure. 

1.2 Scope. Section 2 of this paper defines the model con­
figuration, the nonlinear (polynomial and hysteretic) element 
characteristics, and the exact system parameters corre­
sponding to the "small oscillations" range. 

Section 3 discusses a synthetic "experiment" meant to 
simulate a conventional "hammer-blow" test that is routinely 
used in contemporary experimental modal analysis pro­
cedures. After describing the probing signal characteristics 
and input/output measurements, the data processing ap­
proach under consideration is used to extract the linearized 
system inertia, damping and stiffness matrices. 

Section 4 is concerned with a simulated forced vibration test 
wherein the excitation (stationary, wide-band random) is not 
directly applied to the system but rather to its moving support 
points. By using the parametric identification results for the 
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linearized system parameters obtained in Section 3, the time 
histories of the nonlinear forces involving all system degrees of 
freedom are obtained. Using the eigenvectors associated with 
the linearized system as basis functions to transform the 
"measured" nonlinear forces, the generalized nonlinear 
forces and corresponding generalized state variables are ob­
tained. Applying the nonparametric identification procedure 
under discussion, and approximating analytical function in­
volving a series expansion in terms of a set of orthogonal 
polynomials is obtained and shown to yield a good estimate of 
the presumably unknown nonlinear restoring forces of the 
system. 

Section 5 is concerned with the "validation" of the present 
identification procedure by using the identification results ob­
tained in Section 4 to predict (estimate) the response of the 
"exact" nonlinear system, when the location of the distur­
bance as well as its form is different from what was used for 
the probing signal in the identification phase discussed in Sec­
tion 4. 

2 Model Characteristics 

2.1 Example System Characteristics. To illustrate the 
application of the method under discussion, consider the 
hypothetical finite element model shown in Fig. 1. This one-
dimensional (rectilinear horizontal motion) structure consists 
of three nearly equal masses mh i= 1,2,3 that are intercon­
nected by means of six truss elements anchored to an interface 
at three locations, thus resulting in a redundant system with 
three degrees of freedom. 

The absolute displacement of each mt is designated by xt, 
while the prescribed motion of the three support points are 
designated by s,(t), i= 1,2,3. The three excitation forces that 
directly act on the system components are denoted by F,-(/)> 
i= 1,2,3. Thus, in terms of the notation introduced in the com­
panion paper, 
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ISF 
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L».,(o 

U-S,(t> 

(a) 

' 0.8 0.0 0.0 
M = | 0.0 2.0 0.0 

0.0 0.0 1.2 

(b) 

0.4 - 0 . 1 - 0 . 1 
- 0 . 1 0.4 - 0 . 1 
-0 .1 - 0 . 1 0.4 

1.000 1.000 1.000 
•> = | 1.735 -1.242 -0.093 

1.165 2.511 -0.342 

1.173 
, = | 1.848 

2.354 

K = 
4.0 
1.0 
1.0 

-1 .0 
4.0 

- 1 . 0 

-1 .0 
-1 .0 

4.0 

' 0.0587 ' 
( = I 0.0924 

0.1177 

Fig. 2 (a) Exact values of linearized system matrices corresponding to 
the small oscillations (infinitesimal) motion range, (b) Modal 
characteristics involving the matrices M, C, and K corresponding to 
fixed-base motion. 

: 0.8, m 2 = 2.0, m 3 = 1.2 

Element 

(i) 
1 
2 
3 
4 
5 
6 

Type 

Hardening 
Hardening 
Hardening 
Hysteretic 
Hysteretic 
Hysteretic 

pf 

2.0 
1.0 
1.0 
2.0 
2.0 
1.0 

pf 

0.2 
0.1 
0.1 
0.2 
0.2 
0.1 

pf 

1.0 
20.0 
20.0 
1.0 
1.0 
0.5 

P? 

0.0 
0.0 
0.0 

pf 

0.4 
0.4 
0.4 

Fig. 1 Model of example nonlinear 3DOF system: (a) configuration; (b) 
element characteristics; (c) generic element with polynomial nonlineari-
ty; (d) generic element with bilinear hysteretic properties. x,(() 
designates the absolute displacement of m„ and sy(t) designates the ab­
solute displacement time history associated with the support DOFj. 

i5 

0.030 

F2(t) 

0.0 , 

T = 1.0 SB . = 0.18 T j 

(a) 

Fig. 3 Acceleration time history of the three masses in the nonlinear 
system under "hammer-blow" test applied to mass m2. The duration of 
the impulsive excitation is approximately 0.1 & of the system's fun­
damental period, (a) F(t); (b) iqft); (c) x2(t); (d) xz(t). The same amplitude 
and time scale is used for all plots. Time span shown covers approx­
imately 14 fundamental periods. 

xl(t) = (xux2,x3)
T, 

x0(t) = (sus2,s3)
T, 

tl{t) = [Fl,F2,F3)
T, 

(1) 

(2) 

(3) 

The arbitrary nonlinear elements, denoted by gh that are in­
terposed between the masses and between the support points 
are dependent on the relative displacement z and the velocity z 
across the terminals of each element. In the case of polynomial 
nonlinearities, the elements assume that form, 

g,(z, i) =p[i)z+pii)z+p\i)z\ (4) 

where p{!) is the linear stiffness component, p[l) is the linear 
viscous damping term, and p^ corresponds to the coefficient 
of the nonlinear (cubic) displacement term. Thus, depending 
on the sign of p j ; ) , the form of g, in equation (4) can be made 
to represent restoring forces with hardening or softening 
nonlinearities—a commonly encounterd type of nonlinearity 
in physical systems. 

The form of the nonlinearity expressed by equation (4) is a 
polynomial-type without cross-product terms. To illustrate the 
wide applicability of the present method, a hysteretic-type 
restoring force will be considered. Such a nonlinearity not on­
ly involves cross-product terms of displacement and velocity, 
but is of course not even expressible in polynomial form. 
Hysteretic systems, widely encountered in all areas of applied 
mechanics (e.g., building and equipment systems, as well as 

aerospace structures containing collapsible or retractable 
elements), are among the more difficult types of nonlinear 
properties to investigate and identify (Caughey, 1960, 1975; 
Iwan, 1965, 1966; Iwan and Lutes, 1968; Jennings, 1964; 
Lutes and Takemiya, 1974; Andronikou and Bekey, 1984). 

In the example structure under discussion, three elements 
(g,, g2, and g}) have hardening-type polynomial nonlinear 
properties, and the remaining three elements (g4, gs, and g6) 
have bilinear hysteretic properties characterized by the follow­
ing parameters: 

stiffness in the elastic range, 
viscous damping term in the linear range, 
stiffness in the nonlinear range, 
viscous damping term in the nonlinear 
range, 
yield displacement level. 

The magnitudes of the system masses as well as the material 
properties of the nonlinear model elements are tabulated in 
Fig. 1(b). 

Notice that the structure of the model is not chain-like, con­
sequently the linearized system stiffness matrix is not banded. 
The exact values of the system mass, damping, and stiffness 
matrices corresponding the an infintesimal ("small oscilla­
tions") range of the motion in the neighborhood of the posi­
tion of static equilibrium are shown in Fig. 2 together with the 
associated mode shapes, natural frequencies, and modal 
damping values corresponding to a fixed-base configuration 
of the model. 

p\'> 

p j " 
P\'> 
Pi,] 

= *, 
= c. 
= k2 

= c2 

P^ = Zy = 
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1.164 2.512 -0.341 

0.403 -0.100 -0.102 
-0.100 0.400 -0.100 
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>= | 1.848 

2.355 

4.03 -1.00 -1.01 
-1.00 1.00 -1.00 
- 1 . 0 ! -1.00 4.01 

0.0586 
0.0923 
0.1177 

' 0.00 % 
- = | 0.00 % 

0.04 % 

-0.17 % 
-0.11 % 

0.00 % 

Fig. 4 Parametric identification under impulsive direct force excita­
tion. Formulation is for a full-order system with symmetric matrices 
under forced vibrations. Time segment used for identification is about 
two fundamental periods. 

3 Impulsive Excitations and Response Measurement 

3.1 Probing Signal. The method under consideration im­
poses no restrictions on the nature of the excitation source to 
be used as a probing signal. It will be assumed in the present 
example that an impulsive excitation (resembling a "hammer 
blow" disturbance of the type widely used in modal analysis 
techniques) is applied to mass m2. 

When the above-mentioned excitation is applied to the ex­
ample structure, segments of the resulting acceleration time 
histories of the three mass locations would be as shown in Fig. 
3. The same scale is used for all locations to make relative 
magnitude comparison easier. The time duration shown cor­
responds to about 15 system fundamental periods Tl. 

3.2 Data Processing. By integrating the measured ac­
celeration time histories shown in Fig. 3, the time histories of 
the corresponding velocities and displacments are obtained. 
From that, inter-element deformations z-,(t) and velocities 
ij{t) can be determined. 

3.3 Parametric Identification. In what follows, the task 
of identifying the system matrices (determining the linearized 
system influence coefficients) will be referred to as the 
"parametric" identification phase of the procedure. Con­
versely, the task of developing an approximating analytical 
representation for the nonlinear forces involved in the system 
motion will be referred to as the "nonparametric" identifica­
tion phase of the current procedure. For convenience, a prefix 
A will henceforth be used to indicate that a referenced section, 
equation, or figure is in the companion paper mentioned 
above. 

With reference to the notation introduced earlier in the 
companion paper, the general parametric identification pro­
cedure can be applied to the present case by noting that the 
problem is one in which the number of degrees of freedom is 
nx =3 , the number of support degrees of freedom is n0 = 0 
(i.e., no support motion), and the number of nonzero excita­
tion force components is rij= 1 (since only F2(t) ^0) 

By using the recursive weighted least-squares approach 
discussed in Section A2.2, the symmetric system matrices Mu, 
C u , and Kn are identified and shown in Fig. 4. Comparing 
the elements of matrices Mn, Cu, and Kn shown in Figs. 2 
and 4 shows that, if all the response measures are used to iden­
tify the dynamic system, then the identified results are ac­
curate to within a few percent for all system parameters, in­
sofar as the infintesimal range of motion is concerned. The 
small discrepancies are attributable to slight changes in the 
nonlinear elements. Further details regarding the application 
of the parametric identification procedure, under a variety of 
test situations, are available in the work by Masri et al. 
(1987a). 

4 Random Base Excitation Test 

4.1 Probing Signals and Response. The motion of the 

Fig. 5 Acceleration time history of the base motion s(t) and the 
response Xj(t) of the three masses in the nonlinear system shown in Fig. 
1 under uniform base excitation applied to the three supports. Identical 
amplitude and time scales are used for all the plots. Time segment 
shown corresponds to approximately 14 fundamental periods of the 
linearized system. Input is stationary, wide-band random excitation with 
a flat power-spectral-density. 

Fig. 6 Phase-plane plots of the six elements in the form of force-
deformation characteristics g, and z,- involving the nonlinear system 
finite elements when subjected to the uniform stationary random base 
excitation shown in Fig. 5 

stucture discussed in Section 3 consisted of essentially small 
oscillations. In the present "test," the structure is assumed to 
be subjected to uniform, wide-band random support accelera­
tions s\ (t), s2(t), and s} (t). This particular choice of excita­
tion is intended to mimic a situation in which a structure with 
multiple load paths is subjected to a random support motion 
of the type furnished by shaking tables. 

4.2 Data Processing. For more realistic simulation, it 
will be further assumed that the only available 
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Fig. 7 Three-dimensional representation of the force deformation 
characteristics of the six finite elements of the system when subjected 
to wide-band random base acceleration 

"measurements" are those of the acceleration of the three 
supports, (s)(t), /= 1,2,3), and the acceleration of the three 
masses (i ,(0» /= 1,2,3): None of the system velocities or 
displacements are directly measured. A representative segment 
of each of the excitations (chosen, for simplicity, to be the 
same) and responses is shown in Fig. 5. To facilitate com­
parisons, the same amplitude scale is used for like response 
quantites at different locations. By processing the measured 
accelerations, the system velocities and displacements are 
obtained. 

Phase-plane plots of all the elements' force-deformation 
curves are shown in Fig. 6. Unlike the results obtained under 
impulsive excitation, it is clear from the inspection of Fig. 6 
that elements glt g2, and g3 have a hardening-spring 
characteristic, while elements g4 and gs are undergoing 
hysteretic behavior. A three-dimensional representation of the 
resistance characteristics of each of the elements is shown in 
Fig. 7. 

4.3 Parametric Identification Procedure. In the most 
general case for the example under discussion, the parametric 
identification procedure can be used to determine the elements 
of the six matrices Mn, Cn, and Ku, each of order «, x n,, 
and matrices Ml0, C10, and Kxo, each of order nlxn0, where 
«! =3 and n0 = 3 and nf = 0 (since no direct excitation is ap­
plied). However, to further demonstrate the flexibility of the 
present method, the previously determined system matrices in 
Section 3, based on the "small oscillations" response, will be 
used as is (i.e., not recomputed). Thus, the remaining system 
matrices to be identified are M1Q, C10, and Kl0. Furthermore, 
for simplicity, it will be assumed that the system mass matrix is 
diagonal. This implies that M10 is a null matrix. 

With the above assumptions in mind, the parametric iden­
tification procedure can be expressed as: 

-0.196 
C,0 = | -0.183 

-0.176 

-2.00 

-2.00 

Fig. 8 The evolution of the element values of the identified matrices as 
a percentage of the exact value of the corresponding "infinitesimal mo­
tion range" 

CfS>x0+*i5>Xo = -(Aftfx.+CH'-i,+*•!{> x,). (5) 

Fig. 9 Time history of the three components of the nonlinear residual 
force vector fN(t) obtained from the equation of motion by subtracting 
the contribution of the identified linear inertia, damping, and stiffness 
forces. The same amplitude and time scale is used for all plots. The 
amplitude scale matches the corresponding scale used in Fig. 5 to plot 
the time history of the system accelerations. The time scale used covers 
approximately 14 fundamental periods 7V 

system matrices appearing above designate "infinitesimal-
motion range" and "equivalent linear," respectively. 

Notice that, in the present case, the number of independent 
support motions is equal to unity since the motion of the three 
support points is uniform. Consequently, nl=3, n0 = l, 

The superscripts (i) and (e) attached to the definition of the ' nf = 0, rjal=2n0 = 2, and the total number of unknown 
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(a) 

Fig. 10 Phase-plane plots of the "modal" state variables u, and u, and 
the three generalized nonlinear residual forces hf with respect to the 
corresponding generalized displacement U/. Identical horizontal and 
vertical scales are used for all plots. Note from plot (b) the clear 
evidence of the hysteretic behavior involved with the first mode. 

parameters to be identified at this stage is va-
niVa\ = 6 - T n e 

results of the procedure are shown in Fig. 8. 
The evolution of the magnitude of the identified system 

matrices Cjo'and Kfflwith time, obtained through the recur­
sive algorithm discussed in the companion paper, is also 
shown in Fig. 8. For convenience, the magnitude of the or­
dinate of the plotted parameters have been normalized by the 
"exact" value of the corresponding "infinitesimal-motion 
range" parameters. The abscissa of the curves appearing in 
Fig. 8 have been normalized by Tlt the system fundamental 
period in the "small oscillations" range. Consequently, the 
ordinate of Fig. 8(a) covers a range ± 50 percent relative to the 
unity value of the ratio eg. = (c^/ctf)), 7 = 1,2,3 where c^> 
and c^') is the single element in row j of the column matrix 
Cfo' and c[j}, respectively. Similarly, the ordinate of Fig. 
8(b) covers a range ±2.0 percent relative to the unity value 
of the ratio ArJ. = (A#>/A#>),/= 1,2,3 where k^f and k§, is 
the element in row j of column matrix Kffl and K{§, respec­
tively. The abscissa of the plots in both parts (a) and (p) in Fig. 
8 covers a range of about 257^. 

It is worth noting from Fig. 8 that the spread of the results 
(i.e., dimensionless ordinate scales of the two plots) pertaining 
to the damping and stiffness influence coefficients differ by 
more than an order of magnitude (a factor of about 50). This 
behavior is consistent with the fact that, in the example under 
discussion, the relative contribution of damping-related forces 
and stiffenss-related forces is nearly inversely proportional to 
the above-mentioned spread. 

4.4 Determination of Nonlinear Forces. Using the 
available measurements and the previously identified system 
matrices, the nonlinear system forces can now be computed 
from 

V, = U, 

V2 — l/l 
«ln,l 
" 2 m , 

h\ c o e f f i c i e n t s 

„ = - 2 . 5 8 0 1 u l m „ = 1 . 8 4 4 4 

„ = - 2 . 7 8 0 6 v w = 2 . 4 1 4 7 

(b) 

T„(i>,)' 

r.O) 
T 3 (« i ) 
T3(m) 

T,M 
T„M 

To(u2) 

0.0430 
-0.1634 
-0.0577 
0.0736 
0.0074 

-0.0081 

Vj = U2 

v2 = " 2 

ToM 

I i ( » . ) 
T2(vi) 

7i ( i / i ) 

T,M 
Ts(vi) 

To(v2) 

-0.1024 
-0.4054 
0.0154 
-0.0398 
0.0837 

-0.0389 

Vl = M3 

v2 = u 

ToM 

7 i ( » i ) 

'AM 
TsM 
T,M 

T5(t>,) 

3 

T0(v2) 

-0.0180 
-0.0331 
-0.0139 
-0.0267 
-0.0071 
0.0066 

T,(v2) 

0.4553 
-0.0093 
0.0274 
-0.0003 
0.0228 
0.0204 

u l m i n = 

"2„ ,„ = 

T,(» 2 ) 

0.1227 
-0.0229 
0.0162 
0.0564 
0.0335 
-0.0057 

" i ™ „ = 

«2„ . n = 

J ' l f e ) 

-0.0912 
0.0361 
-0.0314 
-0.0201 
0.0200 
-0.0193 

T2(v2) 

0.0978 
0.0245 
0.0351 
0.0037 
0.0176 
-0.0414 

T3(W2) 

0.0808 
0.0097 
-0.0199 
-0.0023 
-0.0215 
-0.0038 

h2 c o e f f i c i e n t s 

= - 0 . 2 2 5 0 

= - 0 . 4 0 0 7 

T2(v2) 

-0.0011 
0.0339 
0.0007 

-0.0105 
0.0296 
-0.0429 

T3(v2) 

0.1102 
0.0295 
-0.0254 
-0.1108 
-0.0705 
0.0415 

/ i 3 c o e f f i c i e n t s 

-0.1047 
-0.2076 

T2(u2) 

0.0805 
-0.0117 
0.0492 
0.0104 
-0.0121 
-0.0237 

T3(v2) 

0.0009 
-0.0406 
-0.0105 
-0.0145 
0.0048 
0.0474 

T,M 

0.0330 
0.0786 
-0.0050 
-0.1118 
-0.0141 
0.0171 

vlmai — 

" 2 m „ = 

H M 

0.0190 
0.0832 
-0.0292 
-0.0794 
-0.0621 
-0.0387 

vintai — 

« 2 m „ = 

T,(v2) 

0.0609 
0.0298 
0.0287 
0.0009 
-0.0146 
-0.0047 

r5(»2) 

-0.0071 
0.0101 
-0.0118 
-0.0098 
-0.0271 
-0.0120 

0.4094 
0.4080 

Ts{v2) 

0.0120 
0.0622 
-0.0083 
-0.0304 
-0.0084 
0.0017 

0.1100 
0.3060 

T5(i>2) 

-0.0351 
0.0158 
-0.0288 
0.0119 
0.0133 
0.0210 

Fig. 11 Nonparametric identification results. Note that the indicated 
coefficients correspond to the normalized Chebyshev polynomials. 

With that, the time history of the nonlinear force vector 
fN(t) components can be determined and are shown in Fig. 9. 
For convenience, identical scales are used for the three plots. 

At this stage of the identification procedure, the "best" (in 
least-squares sense) equivalent linear model has been deter­
mined in the form of the identified matrices. Thus, if for the 
purposes of a particular application the norm of the residual 
error, llfN(r)ll, as computed from equation (6) is sufficiently 
small, then the identification task can be terminated. For more 
demanding situations, additional processing is required to 
more accurately identify the residual forces that have been 
determined. 

As pointed out earlier, if there is a need to augment the 
parametric identification results with additional results from 
the nonparametric phase of the data processing, one can pro­
ceed directly to develop approximating analytical representa­
tions, for as many of the components of iN{t) as warranted, 
in terms of a series expansion involving suitable generalized 
coordinates. However, when the order of the dynamic system 
is relatively large, dealing with a transformed set of nonlinear 
forces may lead to a faster rate of convergence of the ap­
plicable series. 

A convenient and natural transformation to use with 
realistic dynamic systems is the one expressed by equation 
0433): 

h(u,u) = * % ( 0 , 

1 1 ( 0 = * - ^ , O , 
where 

f A , (0=f , ( / ) - (M|{>i i 1 + Cttxl+KWxl+C$x, •V -x0j 
7=1,2,3, 

(7) 

(8) 

(9) 
0 1 0 0 and $ is the modal matrix associated with M^lKu. Although 

(6) the linear modal transformation of equation (8) does not lead 
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Estimated h 

Fig. 12 (a), (c), and (e): Three-dimensional representation of the varia­
tion of each of the three generalized nonlinear forces h, with the cor­
responding state variables u,- and u(; (b), (d), and (f): three-dimensional 
plots of the estimated (identified) generalized nonlinear forces />; as a 
function of the corresponding state variables. For better resolution, dif­
ferent scales are used for each of the three plots. 

to a decoupled set of equations in this nonlinear case, it has 
been found in many examples to lead to an increased rate of 
convergence of the series representation of the nonlinear force 
vector fN(t). The time history of the "modal" state variables 
u ( 0 and i i (0 as well as the "modal" nonlinear forces com­
puted in accordance with the above equations, are shown in 
the form of phase plots in Fig. 10. 

The plots of the estimated modal restoring forces versus 
their corresponding modal displacement in Fig. 10 clearly in­
dicate the presence of hysteretic components in the system. 

4.5 Nonparametric Identification Procedure. Using 
Chebyshev polynomials in accordance with equation {A4\) to 
obtain two-dimensional fits for the surfaces of the modal 
restoring functions will yield the typical identification results 
tabulated in Fig. 11. Three-dimensional representation of the 
transformed nonlinear forces in terms of their corresponding 
state variables are shown in Fig. 12 together with the approx­
imating functions hN.,j= 1,2,3. 

It is clear from the Tables of Fig. 11 that determining the 
optimum least-squares fit for the data associated with the 
hysteretic system does involve many cross-product terms in 
displacement and velocity. It also requires a relatively larger 
number of terms in the series (six used in the present example) 
for a good estimate. 

The preceding is a good illustration of the need to use two-
dimensional surface fits rather than the uncoupled one-
dimensional series to estimate the system properties. Whether 
cross-coupling is significant or not is a decision that need not 
be made a priori when following the method presented 
here—the system will effectively "decide" by its own response 
(signature) the extent and relative dominance or contribution 
arising from various powers of Tj(u)Tj{u). 

Examination of the projections of ht on Uj indicates negligi­
ble modal coupling in the present example. Such may not be 
the case in other applications. However, the presented method 

-4 .00 

0.0 T ime Sec. 75.0 

Fig. 13 Nonstationary excitation used in the validation test 

can cope with nonlinear modal coupling by simply adding as 
many cross-coupling terms as necessary (see equation G441)). 

5 Response Prediction Under Different Excitation 

In order to demonstrate the validity of the present iden­
tification approach, the model representation expressed by the 
Ckl coefficients shown in Fig. 11, which were extracted from 
the original ("exact") modal response under a probing signal 
consisting of stationary broad-band excitation, supplied 
through support motion, will now be used to predict the 
response of the original model when subjected to directly-
applied (to mass in2) nonstationary random excitation con­
sisting of modulated white noise of the form 

p0(t)=e(t)n(t), (10) 

where e(t) is a deterministic envelope function 

e(t)=ale"2' + a3 /4 ' ' , (11) 

with the a's being deterministic constants, and n(f) is the 
output of a simulated Gaussian white noise process. The ex­
citation time histories are shown in Fig. 13. 

By following the steps indicated in equation (^415), the iden­
tification results can be used to predict the response time 
history. The adequacy of the approximate (identified) 
nonlinear model to predict the response of the exact 
(hysteretic) nonlinear system under arbitrary excitation is 
clearly illustrated by the results shown in Fig. 14 in which the 
"exact" relative displacement of each mass location of the 
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Fig. 14 Comparison between the measured and predicted response 
time history (a), (c), and (e) when both the linear and nonlinear terms are 
used; (b), (d) and (f) when only linear terms are used 

Fig. 15 Comparison between the contribution of the linear and 
nonlinear terms of the internal forces associated with the system 
degrees of freedom 

nonlinear system is compared to its corresponding value as 
computed on the basis of the approximate nonlinear model. 

The plots on the right-hand-side column of Fig. 14 show a 
comparison between the time history of the measured and 
predicted elements' deformation when only linear terms are 
used to compute the estimated response. Note that the exclu­
sion of the nonlinear terms from the indentification results 
leads to a deterioration in the accuracy (of the amplitude as 
well as the phase) of the predicted response. The contribution 
of the nonlinear terms to the internal forces associated with 
the system degrees of freedom is compared to the corre­
sponding linear terms in Fig. 15. Note that, as one would ex­
pect, the magnitude of these forces is correlated with the large 
amplitude range of motion. 

6 Summary and Conclusions 

Application of a time-domain procedure for the identifica­
tion of nonlinear vibrating structures, presented in a com­
panion paper, to a multi-degree-of-freedom nonlinear system 
incorporating hysteretic and polynomial-type nonlinearities, 
demonstrates the utility of the method under discussion. It is 
shown that an optimum (in the least-squares sense) reduced-
order nonlinear mathematical model can be developed to 
match, with reasonable accuracy, all of the response time 
histories measured by the available sensors. Furthermore, the 
mathematical representation allows convenient separation of 
the contribution of the linear and nonlinear internal forces 
developed in the structure. 

The illustrative examples indicate the considerable flexibili­
ty inherent in the procedure to cope with a variety of data pro­
cessing and test performance situations. 
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Limit Cycle Behavior of a Flexible 
Truck 
We calculate the variation in critical speed of a flexible truck as a function of limit 
cycle amplitude and truck parameters (i.e., shear and bending stiffnesses, and truck 
geometry), by means of a perturbation procedure. We find that the creep force 
nonlinearity is dominant, and that it can cause the nonlinear critical speed to be 
either lower or higher than the linear critical speed, depending on the values of the 
two stiffnesses. 

Introduction 
In a previous paper (Whitman, 1983) an analytical formula 

for the linear critical speed of an idealized railway vehicle 
(Wickens, 1975; Scheffel, 1979) was obtained by doing a 
"short wheelbase" expansion of the system secular equation. 
It is tempting to use this formula (or some extension thereof 
(Whitman and Khaskia, 1984)), to predict the "hunting 
speed" of real railway vehicles. Such an identification relies 
on the assumption that the dominant nonlinear effects result 
in stable limit cycles only for speeds higher than this linear 
critical speed. However, such an assumption is untenable both 
on the basis of experience and experiment (Sweet, 1980). In 
the present article we identify the dominant nonlinear effect as 
creep force saturation, and on this basis we perform a pertur­
bation analysis, in limit cycle amplitude, using our short 
wheelbase approximation as the bifurcation solution (Huilgol, 
1979). The first order results indicate that limit cycles can oc­
cur either above or below the linear critical speed, depending 
on the values of the two suspension stiffness parameters of the 
model. 

Formulation 
We consider an idealized vehicle, Fig. 1, which is composed 

of two wheelsets connected by a massless frame. This is a 
model of a flexible truck. In terms of sum and difference coor­
dinates 

(1) 

(2) 

xs = xF + xR xD = xF-xR 

the equations for the lateral motion are 

mxs = FTRF + FTLF + FTRR + FTLR 

mxD = FTRF + FTLF + FTRR + FTLR - ks (xD - a\jys) 

mP4>D = l (FLRF - FLLP + FLRR) - ksa Ws - xD) 

mP-$D = l (FLRF-FLLF-FLLR)-kb\PD 

1 Permanent Address: School of Engineering, Tel-Aviv University, Tel-Aviv, 
Israel. 
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Equations (2) contain nonlinear terms that we have not ex­
plicitly written. We will show, after normalization, that all of 
these terms are negligible in the bifurcation problem. We have 
also written, for the sake of simplicity, the quantity ml2 for 
the wheelset inertia. For the configuration of Fig. 1 the stiff­
nesses ks and kb are given by (Wickens, 1975) 

ks = kxkyb
2/(kxa

2 + kyb
2) (3) 

kfj = Ky O 

Wickens (1975) has shown that all forms of interconnection 
result in these, shear and bending, stiffnesses (although equa­
tion (3) applies only to the conventional truck sketched in Fig. 
1). 

The components of the contact forces between wheel and 
rail have been denoted in these equations by FT/L (transverse 
or longitudinal). The additional subscripts indicate the wheel 

Fig. 1 idealized model of a flexible truck adopted from Wickens (1975) 
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F/njN = ft - _ L (ft)* + J_ (/e3; /£ < 3 

= l ; / ? s 3 

In equations (4) 

(right or left, front or rear). For these (creep) force com­
ponents, we use a nonlinear law 

FT=-hm FL = -tLF/>k (4a) 

(4b) 

k=Jm+w> (4c) 

/ = G-wabC/fifN (5) 

a and b are the semi-major radii of the contact ellipse, C is a 
number that depends on a and b, and £ r and £L are the 
transverse and longitudinal contact point velocities made 
dimensionless by the forward speed (creepages). In addition, 
G is the shear modulus, y.f is the coefficient of friction, and N 
is the normal force. Equation (4) is a simplified version of a 
force law originally developed by Vermeulin and Johnson 
(1964). A more complete version has recently been shown to 
agree rather well with numerical solutions of the governing 
equations (Shen, 1984). 

We render equations (2) dimensionless in terms of the 
amplitude of the limit cycle motion, x0, which we write as e 
(e=x0/l), and the kinematic frequency io = Jav/l (here 
a = \l/r (l-y) with r the wheel radius, X the contact plane 
slope, and y the ratio of wheel to rail curvature). Thus, in 
terms of 

(6) 
X\ = Xs/il x2 = i/^/eVa 

x3 = xD /ecr/a x4 = I\pD /eaa 

the equations of motion are 

Z2x{ = (FTRF + FTLR + FTRR +FTLF)/2fofa 

Z2x2 - ktA(x3 -x2) = (FLRF-FLLF + FLRR + FLLR)/2fea (7) 

Z2x3 — Ar,<l — A)(x2 -x3) = (FTRF + FLLF + FTRR -FLLR)l/2feaa 

(FLRF - FLLF - FLRR + FLLR )l/2feaa 

>=d/d(ut) 

In equations (7) we have used the quantities 

f=hfN z2 = Ja"mv2/2f 

kl=ks(oL2 + fL)/2fl-{a' k2 = kb/2fl\fa (8) 

A = a2/ (a2 + 12) 

The nonlinear terms in equations (7) that have not been writ­
ten are at most of order e (Burton and Whitman, 1980). Fur­
ther, the creepages are (Burton and Whitman, 1978) 

£ TF = eMxpo + l M + 0(e2) ZLF = ea(^m -xF0) + 0(e2) 

where xm=xF/el, \j/m = ̂ F/tia. Since a << 1, it is clear 
from these that we can approximate the total creepage, equa­
tion (4c), by 

%F~\ZTF\ £« ~ '%TR I 

On inverting equations (1), substituting the results into these 
approximate expressions for the total creepage of the front 
and rear wheelsets, using equations (6), and neglecting terms 
of order AVa, we find that 

^ = ^ = (6vW2) | i ,+x 2 | 

Using this we can evaluate the creep force terms that appear in 
equations (7). For example 

(FTRF + FTLF + FTRR + FTLR)/2fbfa = 

- (*, + x2) + (e/a/3) | i , + x21(*, + x2) + 0(p-e2a) + O(e) (9) 

The first term here is the usual linear creep force. The second 
term corresponds to the second term of equation (4b). This is 

the dominant creep force saturation behavior, and is a small 
correction to the linear law as long as 

e = e / V a / 3 < < l (10) 

The third term corresponds to the third term of equation (4b), 
and is a higher order correction to the linear behavior when 
equation (10) is valid. The last term arises from the dominant 
nonlinear geometrical influences in the creepages, equation 
(8), acting through the linear term of the creep force law, 
equation (4b). 

Now in the typical railway vehicle the parameter / is very 
large, on the order of 5000, and a lies in the range from 0.04 to 
0.05. Thus, we find from equation (10) that e/e is on the order 
of 0.0025. Accordingly, for oscillator amplitudes for which 
the creep force is significantly nonlinear, say e = 0.2, the 
parameter e = 0.0005; consequently all geometrical 
nonlinearities and dynamical nonlinearities are negligible at 
this level, since they are all 0(e). As a result of this argument 
we can infer that the variation of the critical speed with 
amplitude is governed, initially at least, by the nonlinearity 
given by the second term in equation (4b). The equations of 
motion are, therefore, correct to terms linear in e, 

z 2 i , + (*i +x1) = e\xi-x2 \(xl + x2) 

z2x2 + (x2-xl)-klA(x3 -x2) = e\xl-x2 \(x2 -Xi) 

Z2x3 + (x3 + *4) - kx (1 - A)(x2 - x3) = e |*, + x2 \(x3 +x4) (11) 

Z2x4 + (x4-x3) + k2x4 = e\xl+x2\(xli-x3) 

Analysis 

The equations of motion may be conveniently written as a 
vector system 

Z2x + x +Ax = eF(x,x) 

where x-(xl,x2,x3,x4)
T, F(x,y)=\y{+x2\ 

4 x 4 matrices A, and M are given by 

"0 

(12) 

(Mx+y), and the 

1 
1 

k{A 

- * ! ( 1 - A ) 
0 

0 
-klA 

* i d - A ) 
- 1 

0 
0 

1 
k2 

(13) 

M = diag 
0 1 

-1 0 

The behavior of the linear system, e = 0, in equation (12), has 
been analyzed in Whitman (1983). In this case, it is clear that 
for x = axexp((jt) to be a solution, ax must be an eigenvector of 
A belonging to the eigenvalue X and a must satisfy 
z2a2 + a + X = 0. In our analysis of the nonlinear system, we 
will need the following results from Whitman (1983): (i) The 
eigenvalues are analytic functions of A in a neighborhood of 
A = 0 provided | fc i - fc 2 | *2 . In fact, f(\) = det(A-\I) 
= / , ( X ) - k,k2A w i t h / , ( X ) = (X 2 + 1 ) ( X 2 -
(ki+k2)\+ l+kik2), so that if X(A) denotes any eigenvalue, 
then X(A) = X(0) + AA:1/c2//'(X(0)) + O(A2) and X(0) is one of 
the roots of/,. Using this expression we obtain 

X, = \ | = i + AkQ(l + ik0)/(2(1 + k2)) + 0(A2) (14) 

X3=X| = X+ +Ak{k2/((\+ -X_)(1+X2)) + 0(A2) 

where 

^0 = ^1^2/(^1+^2) 

K = (*i + k2)/2 ± i{((k1 - k2)/2)2 - 1 ) 1 / 2 

It is easy to see using the Routh test that if A > 0, then -Re(X,) 
> 0, j=\, . . , 4. Eight characteristic exponents ff,(X;,x

2), 
(=1,2, y '=l , . . , 4, are determined by the quadratic 
Z2a2 + a+\j = 0. The minimum critical speed z2 = z2(kl,k2,A), 
as defined in Whitman (1983), is obtained by requiring 
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i?e(CT;(X2,z
2)) = 0 for, say (' = 1. This value which we will denote 

by z\ is given by 

z\ = Re(\2)/(Im{K2))
2 = A fc0/2(l + k2) + 0(A2) (15) 

and the corresponding frequency of oscillation is 

co0 = 7w(a, (X2 ,z
2)) = Afc2/2(1 + k2

0) + 0(A2) (16) 

For our analysis of equation (12) we will need, in addition to 
the results summarized above, the eigenvectors aX] of the 
complexification of A corresponding to eigenvalues appearing 
in equation (14). Computation of these vectors as a power 
series in A is a straightforward, although tedious, task. The 
results are: 

c ^ d . X , ^ , ^ (17) 

where 

a3 = ik0(k2-i)/{k2(k0-i))+O(A) 

a, = ik0/{k2(k0-i)}+O(A) 

and 

«Xj = (0 ,0 ,1 , (* 2 -*+)- ' ) +0(A) 

Of course, ax =«*, , 1=1, 3, and we have chosen a nor­
malization which makes the vectors aX/ regular as A—0. If we 
define the real vectors a, = /w(<xX/), a/+1=Re(aX/), 1=1, 3, 
and if z2 has the value z\, then equation (12) with e = 0has the 
real periodic solutions 

p1(co00 = sin(wo0«i +cos(w00a2 (18) 

/>2(<V) = cosfaoOa, - sin(w00a2 (19) 

and any solution with period T0 = 2ir/co0 is a linear combina­
tion of Pi and p2 . 

Now let us investigate the existence of perodic solutions of 
equation (12) for e > 0. We will base our analysis on a formal 
perturbation method (Nayfeh, 1973), but will also discuss 
briefly at the conclusion of this section an alternative pro­
cedure by which our main results can be derived. In equation 
(6) we have adopted the normalization maxC*^ (?,e)) = 1, and 
we have seen in equation (18) that for e = 0, /»j (a>00 is a 
(27r/o0)-periodic solution of equation (12) (with z2 = zl) which 
satisfies this condition. For e > 0, we assume that the critical 
speed takes the form z2 = z2(e) = Z2

t + tz\ + o(e) and that there 
exist (27r/a>)-periodic solutions of equation (12), with 

co = oi(e) = to0 + eo>l + o(e) 

We suppose that any such solution can be written as 
x(t,e) = x0(s) + eXi (s) + 0(e), where i1 = cot. Substituting these ex­
pressions into equation (12) and equating the coefficients of e° 
and e1 equal to zero, we obtain (20) 

zfalx0 + o>0x0 +Ax0 = L(x0) = 0 (20) 

Uxi)= - l(z2icol + 2zlu0col)x0 + 0}^) +.F(xo,coox0) 

= G{x0}(s) 

where = d/ds. We see immediately that the 2-?r-periodic solu­
tion of equation (20) which has the required normalization is 
X(,(s)=pl(s). The right-hand side of equation (21), G(pi)(s) is, 
therefore, a 27r-periodic function and has the Fourier series ex­
pansion 

GlPiHs)= £ G„exp(//w) G„ = G1„ (22) 
n= — oo 

Since 

pl(.s)=Re[aK2 exp(w)] 

we see that 

G1=(l/2){(zW0 + 2z2,o>0co1)-iwi}a>,2+Fl (23) 

G „ = F „ , n > 0 , « * l 

where the Fn=F^„ are the Fourier coefficients of 

F<J>\ ^aPi) = *o |cos(s)|{M p! + co0p2 ) 
oo 

= £ F„exp(ins) (24) 
n- — oo 

It is now clear that any particular solution of equation (21) will 
contain secular terms increasing linearly with s unless G, lies 
in the subspace of C4 spanned by the vectors a, , j ^ 2. 
Hence, if xx(s) is to be periodic, we must require that 

Fh+(l/2)(.zW0 + 2z2
0o>0u1)-(l/2)io>i = 0 (25) 

where 

4 

y = i 

This (complex) equation determines the (real) first order cor­
rections, co, and z\, to the circular frequency and the critical 
speed. We see from equation (18) that 

Mpt +U0P2 =Re{v^2exp(is)}, vXj =MaXl + ico0aXl 

Thus, equation (24) gives 

F1=zg!(l/7r)vX2 + ( l /37rK2) 

and by expressing vx as a linear combination of the eigenvec­
tors, 

4 

y = 1 

we find that F^ZI^/TT + ^/IT). The actual computation 
of /3, and /32 using equations (13), (17) and the definition of 
vX2 is a straightforward but laborious process. We find 

^x2 = kl [Ik2 + 1 -2*0(*jl + l)/k2 ~6ik0} {12ir(*g + l)3 \ ~3 

The above expression and the values of zl and co0 given in 
equations (15) and (16) may now be substituted into equation 
(25) and the desired corrections to the critical speed and fre­
quency may be computed. We find 

Z2 = {kqA/2{l +k2
0)}{l+ (eA/3ir)klk2[(kl + k2)

2 + k\k\\ "2(26) 

X [(*, + k2f{kx - k2) - k\k\(5kx + lk2)]} + 0(e,A2) 

co= 1 - {£JsA/2(l +kl)[l + (eA/7r)2A:0(l +k2
0y

2} +0(e,A2)(27) 

The dependence of z2 on the stiffness parameters kx and k2 

will be discussed in the following section. 
To conclude our analysis of the equations of motion, we 

sketch briefly an alternate perturbative approach for finding 
the dependence of z2 and co on e. The technique we consider 
has been used in Coddington and Levinson (1955) for studying 
bifurcation of periodic solutions. We note that any real solu­
tion of equation (12) can be written in the form 

4 

Substituting this expression into equation (12) and using the 
linear independence of the vectors (ax , at] j = 2, 4 we find 
that 

Z2 iij + Uj + XjUj = eGj {u2 ,u2 ,H 4 , ii„); j = 2, 4 (28) 

where 

GJ=2|/?e(«2 + X2w2)|f £ (M<y + «l7&) + « / | (29) 
^Ar = 2,4 J 

and we have expressed Max . as the sum 

M « x . = L 03y/«x, + r//Ofv) 
1-2,4 

For future reference, we note that f}2 = /322 + ;'co0 and 722 = @*. 
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In equation (28) we introduce the change of independent 
variable r = t/z2, and let v(r)=u2(t), O ( T ) = W 4 ( 0 , and 
' = d/dr. Then we obtain the pair of equations 

L2(v) = v" + v' +zl\2v = tG2{v,v' /z2;w,w' /z2} 

+ \2{z2-zl)v (30) 

L4(w) = w" +w' +zl^w = eG4[v,v'/z2;w,w'/z2} 

+ \{z2-zl)w (31) 

Assuming that z2=zl + ez2 + o(e), we see that for e = 0 equa­
tions (30) and (31) have the periodic solution: 

v(r) = C0exp(iQ0T), W(T) = 0, QQ = z\ w0 

Let K2{j) be the impulse response function for the right-hand 
side of equation (30), i.e., L2(K2) = 0, Ar2(0) = 0, ^ ( 0 ) = l . 
Thenfc2(T) = (l+2/120)- ' [exp(/Q0T-exp(-(l + /Q0)T) 

and any periodic solution (v,w) of equations (30) and (31) 
must satisfy 

V(T) =C0exp(/Q0T)+ j o K2(T-t)H2l(j)dT 

where 

i/2e(T) = e;c2G2 {u.i; Vz2 ;w,w'/z2) +X2(z2 -z2
0)v (32) 

The corresponding equation for w is of the form 
w(r) = lTK4(r — f)H4edf with K4 and H4e defined in a similar 
way as K2, H2e. In order for (y, w) to be periodic with period 
T=T0 + eTl +0(e), r 0 = 27r/$20, it is necessary and sufficient 
that v{T) = f(0), y'(T) = y'(0) and that similar conditions hold 
for O)(T) . We impose these conditions on equation (32) and the 
corresponding expression for w. Thus, we obtain 

C0{exp(/fi0T)- 1) + j o K2{T-f)H2e(t)dt = 0 

ffl0C0{exp(iQo7)- 1) + j Q Ki(T-f)H2e{f)df (33) 

and two similar equations involving integrals of H4S. We 
divide both of the above equations by e and let e — 0. Assum­
ing (f,<j))—(C0exp(/Q0T),0) as e -~ 0, we obtain 

/C 00 0 r , + [ ° K2{T0 - f)J(f)df = 0 (34) 

- C0J22r, + JQ ° K{{.T0 - t)J{r)di = 0 (35) 

where 

7(r) = lim {(l/e)H2e(T)} =z2
0G2{v0,vi/Z2

0;0,0) +\2z
2v0 

£ - 0 

and v0 = C0exp (/flo^ Noting that K2(T) + (1 + /fi0)^2(T) = e xP 
(/120T) and forming the corresponding linear combination of 
equations (34) and (35), we obtain 

C0{-\2z
2T0-2Q2

2Tl+iQ0Tl} + 

T (36) 
+ ̂ j °exp(-iQ0f)G2(i;o(f),^(f)/^;0,0)rff = 0 

where 

G2 = 2zWQ \Re(v0(f)) |! (02 y0(f) + |8f »S(f)! 

This equation and a similar relation derived from the com­
bination of equation (35) and - /fi0 times equation (34) give 
the results found in equation (25) for z\ and o , . As with our 
previous approach, this method requires that the parameters 

Bending Stiffness K2 = Kb/(2fLa l /2) 

Fig. 2 Contours of the coefficient of t&IZn in equation (26) 

Z2(e) and co(e) have derivatives with respect to e at e = 0. On the 
other hand, it appears to demand only that the solution (v, w) 
depends continuously on e as e—0. 

Discussion of Results 

The main results obtained here are the initial deviation of 
the hunting frequency, equation (27), and critical speed, equa­
tion (26), from their linear values as a function of the 
amplitude of the limit cycle. 

From equation (27) we can see that the frequency is reduced 
by the creep saturation effect, and that the reduction is sym­
metric in kl and k2. In fact, it depends only on their series 
combination, kx, to leading order. 

The effect on critical speed is more complex. In Fig. 2 we 
plot a universal measure of the deviation, the coefficient of 
eA/3ir in equation (26), of critical speed from the linear result, 
as a function of the two stiffnesses. It can be seen from this 
figure that over a large part of the kx, k2 plane, the critical 
speed is decreased as a result of creep force saturation. This 
reduction is, however, not symmetrical in k{ and k2. Indeed 
there is even a small region (of positive valued contour curves) 
in which the critical speed increases with increasing motion 
amplitude. Of course one cannot take this figure literally. The 
bifurcation problem that occurs here is an example of a Hopf 
bifurcation, and it is known that the positive valued contour 
curves (supercritical case) correspond to stable limit cycles 
while the negative valued curves (subcritical case) correspond 
to unstable ones. Nonetheless one can infer that contours with 
larger negative values correspond to trucks with lower hunting 
speeds. 

It has long been known in the rail vehicle design community 
that radial trucks (those with large kx and small k2) have better 
hunting characteristics than conventional trucks (those with 
small kx and large k2), but the reasons for this were not clear. 
On the basis of a purely linear theory (Whitman, 1983), there 
should be no difference between the two types of truck, 
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because in that case the critical speed is symmetric in the two 
stiffness parameters. The result noted in the previous 
paragraph, however, does serve as an explanation of this 
physical fact. Interestingly, other attempts at explanation 
based on using geometric nonlinearities have failed (Sweet, 
1980). We regard this as support for the argument that creep 
force saturation is the dominant nonlinear effect. 

A further point of interest is that, because of the 
nonanalytic nature of the creep force nonlinearity, the forcing 
function, even to first order, contains harmonics of all orders, 
equation (22). Consequently any numerical solution algorithm 
must account for this in order to be reasonably accurate. For 
this reason, any single frequency approximation method such 
as equivalent linearization is inadequate for this problem. 
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Coupled Gas-Liquid-Structure 
Systems: Part 1—Theory1 

A complex hydrodynamic transient due, for example, to the injection of gas into a 
liquid, creates pressure forces on adjacent structures. These structures, together with 
gas cavities in the liquid itself, represent flexible boundaries to the distributed, time-
varying liquid mass. The response of the gas-liquid-structure system depends on the 
intrinsic flexibility of the gas cavities and on the flexibility of structural 
boundaries. In this paper we analyze the dynamics of such systems where the liquid 
is incompressible. We presen t systematic procedures for driving the response of one 
system from the known response of a geometrically identical system with different 
flexibility. Finally, we outline the analysis for the compressible case. 

I Introduction 

Consider a system consisting of a bounded or unbounded 
liquid in motion, interfacing with deformable structures and 
pockets of gas. Pressures and displacements throughout the 
liquid depend on the characteristics of the flow and the pro­
perties of the boundary structures and gases. Of the many 
problems in this class, we consider in this paper those in which 
the boundaries oscillate so as to produce oscillations in the li­
quid that are rapid and of small amplitude compared to the 
times and lengths that characterize the liquid's bulk motion. 

Flows of this type may be encountered in flexbile tanks par­
tially filled with liquid and subjected to excitations during an 
earthquake or the acceleration of a rocket, in underwater ex­
plosions, in implosions due to vapor condensation in tanks, in 
waterhammer effects in piping systems, in the buoyant rise 
and vibration of large gas bubbles through a liquid, in the in­
jection of gas or steam into a liquid-filled flexible tank, or in 
the impact of a flexible structure such as a ship's hull on the 
surface of a liquid. Illustrative references for these types of 
flows can be found in Joos (1982). 

These flows are generally analyzed in one of two ways. 
When there is no bulk deformation, that is, when the liquid 
appears "frozen" except for small amplitude, oscillatory mo­
tion, the cross-convective terms in the Navier-Stokes equa­
tions are ignored and viscosity is neglected because the fre­
quency of the boundary motion is high. The momentum and 
continuity equations in the liquid then reduce to the wave 
equation, or to Laplace's equation if the liquid can be con­
sidered incompressible. Because displacements are small, the 
boundaries of the liquid are assumed fixed, as if the gas 
cavities or structures were rigid bodies. With these assump-
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tions it is fairly easy to analyze the free or forced vibrations of 
such systems. For example, Kana et al. (1968) studied vibra­
tions of liquid-filled cylindrical containers using this ap­
proach. Nevertheless, a paper by Antony-Spies (1979) is the 
only previous work we have seen in which the coupling of gas, 
liquid, and structures is studied in such a system. 

When the liquid cannot be treated as frozen, that is when 
there is transient bulk flow to consider, the usual approach has 
been to set about solving the liquid momentum and continuity 
equations (including all or most of the terms in those equa­
tions) simultaneously with equations that specify the con­
stitutive relations for the structures and gas cavities in the 
liquid. The solution is complicated by various factors: struc­
tural equations are typically formulated in Lagrangian form 
while the liquid equations are Eulerian, and surfaces (free or 
otherwise) change shape during the transient altering the com­
putational domain. The result is, invariably, a complex com­
puter code that is lengthy, costly to run, and difficult to verify. 
Belytschko and Schumann (1980) review some analyses of this 
type applied to nuclear energy containment systems. 

Sonin (1980), and Kalumuck and Huber (1981), have pro­
posed a simpler method for analyzing flows of this second 
type. Their approach effectively decouples the solution of the 
deforming flow in a hypothetical "rigid" system from the 
small amplitude high frequency oscillations in the actual 
"flexible" system. But the method is restricted to cases where 
the motions of all gas cavities are entirely independent of the 
structural oscillations. The possibility of coupling between the 
oscillations at the structural boundaries and those at the 
gaseous ones is excluded. 

In this paper we bring together the two evolving bodies of 
learning in this area and develop theoretical tools for dealing 
with the more general problem in which both structures and 
gas cavities are allowed to oscillate, while the liquid domain 
also undergoes bulk deformations. Many of the problems that 
have been analyzed previously reduce to special cases of our 
theory. In the final section of the paper we show how the 
methods we have developed may be extended to account for 
the effects of liquid compressibility. In the companion paper 
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- Rigid system boundary 

• Flexible system boundary 

Fig. 1 Typical systems with slow bulk motion and small amplitude 
high frequency oscillations: (a) bounded liquid domain and typical 
length scales; (b) unbounded liquid domain and different types of 
boundary surface 

(Part 2), Joos and Huber (1987) apply the analytical tools we 
have developed to two sets of experiments conducted in rigid 
and flexible liquid-filled tanks. 

II Theory for Incompressible Liquid 

A Liquid Domain. In Fig. (1), one system consists of a 
liquid totally surrounded by a finite number of surfaces, the 
other a liquid in an infinite domain surrounding a finite 
number of bodies. In each case the liquid is totally connected. 
The boundary surfaces may represent gas cavities or structural 
elements. Boundaries at which conditions are uniform are 
termed pressure or displacement nodes; boundaries at which 
conditions are nonuniform are termed surfaces. In general, a 
boundary may undergo two types of motion, "translation" 
and "oscillation," distinguished by their characteristic 
times—long for translation, short for vibration. 

Consider also a second pair of systems, identical in all 
respects to the first, except that the surfaces can only translate, 
not oscillate. The liquid still obeys the usual equations of mo­
tion but boundary conditions at the liquid surfaces are 
modified so as to exclude any oscillatory motion. These 
systems will be termed idealized rigid systems, to be 
distinguished from the flexible systems in which both types of 
displacement are allowed. The difference between the pressure 
and velocity fields in the flexible and rigid systems will be 
termed the perturbation fields. 

Conservation of mass and momentum of the liquid in the 
flexible system require 

V ' P = 0 

4 dv 
+ V'VV = - VP-pgVz + ixJ72v 

(1) 

(2) 

We shall assume here that the liquid motion is incompressible 
and the liquid viscosity is constant; compressible liquid mo­
tion is addressed later. 

The dependent variables may be expressed in terms of their 
rigid and perturbation components: 

P = PR+PP (3) 

V = VR + Vp (4) 

where the subscripts R and P denote the rigid and perturbation 
fields, respectively. The rigid system fields must, by defini­
tion, independently obey the equations of mass and momen­
tum conservation: 

\dvR 'br 
V-vR = 0 

+ vR'VPR^ = -yPR- -pgVz + ix'V2i>R 

(5) 

(6) 

Table 1 Order of magnitude estimates of velocity terms - in­
compressible case 

VR~VR 

vP-
\p_ 

Tp 
V2vP~ 

dvp 

XpTp 

\p 

~kpTp 

Xp 

rP 

• V i V 

The requirement that the rigid system motion be characterized 
exclusively by low frequency components plainly need not ex­
tend to the rigid system pressure, PR. Equation (6) reveals that 
the only high frequency rigid system pressure components are 
spatially uniform throughout the liquid domain. 

Substituting equations (3) and (4) into equations (1) and (2), 
and subtracting from them equations (5) and (6) yields: 

V«j>/> = 0 (7) 

•[• 
dvP 

+ i>R''Vvp + Vp'VvR + Vp'^7vP\ = — VPp + nV2i>P 

(8) 
Order of magnitude estimates for the velocity terms of 

equation (8) are given in Table 1, where the symbols represent: 

VR: a speed characterizing the magnitude of the velocity of 
the rigid system (of order \R/rR); 

\R: a typical length over which velocities change in the rigid 
system (see Fig. 1(a)). \R is assumed to be comparable to the 
length by which the liquid in the rigid system is displaced in the 
time TR. (\R might be a gas cavity's or structural element's 
dimension or the size of a container.) 

XP: a characteristic displacement amplitude of a surface in 
the flexible system relative to its corresponding position in the 
rigid system (see Fig. 1(a)). \P might represent, for example, 
the amplitude of oscillation of a bubble surface or a structural 
boundary element. 

XP: a typical length over which perturbation velocities 
change (for example, a dimension of a node or a surface 
wavelength). This length also defines the characteristic length 
over which the gradient of the perturbation velocity changes. 

TR: a time chartacterizing the fluid motion in the rigid 
system (for example, the time taken by a gas cavity or a struc­
tural element to translate through the system). 

TP: a time characterizing oscillations in the flexible system 
(for example, a vibration period). 
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Table 2 Simplifying assumptions on the fluid domain-in­
compressible case 

LcTp J 
« 1 

TR 

XP 

« 1 

« 1 

« 1 D 

^RTP 

\pTp 

pXP
2 

« 1 

« 1 

In Table 2 we set out six order-of-magnitude criteria that are 
presumed to be satisfied in the following analysis. Criterion 
(A) permits the liquid flow to be treated as incompressible. 
Criteria (B) and (C) restate our assumptions that the vibration 
of the system can be distinguished from its translation by the 
relatively high frequency and small amplitude of the vibratory 
motion. Condition (D) requires that the amplitude of oscilla­
tion at the boundaries be much smaller than its surface 
wavelength. Applying condition (B), criterion (E) would re­
quire that the typical geometric lengths of the system be com­
parable to, or smaller than, the boundary wavelengths. 
Criterion (F) is a requirement of inviscidity of the 
perturbations. 

If criteria (A, B, D, E, and F) are satisfied, equation (8) 
reduces to: 

dvP 

IT = - V P p (9) 

Taking the divergence and applying equation (7), the pertur­
bation pressure field is found to satisfy Laplace's equation: 

V 2 P p = 0 (10) 

At the boundaries equation (9) can be used to relate normal 
pressure gradients to the local surface displacements x (see 
Fig. 1(a)) 

dPP 
- p 

d2x 
(11) 

where the left-hand side represents the components of the 
pressure gradient normal to the boundary. 

The boundary values of equation (10) depend on conditions 
at the material surfaces of the flexible system. It is, however, 
computationally convenient to apply these boundary condi­
tions at nonoscillatory control surfaces defined by the cor­
responding rigid system surfaces. This approximation is 
reasonable when criteria (C) and (D) of Table 2 are satisfied. 

We can now solve equation (10) in the liquid domain D sub­
ject to the following boundary conditions: 

PP(f)=0 for reSa 

Pp(f)=PPJ for re[Sj,1 l < y < w ) 

(12) 

(13) 

dPP 

dnR 
( r )=0 for feSr 

dPP 

dnK 
(r)=DpP(f) for fe[Sj lw +1 < j < m + «j (15) 

dPP 
(r)=DpPj for re{Sj \m + n+l<j<m + n + q} 

(16) 

Here Sa defines free boundaries on which perturbation 
pressures are zero throughout the transient and Sr defines sta­
tionary boundaries which do not oscillate during the transient 
(see Fig. (1(b)). The pressure node boundaries (areas of 
uniform—but time-dependent—pressure) are defined by 
[Sj \\<j<m}\ surfaces with spatially varying displacements 
are {Sj \m + 1 <y'< m + n); and displacement node boundaries 
(surfaces of uniform—but time-dependent—displacement) are 
[Sj \m + n+ l<j<m + n + q}. The left-hand sides of equa­
tions (15) and (16) denote outward normal gradient com­
ponents of the perturbation pressure. We will assume that at 
least one free surface Sa exists in any system. In open systems 
(Fig. 1(b)), surfaces at infinity will be assumed to have 
homogeneous boundary conditions. 

We now develop the solution to Laplace's equation (10) 
with Dirichlet and Neumann type boundary conditions (equa­
tions (12-13) and (14-16), respectively) as a superposition of a 
set of functionals. The functionals Gj(r) satisfy Laplace's 
equation in the domain D and also the same types of boundary 
conditions, but these are homogeneous on all surfaces except 
Sj. 

(17) 

(18) 

V2Gj(Bj\r)=0 

Gj(Bj 1/=,-) =8ijBj(fi) \<i<m and f, e S, 

(Bj\ri)=8iJBJ(ri) 

for m + 1 < / < m + n + q and r, e S1, 

dnR 

(19) 

Here <5,y represents the Kronecker delta. The inhomogeneous 
boundary condition Bj is arbitrary but continuous over Sj. 
The functionals Gj will exist provided there exists a solution to 
Laplace's equation in the domain D with the same boundary 
condition types. Each Gj is linearly dependent on the distribu­
tion of its inhomogeneous boundary condition. The general 
solution is 

(20) 

Replacing the boundary conditions defined in equations 
(12-16) for Bj in equation (20) and invoking linearity of G,-
with respect to Bj yields 

m m + n 
p

P(f)=T,g°(f)PpJ+ E Gj(Dpp(fj)\r) 

+ D S](f)DPp 
j~m+n+l 

(21) 

where 

g*{f)=Gj(l.Q\r) (22) 

Taking the normal pressure gradient at a point on the control 
surface yields 

8PP 

dn 
(n=Eh°(r)PPJ+ £ h°(Dpp(fj)\f) 

m + n + q 

(14) where 

+ E ^(f)Dppj 
j=m+n+l 

dnR 

(23) 

(24a) 

and 
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h" (Dpp (fj )\f) = - ^ - (Dpp (fj) \f) (24b) 

Equation (23) is integrated along the liquid-gas interfaces to 
yield an average normal pressure gradient {DpPj, \<i<m}\ 

m m + n 

j=\ j = m+\ 

m + n + q 

+ L kfpppj <25> 
j=m+n+\ 

where 

"O-TL^"8' (26a) 

and 

h, (Dpp(fj))=^-\ h° (Dpp (f}) \f)dS, (26b) 

Here A, is the area of the interface of the control surface St. 
Average perturbation pressures PPj on surfaces of uniform 

displacement ("lids") are determined by integrating equation 
(21) over these surfaces. For m + n + l<H<m + n + q. 

m m + n 

ppt = E SyPpj + £ g((Dpp{ fj)) 

7=1 j = m+\ 

m + n + q 

+ D g<pppj (27) 
j=m+n+\ 

where 

**=-i-L,^(r")ds' {28a) 

and 

g,(Dpp (/=))= - L [ Gf(£>^ (r,) lr)dS, (28b) 

Next we combine the previous equations to construct an 
operator relating average and local boundary perturbation 
pressures to average and local boundary perturbation pressure 
normal gradients. Equation (25) expresses the average normal 
pressure gradients on each of the pressure nodes in terms of 
the boundary conditions; equation (27) relates the average 
perssures on the displacement nodes to the boundary condi­
tions; equation (21) provides a functional relation of the per­
turbation pressures on the displacement surfaces to the 
boundary conditions. From equation (25) we can determine 
the pressure of the pressure nodes in terms ̂ of the appropriate 
local or average boundary normal pressure gradients by in­
verting the matrix formed by the coefficients hy, 
{1 < (i, j , )<m} and rearranging. Replacing and rearranging 
the pressure-node pressures in terms of the normal pressure 
gradients in equations (21), (25), and (27), we obtain a linear 
expression of pressure in terms of normal pressure gradient. 

PP=HdpP (29) 

Here pP represents the local boundary surface pressure (except 
at the displacement nodes where pP is the average surface 
pressure), dpP represents the boundary surface normal 
pressure gradient (except at the pressure nodes where it is the 
average normal pressure gradient), and H is a linear operator 
determined from equations (21), (25), and (27). Note that 
when there are no displacement surfaces equation (29) 
represents uniform and average pressures as a set of linear 
combinations of uniform and average normal pressure gra­
dients. Equation (29) then represents a matrix operation. 

The flexible system may have more than one free surface, 

and each free surface may have a different forcing pressure 
applied to it. If the forcing pressures contain different high 
frequency components, then a new perturbation field must ex­
ist that satisfies the high frequency pressure boundary condi­
tions at these surfaces. This perturbation field is not included 
in the solution leading to equation (29) because, according to 
equation (12), the perturbation pressure boundary conditions 
at free surfaces are homogeneous. In addition, these boundary 
conditions are independent of flexible system conditions. 
Because this perturbation component is independent of the 
flexible system response, it will also be present in any practical 
rigid system that includes high frequency forcing pressure 
components at the free surfaces. It is appropriate, therefore, 
to include this perturbation field as part of the rigid system 
fields. The practical rigid system pressure's high frequency 
component then becomes a perturbation pressure field satisfy­
ing Laplace's equation (10) with the following boundary con­
ditions: high frequency forcing pressure components (the forc­
ing pressures referred to here and later on are assumed to be 
imposed on the non-liquid side of the boundary) at the free 
surfaces, zero average normal pressure gradient and uniform 
(but unknown) pressure at each pressure node, and zero nor­
mal pressure gradient at all liquid-structure interfaces. 

B Constitutive Equations for the Boundaries. Boundary 
conditions at the pressure and displacement nodes and 
displacement surfaces, equations (12-16), will depend on the 
constitutive relations governing the surfaces from the non-
liquid side. A crucial step in the analysis is decoupling the con­
stitutive equations into high and low frequency terms. Consis­
tent with our assumption that only low frequency liquid mo­
tions are permitted in the idealized rigid system, the low fre­
quency terms in the decoupled constitutive equations provide 
the boundary conditions for the rigid system while the high 
frequency terms provide the boundary conditions for the flexi­
ble system. 

We consider here three illustrative constitutive relations for 
the boundaries. Decoupling the equations into their high and 
low frequency components requires linearity; apart from this 
requirement the method is general and can readily be extended 
to other types of boundaries. 

1. Pressure nodes are formed by gas cavities in the liquid. 
We will assume here that the pressure in such a cavity in the 
flexible system depends on the cavity volume and the gas 
properties, as well as on an arbitrary forcing pressure: 

Pj=fjlV*j)+ -~~ (V^Ajypj+Pj, \<j<m (30) 

where: 

Pj is the total pressure at they'th pressure node. 
Pfj is any specified pressure forcing function at the node. It 

might represent boundary pressures due to gas absorption or 
condensation at the liquid-gas interface or independently im­
posed acoustic waves in the cavity. 

fj ( Vj) is a function of the cavity volume Vj. It might model 
the isentropic expansion of a bubble. The linearized approx­
imation of/y( Vj) is justified by assumption (C) in Table 2. 

y>j is the average perturbation displacement over the y'th 
cavity's surface area, Aj. 

VRj is the volume of the cavity in the rigid system. 

The first term on the right-hand side of equation (30) 
represents the pressure in the rigid system as a function of 
rigid system cavity volume. Since gas cavity volumes change 
only in response to bulk liquid deformations, this term can in­
volve only low frequency pressure components. On the other 
hand, the second term depends on the average perturbation 
displacement, and can therefore contain only high frequency 
components. Thus: 
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P$ = PlRj=fj(VRj)+P'fj (3D 
P'j = P'kj + PPj = kbjyPj + P}j (32) 

where l<j<m and the superscripts I and h denote low and 
high frequency components. The coefficient kbj replaces the 
first derivative of /} ( Vj) multiplied by the cavity area Aj in 
equation (25). The total pressure Pj has been separated into its 
low and high frequency components, Pj and P'j. The high fre­
quency component, equation (32), may be written as 

k»jyj=phj-p}i (33) 

2. Displacement surfaces are governed by a second order 
differential equation. By assumptions (C) and (D) of Table 2 
the load-displacement relation for the perturbation 
displacements should be linearly elastic. We assume, in addi­
tion, that the structure in the rigid system is also linearly 
elastic, that shear stresses are absent, and that displacements 
are exclusively perpendicular to the structural surfaces. The 
differential equations for the displacement surfaces can then 
be written in the form: 

mJ + Ksy = P-Pf, m+l<j<m + n (34) 

Here ms represents the local mass per unit surface area, Ks 

is a stiffness linear integro-differential operator of the local 
surface displacements y, and P and Pf are local total and forc­
ing pressures. Equation (34) is the general constitutive equa­
tion for a shell. The analysis of other linearly elastic structures 
should not differ significantly. 

Equation (34) may be decoupled into high and low frequen­
cy terms as follows: 

KsyR=P'R-P'f (35) 

msyP+KsyP=P»-Pj (36) 

where yR and yP are the local rigid and perturbation surface 
displacements of the structures. Equation (35) will be satisfied 
by the idealized rigid system, but because the low frequency 
response will be quasi-static, the acceleration term is 
neglected. This convenient simplification does not affect later 
steps of the analysis. 

3. Displacement nodes ("lids") are special cases of 
displacement surfaces for which displacement is uniform 
across the surface. Here the stiffness operator represents a 
spring constant: 

mLjy) + kLjyj =Pj-PfJ, m + n+l<j<m + n + q (37) 

where mLi and khi are the y'th lid mass and spring constant 
divided by its surface area, ys is the node's displacement and 
Pj and Pfj the average total and forcing pressure across the lid. 
Equation (37) can be decoupled in the same way: 

kLjyRj=PRj-P}j (38) 

mLjyPj + kLjyPj=Plj-Pjl (39) 

where the assumption of negligible inertia at low frequency 
has again been made. 

4. Combined Boundary Conditions. Combining equations 
(3), (33), (36), and (39) yields a complete set of boundary con­
ditions to the perturbation equations: 

myP +KyP=pR+pP-p} (40) 

In equation (40), yP represents average surface perturbation 
displacement for the pressure nodes, or local displacements 
for the displacement surfaces and nodes; m is zero for the 
pressure nodes, the local representative mass per unit surface 
area for the displacement surfaces and the average mass per 
unit area for the displacement nodes; K is a linear integro-
differential operator of displacement which is a constant for 
pressure and displacement nodes; pR, and p'j are local rigid 
and forcing high frequency pressure components (except for 

displacement nodes, where average values are applied) andp P 

is the perturbation pressure of equation (29). 

C System Perturbation Equations. The system perturba­
tion equations are obtained by combining the fluid domain 
perturbation equation, equation (29), with the boundary con­
dition relations, equation (40). Equation (11) must first be 
rewritten in terms of the displacements yP: 

dpP=-pyP (41) 

Here equation (11) has been averaged over the surface of the 
pressure nodes. Combining equations (29) and (41) yields a 
relationship between accelerations and pressures at the bound­
aries: 

pP=-pHyP (42) 

Combining equations (40) and (42), we obtain system equa­
tions in terms of perturbation displacement or perturbation 
pressure 

(m + PH)yP + KyP=pR-p'j (43) 

(mH~l+p)pP + KH~lpP=-p(pR-p}) (44) 

In deriving equations (43) and (44) we have assumed, for 
simplicity, that all structural nodes and surfaces are wetted. 
To include the nonwet case is simple but the notation becomes 
more cumbersome. In addition, time derivatives of the 
Laplace operator H have been neglected. This is valid when 
the time scales characterizing the idealized rigid system, rR, 
are large compared to those characterizing the perturbation 
oscillations, TP, as required by condition (B), Table 2. We 
have also assumed that H~', the inverse operator to H, exists 
and is unique. This assumption is reasonable because H is 
derived from a Laplace operator, having a unique inverse. 

In the absence of displacement surfaces, equations (43) and 
(44) reduce to linear combinations of the perturbation 
displacements or pressures at the pressure and displacement 
nodes. There is one such linear combination for each node, 
their synthesis being a matrix differential equation of dimen­
sion equal to the number of nodes. Thus, each node con­
tributes one and only one natural mode and frequency to the 
system. 

Clearly, equations (43) or (44) can be used to predict flexible 
system behavior once the rigid system's pressure history, the 
liquid's gross distribution history, and the flexible system 
boundary constitutive relations are known. It is not so obvious 
that the same equations can also be used to predict the rigid 
system's pressure if, besides knowing the gross liquid distribu­
tion history and the flexible system's boundary constitutive 
relations, we also have total pressure or displacement history 
data at all boundaries. One method of predicting the rigid 
pressure histories at the boundaries would be to transform all 
total boundary pressure data into total boundary displacement 
data via the constitutive equations (30), (34), and (37); then 
these displacements would be filtered to obtain their high fre­
quency or perturbation components; the rigid system pressure 
is then predicted from equation (43). Ultimately, by combin­
ing these two exercises, it is possible to predict a flexible 
system's behavior from data of another system of different 
flexibility. 

Ill Extension to a Compressible Liquid 

When the liquid is compressible the liquid domain equa­
tions, together with additional simplifying assumptions, can 
be obtained in much the same way as before. 

The liquid domain in the flexible and rigid systems must 
obey the compressible mass and momentum conservation 
equations and the isentropic relation: 

- ^ - + V-(/o>>) = 0 (45) 
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Table 3 Order of magnitude estimates of velocity and density Table 4 Simplifying assumptions on the fluid domain—coin-
terms—compressible case 

PR~VR 

X„ 
Vp~ 

tp 

>VvP~ 

V ^ P P ~ 

\'pTp 

\p Tp 

•VVR 
hR 

dpP pP 

dt TP 

VPR 
KR 

g 
VPO~PO — 

[ di> . 1 
p 1- v* V v = 

dP 

di>p 

dt 

V'i 'p — 

VpP~ -

rP 

K 
\'pTp 

PP 

- V i J - p g V z + /iV2i' 

dp 

(46) 

(47) 

Excursions in pressure and liquid densities will be assumed 
sufficiently small for c2 to remain constant. Pressure, density, 
and velocity fields are again decomposed into rigid and pertur­
bation components. In addition, the rigid system total 
pressure and density can be separated into a hydrostatic and a 
rigid system excursion component : 

P=P0+PR+PP (48) 

P = P0+PR+PP (49) 

v = vR + vP (50) 

Here, terms subscripted o represent static components; those 
subscripted R represent rigid system excursions from the cor­
responding static terms. The isentropic relation requires the 
rigid and perturbation pressure components to be propor­
tional to the rigid and perturbation density components . 

We require both the rigid and flexible systems to obey the 
conservation and isentropic relations independently. The per­
turbation equations are reduced to the wave equation through 
assumptions similar to those made before in analyzing incom­
pressible perturbations: 

± ^ L - V 2 P ( 5 1 ) 

Table 3 provides order of magnitude estimates characterizing 
different variables and operat ions, which are similar but more 
complex than those of Table 1. As before, the perturbation 
equation will accurately predict flexible system perturbations 
only when certain order of magnitude criteria are satisfied. 
The new criteria are (A)-(J) in Table 4; note that the previously 
adopted conditions (B)-(F), Table 2, are included here. At the 
boundaries, the normal perturbat ion pressure gradient is 
related to boundary accelerations by 

dPp 

dnR 

d2x 

dt2 (52) 

The first noteworthy feature of the perturbation equation 
for a compressible liquid, equation (51), is that it has an in­
herent characteristic time, \R/c. Since the shortest time period 
characterizing the rigid system response must be large com­
pared with the longest period characterizing the perturbat ion 
fields, the rigid system flow fields must have the 

pressible case 

Po X P S 

Pp 

\p 

^R 

X* 
\'p 

\p 

c2 

PR 

PP 

TP 

TR 

« 1 

« 1 

« 1 

« 1 

\p 

TP 

TR 

PP 

Po 

PR 

D 

« 1 

« 1 

« 1 
Po 

PP^RTp 

Po^PTR 
« 1 H 

PpgTp 

Po^P 
« 1 

« 1 

« 1 K 

characteristics of an incompressible flow. All compressibility 
effects in the liquid must therefore be part of the perturbation 
fields. 

As before, the perturbat ion equation can be reduced to a 
boundary value problem. The formulation is simplified con­
siderably by imposing conditions (E) and (K), Table 4, which 
permit us to solve the wave equation for stationary bound­
aries. Using Morgans 's (1930) formulation, the perturbation 
pressures at the boundaries at any t ime / can be expressed as a 
linear operation of the boundary condition history (perturba­
tion pressures and normal pressure gradients at all times prior 
tot). 

PP=HdPP (53) 

we have assumed, for simplicity, that initial perturbation 
pressures and their time derivatives throughout the liquid do­
main are homogeneous. In equation (53), boundary condi­
tions at the liquid-structure surfaces are of the Neumann type, 
and those at the gas-liquid surfaces are Dirichlet boundary 
conditions. At rigid walls and free surfaces the boundary con­
ditions are homogeneous. 

Constitutive relations for the boundary surfaces can be 
defined as before, modified if necessary to account for com­
pressibility effects in gaseous cavities. The high frequency 
components of the constitutive relations can be summarized 
once again in the form: 

Mx + Kx- --Ph-P} (54) 

For structural boundaries the constitutive equations here will 
be no different from those used previously in the incompressi­
ble analysis. For gaseous boundaries, however, the con­
stitutive equation will normally depend on acoustic effects 
within the gas itself. The linear operator M for such bound-
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aries will therefore be similar in form to equation (53), with 
the instantaneous boundary pressures in the gas depending on 
the prior history of boundary pressures in the cavity. 

The high frequency components of the constitutive relations 
are combined with the boundary value expression of the per­
turbation equation to form a system equation: 

{M+pH)x + Kx = Ph
R-P>} (55) 

where we have used equation (52). If initial perturbation 
pressures throughout the domain are inhomogeneous, addi­
tional terms will appear on the right-hand side of this 
expression. 

The system equation, independent of the rigid system 
pressures at the boundaries, can be used to predict the pertur­
bation pressures and displacements in a system of given flex­
ibility. Required as inputs are the gross liquid distribution, 
forcing pressures at the boundaries, and initial conditions. 

We identify a practical rigid systems pressure high frequen­
cy component as the perturbation field component which is in­
dependent of system flexibility. Thus, the practical rigid 
system high frequency component satisfies the wave equation. 
It has zero normal pressure gradient boundary conditions at 
the walls, and at the free surfaces the pressure is the high fre­
quency component of the forcing pressure function. At other 
gas-liquid surfaces, the boundary condition depends on the 
constitutive relation of the gas cavity: if acoustic effects are 
not important in the cavity, then a uniform pressure with zero 
average normal pressure gradient must be applied; alternative­
ly, the normal pressure gradient is homogeneous. 

Rigid system data can be extracted from a flexible system as 
before by combining equations (48) and (52)-(53) yielding: 

P0+PR=P + Pom (56) 

Thus, the rigid system pressure can be obtained once the liquid 
operator H and the total pressure P and perturbation accelera­
tions at the boundaries have been identified. 

IV Conclusion 
The analysis of coupled gas-liquid-structure flow fields by 

computation or experiment is difficult. When simplifying 

criteria that we have formulated are satisfied, the analysis can 
be decomposed into two simpler ones. The first prong of the 
analysis focuses on the flow fields created by the gross defor­
mations of the liquid, fields that are governed by the full, 
nonlinear equation of motion for the bulk flow. The second 
prong addresses the superposed perturbation fields, governed 
by the linear perturbation equations we have formulated. 

Based on this analysis, a rigid system flow field can be com­
puted, measured directly, or extracted from data obtained in a 
flexible system. The rigid system characteristics can then be 
used as inputs to compute flow fields in a system of different 
flexibility. Applications of this theory are given in the com­
panion paper. 
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Coupled Gas-Liquid-Structure 
Systems: Part 2—Applications1 

In the companion paper, Joos and Huber (1987) have developed an analysis that 
applies to certain types of systems in which a hydrodynamic transient creates 
pressure forces dependent on the flexibilities of the liquid boundary surfaces. To test 
the analysis we performed two pairs of experiments. Each pair involved identical ex­
periments conducted in two geometrically identical cylindrical tanks. One tank was 
rigid, the other flexible. In the first set of experiments a gas bubble oscillated freely 
in a container partially filled with liquid. We compared experimentally measured 
natural frequencies with those predicted theoretically. In the second set of ex­
periments a complex hydrodynamic transient was produced by injecting air into a 
tank partially filled with liquid. Using data from the rigid system experiments we 
predict the pressures and wall displacements in the flexible system and compare 
these predictions with measurements made in the flexible test tank. The inverse 
problem—predicting the pressures in the rigid tank from data obtained in the flexi­
ble tank—is also analyzed using the theoretical tools we have developed, and again 
predictions are compared with experiment. 

I Introduction 

In the companion paper, Joos and Huber (1987) develop 
theoretical tools to predict pressures and displacements in a 
system consisting of a liquid undergoing a hydrodynamic tran­
sient in a flexible system, provided data is available from an 
identical transient in a geometrically identical system of dif­
ferent flexibility. At the heart of the analysis is the rigid 
system: a system that undergoes the same gross liquid 
redistribution and in which all nonfree surface boundaries 
displace but do not oscillate. In this paper we apply these 
analytical tools to two sets of experiments we conducted in 
rigid and flexible liquid-filled tanks. The first set of ex­
periments examines the natural frequencies of vibrating bub­
bles. In the other set, involving a "poolswell" transient, first 
rigid system experimental data is used to predict the flexible 
system's behavior, then we address in the inverse problem of 
predicting the rigid system's behavior from the flexible 
system's experimental data. Throughout this article we will 
freely apply the concepts, definitions, tables, and equations of 
the companion paper which we will refer to as "Part 1." 

II Free Vibrations 

When the rigid and forcing pressures are zero, equations 
(43) and (44) of Part 1 are homogeneous. This greatly 
simplified case, representing free vibrations, provides a useful 

'The work presented in this article was performed while the Authors were at 
the Massachusetts Institute of Technology, Cambridge, MA. 
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10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, December 17, 1986; final revision July 9, 1987. 

test of the model and illustrates its application. In this section 
we summarize experiments and analyses of the coupled, free 
vibrations of a rigid and a flexible tank containing liquid and a 
submerged bubble of gas. 

A Experiments. Two geometrically identical but struc­
turally different cylindrical tanks were tested. The first (Fig. 
1(a)) was made of rigid acrylic. The second, similar to that 
used by Kana et al. (1968), had thin polyester walls (Mylar, 
type D) and a rigid flat bottom. This tank is shown in Fig. 1(6) 
(set up for the second series of experiments). The flexible shell 
was stiffened by acrylic ribs, which were rigid, stationary, and 
chemically bonded to the polyester shell. Each test system was 
partially filled with water, as shown in Fig. 1(a). In successive 
tests, the height of the column of water was varied between 
102 mm and 254 mm in 25.4 mm increments. 

At the beginning of each experiment a thin rubber balloon, 
filled with 8.2 ml of air, was suspended in the liquid on the 
axis of the cylinder approximately 50 mm above the base. The 
initial overpressure in the balloon was about 5 kPa. The 
balloon was burst using a metal spike. By means of high speed 
films, we obtained sequences of photographs of bubbles so 
formed in the rigid test tank during the interval of interest 
here. The vertical displacement and gross deformations of the 
bubble were seen to be negligible. Further experimental details 
are provided by Joos (1982). 

The pressure transient immediately following the rupture of 
the balloon was recorded at the center of the rigid bottom 
plate. Figure 2 shows typical pressure histories obtained in the 
rigid and flexible tanks tested under otherwise identical condi­
tions. Power spectral densities (PSDs) of the pressure records 
were calculated from fast Fourier transforms of the individual 
pressure signals. Figure 3 shows average and envelopes of ten 
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Fig. 3 Pressure trace power spectral densities (water depth = 254 mm): 
Fig. 1 Schematics of experimental systems: (a) rigid tank, set up for (a) rigid tank; (b) flexible tank 
free vibrations experiment; (b) flexible tank, set up for forced transient 
experiment. Key: P1-P7, pressure probes; D1-D6, displacement probes. _, 
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Fig. 2 Typical pressure histories (water depth = 254 mm): (a) rigid tank; 
(b) flexible tank 

such PSDs for repetitions of one of the experiments in each of 
the two systems. The results for the rigid structure clearly 
show a single system natural frequency, while the data for the 
geometrically identical flexible structure reveal several natural 

200 -
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LIQUID LEVEL (mm) 

(b) 
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Fig. 4 Comparison of experiment with theory: (a) rigid system; (b) flexi­
ble system. Circles represent experimental average values. 

frequencies, none of which coincide with the natural frequen­
cy of the rigid-walled system. 

Joos (1982) includes pressure traces and PSDs obtained in 
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Table 1 Verification of simplifying assumptions—free vibrations case 
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Table 2 Verification of simplifying assumptions—forced transient case 
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experiments performed at the other water depths in the two 
test tanks. Natural frequencies obtained from these ex­
periments are plotted as a function of pool depth in Fig. 4. 
The error bars are due largely to the course (20 Hz) numerical 
resolution of the fast Fourier transforms. 

B Analysis. The solid lines in Fig. 4 are the natural fre­
quencies predicted as the eigenvalues of equations (43) and 
(44) of Part 1, applied to the two test systems, in question. A 
brief description of the theoretical analysis of these two test 
systems follows. 

Table 1 demonstrates that the criteria of Table 2 of Part 1 
are met in the experiments. In addition, it is easy to show that 

the bubble vibrations are quasistatic and that for our flexible 
test tank the inertia of the flexible polyester wall can be 
neglected. Finally, over the time periods of interest in our ex­
periments, the liquid configuration was essentially stationary. 
The linear operators of equations (43) and (44) of Part 1 are 
therefore constant in time. Equation (43) of Part 1 thus 
reduces to: 

PHyP + KyP = G (1) 

For the purpose of numerical calculations we approximate 
equation (1) by a set of linear equations: 

PlK]-limyP+yP=o (2) 
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where [K] and [H] represent the linear operators K and H and 
yP is an array representing discretized effective displacements. 
The term representing the bubble in the yP array measures the 
average displacement of the bubble surface. The implementa­
tion of the theoretical model for our axisymmetric experimen­
tal systems is thus reduced to calculating the matrices [H\ and 
[K] ~' and the eigenvalues of their product. 

To calculate the liquid matrix [H] we solved Laplace's equa­
tion, equation (10) of Part 1, using a boundary integral 
method. The bubble surface was idealized as a sphere of 
radius rb = 12.5 mm, located at the axis of the cylinder 60 mm 
above the bottom of the plate. All computational nodes on the 
bubble surface are reduced to a single row and column in [H], 
operating on the variable bubble pressure and average normal 
pressure gradient over the bubble surface. 

The top boundary of the liquid pool is a free surface and the 
bottom a rigid surface. In the rigid-walled test system, the [H] 
matrix, therefore, has only a single term representing the gas 
cavity; all the other boundary conditions are homogeneous. In 
the flexible system the walls of the cylinder were displacement 
surfaces, rigid at the location of the ribs. Additional details of 
the computation appear in Joos (1982). 

To calculate the influence matrix [K] ~' for each test system, 
we require a pressure-displacement relations for the bubble 
and (for the flexible-wall system only) a pressure-displacement 
relation for the wall. The influence coefficient for a spherical 
gaseous bubble is easily shown to be rb/3yp0, where 7 = 1.4 
and p0 is atmospheric pressure. This is the only source of flex­
ibility in the rigid-walled test tank; here, therefore, the in­
fluence matrix collapses to a single number. 

For the flexible structure, the bubble influence coefficient 
provides only one row and column of the influence matrix; 
other terms in the matrix account for the flexibility of the wall. 
We define shell rings consisting of the shell segment between 
each pair of ribs. Because the rings are fixed at the ribs, each 
ring vibrates independently. The linear operator Ks describing 
the static displacement of a cylindrical shell under an axisym­
metric load is, following Timonshenko and Woinowsky-
Krieger (1959): 

Downcomer, 

where 

and 

"•Mi?*4?) 

3d -v2
s) E, 

h2rl E, 

A = -

(3) 

(4a) 

(4b) 
12(1 -ft 

Boundary conditions at the edges of the ribs are y = dy/dz = 0. 
Here z is the axial coordinate, vs is Poisson's ratio (assumed to 
be 0.3, which is Poisson's ratio for Mylar A), h is the thickness 
of the shell, rc is its radius, and Et and E, are the Young's 
moduli in the axial and transverse direction (4.72 and 5.20 G 
Pa, respectively, for our system). We extract the influence 
matrix for a ring from the discretized solution of equations 
(3)-(4). Combining the influence matrices for each ring yields 
the influence matrix for the entire flexible shell; adding one 
line and one row in the influence matrix for the bubble com­
pletes the assembly of the [K\ ~' matrix for the flexible test 
tank. 

The eigenvalues of the matrix [[K\ ~' [//]] represent the 
system natural frequencies. In either the flexible or the rigid 
system, if the eigenvalues are A,-, the system natural frequen­
cies are 

^ S i d e w a l l 

Liquid 

Floor 

fi = 
1 

27TVpX; 

(5) 

Fig. 5 Profiles obtained from high speed film showing liquid 
redistribution during the poolswell transient. The test system's side 
wall curvature radially magnifies the interior surfaces by twenty percent. 

where p=1000 kg/m3. The rigid system has only a single 
natural frequency. 

It is plain from Fig. 4 that for both the rigid structure and 
for the flexible structure this analysis yields a very accurate 
prediction of the experimental results. It should be empha­
sized that the only inputs to the theory are a description of the 
system geometry and the liquid, gas, and structure properties 
(p,y,EuE„ vs). 

Il l Forced Transients 

We next consider application of the theory to a transient 
flow that involves large liquid deformations. We demonstrate 
how rigid system data may be used to predict the flexible 
system response, and how flexible system data may be used to 
predict the rigid system transient. This pair of calculations, 
applied to experimental tests, illustrates the strengths as well 
as some of the practical difficulties that attend implementa­
tion of the analysis. 

A Experiments. The same two test tanks were used. The 
tanks were filled with water to a depth of 152 mm. A drywell 
(1.57xl0"3m3 capacity) was connected through a solenoid 
valve to a downcomer, which extended below the liquid sur­
face as shown in Fig. 1(b). The initial pressure in the wetwell 
and downcomer was atmospheric. The drywell was pressur­
ized with nitrogen gas to a gauge pressure of 25.0 kPa. A tran­
sient was produced by opening the solenoid valve. Nitrogen 
flowed rapidly through the downcomer into the liquid, form­
ing a large bubble, redistributing the liquid mass, and causing 
the pool to "swell" abruptly. During poolswell the pressure 
above the pool remained close to atmospheric. The 400 ms 
transient terminated when the pressure in the drywell had 
dropped to atmospheric and the pool had subsided following 
bubble breakthrough. Our experiments and analysis focus on 
the first 50 ms of the transient. 

We obtained high speed films of the rigid system transient 
to determine the liquid geometry as a function of time (Fig. 5). 
We also used piezoelectric transducers to record pressures at 
various locations in both systems (Fig. 1): at the center and 
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Experimentally measured rigid system response 

half-a-pool radius off-center on the pool floor, at three 
heights along the sidewall (in the rigid tank only), and in the 
unwetted region of the tank and downcomer in both systems. 
Using a photonic sensor we recorded transient boundary 
oscillations in the flexible tank at eight locations on the cylin­
drical walls (six locations are shown in Fig. 1(b)). Additional 
details of the experimental method and results are presented in 
Joos (1982). 

Typical pressure and displacement data at selected sites in 
the rigid and flexible tanks are shown in Figs. 6 and 7. Both 
average results and the data-bounding envelopes of ten or 
more identical tests are shown. The first pool pressure peak 
(trace PI, Fig. 6, at f = 26.2 ms) occurs just after the 
downcomer clears the gas-liquid interface is about 15 mm 
below the submerged tip of the downcomer. Thereafter the 
bubble grows and pressures in the pool first fall and then rise 
again. Average wall displacements in the flexible tank roughly 
follow the pressure histories of the rigid tank, but oscillations 
of significant amplitude are superimposed (Fig. 7). These are 
best seen in the oscillatory pressures on the pool floor in the 
flexible system tests (trace PI, Fig. 7). 

B Application of the System Equations. The data from 
the pair of transient tests just described present two paradigm 
problems for application of bur analytical framework. In 
Table 2 we demonstrate that, in general, the conditions of our 
experimental tests satisfied the criteria for applying our 
analysis. Once the pressure and liquid distribution histories in 
a rigid system are known, direct application of the system 
equations, equations (43) or (44) of Part 1, should therefore 
yield perturbation displacements and pressures in a 
geometrically identical system of known boundary flexibility. 
Alternatively, the system equations may be used to extract the 
rigid system characteristics from data obtained in a flexible 
system. 

Examination of the high speed films from which the profiles 
of Fig. 5 were taken reveals there is a region in the liquid do­
main that does not obey the simplifying assumptions (B) and 
(E) of Table 2 of Part 1 during the early stages of the transient. 
These assumptions require that the mixed cross-convective 
terms be small compared to the perturbation's acceleration in 

20 4 0 60 

TIME, (ms) 

Fig. 7 Experimentally measured flexible system response 

the flexible system. During the downcomer clearing stage, 
ending at t = 26.2 ms, these terms are at best comparable in the 
liquid being injected from downcomer. Similar observations 
can be made of the next stage, consisting approximately of the 
following 2.5 ms, when the downcomer gas-liquid interface 
rapidly expands mostly in the horizontal direction. At the end 
of this stage the experimental pressures and displacements 
(Figs. 6 and 7) are halfway down the negative slope between 
the first two peaks. The total amounts of liquid displaced by 
the end of these stages are very small: about 1.5 percent when 
the downcomer clears and 2 percent by the end of the second 
stage, at about / = 28.5 ms. Thus, with the exception of the 
small region near the downcomer, most of the remaining 
liquid is virtually at rest and satisfies all the simplifying 
assumptions. Comparison of the bottom-center pressure 
histories of the rigid and flexible systems, trace PI of Figs. 6 
and 7, suggest that in these early stages the perturbation fields 
are still small compared to the rigid system fields, and the 
most evident perturbative effects are yet to come. Therefore, 
bearing in mind the limitations imposed on the comparison by 
experimental inadequacies in a region of the liquid and stage 
of the transient of small interest, we proceed with the com­
parison as if the perturbation equations were fully valid. 

1 Determining the Transient Liquid and Influence 
Matrices. Records of the transient liquid redistribution were 
traced from high speed films of tests in the rigid system. A 
total of 16 profiles of the transient (some of the them shown in 
Fig. 5) were used to define the transient; intermediate distribu­
tions were determined by interpolation. After correcting for 
optical magnification, we assumed that the profiles accurately 
represented the outer boundary of the bubble. We then as­
sumed a crude inner boundary using conservation of the liquid 
volume as a criterion. The precise shape of those inner sur­
faces should have little effect on the analysis. 
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Fig. 8 Nodal distribution on the liquid interfaces at time t = 31.25 ms. 
Squares represent pressure boundary conditions; circles represent nor­
mal pressure gradient boundary conditions. Only solid nodal points 
have inhomogeneous boundary conditions. The two boundary condi­
tions for the top right corner are an inhomogeneous pressure gradient 
on one side and a homogeneous pressure on the other. 

As in Section II, we approximated the liquid and influence 
operators by their discretized counterparts. We used a 
boundary integral method to solve Laplace's equation, and so 
to determine [H] as a function of time. Figure 8 shows a 
typical distribution of the computational nodes along the 
boundary. Inhomogeneous boundary conditions occur only at 
the midpoint of each flexible ring, and on the topmost, par­
tially wetted ring. All other nodes represent homogeneous 
boundary conditions—either zero perturbation pressure (at 
free surfaces) or zero nominal perturbation pressure gradient 
(at rigid boundaries, including the nodes located on the 
sidewall ribs). Conservation of mass requires that the vibra­
tion amplitudes at the gas-liquid interface be comparable to 
those at the flexible walls. As Table 2 indicates, the stiffness 
constant kg of the gas cavity is negligible compared to that of 
the structure, ks; therefore, the gas-liquid interface created by 
air injected through the downcomer can reasonably be modell­
ed as a free surface. 

To calculate the influence matrix [K]~l for the flexible 
system, we defined shell rings consisting of shell segments be­
tween each pair of ribs. The operator governing the shell's 
displacement is again given by equations (3) and (4). The rings 
are assumed fixed at the ribs and each ring, therefore, vibrates 
independently. 

2 Calculating Flexible System Behavior from Rigid System 
Data. Most real systems containing gas cavities are "flexi­
ble," because boundary displacements at such interfaces 
usually contain both low and high frequency components, the 
latter kind modifying the cavity volume and thus producing 
perturbation pressures. Although liquid-structure interfaces 
can be made rigid through appropriate stiffening, it is usually 
not possible to force gas-liquid interfaces to behave "rigidly," 
i.e., to displace only at low frequency. For most systems, 
therefore, no "rigid" system experiment is possible—all ex­
perimental tests necessarily involve "flexible" systems, and 
the idealized system response must either be calculated 
theoretically or extracted from flexible system data as de­
scribed in the following subsection. 

An exception arises, however, when all gas-liquid interfaces 

can be treated as free surfaces, that is, when the pressures at 
all such surfaces are independent of any perturbation 
displacements of the surfaces. In such cases the rigid system 
pressure history can effectively be measured directly by experi­
ment, in a test system with rigid structural boundaries. 

Our poolswell tests in the structurally rigid system represent 
an experiment of the latter type: the gas cavity generated at the 
downcomer exit was large enough to be treated as a free sur­
face. For the conditions of our transient tests, all in-
homogeneous boundaries therefore have surface displacement 
constitutive relations. Adding equations (35) and (43), both of 
Part 1, and considering that low frequency wall accelerations 
are negligible compared to the perturbation accelerations, we 
obtain 

pHy + Ksy=pR (6) 

Equation (6) can be solved numerically, with the operators 
H and Ks replaced by the corresponding matrices [H] and [K] 
and the displacements y by the array y. Equation (6) is first 
rewritten: 

p[K]-l[H\y + y = [K]-1pR (7) 

We determine total pressures by combining equations (3) and 
(42), both of P a r t i . 

p=pR-pHyP 

which, in matrix form is 

p = pR-p[H]y 

(8) 

(9) 

where, again, we have applied the assumptions that rigid 
system accelerations at the structural boundaries are negligible 
compared to the perturbation accelerations. 

Because the liquid distribution varies slowly compared with 
the lowest characteristic frequencies of p and y, the H and K 
operators also vary slowly. The matrices [H] and [K\ ~1 were 
updated fifteen times during the portion of the transient we 
analyzed, 0<t<50 ms. The interval between consecutive up-
datings ranged from 1 to 10 ms. During each interval an eigen­
value solution was used to solve equation (7). The decoupled 
differential equations which resulted from the decomposition 
of the system into its natural modes were solved by Duhamel 
integrations. Total pressures were then computed using equa­
tion (9). 

Figure 9 shows typical predictions of the flexible system's 
pressure and displacement responses. For comparison with the 
experimental results we show displacements at the midpoints 
of several of the flexible wall rings and pressures at the center 
of the pool floor. Corresponding experimental results are 
shown in Fig. 7. 

Clearly the theoretical predictions are in good general agree­
ment with the experiments. The predicted first peak in floor 
pressure (Fig. 9, t = 27 ms, trace PI) is almost 12 percent 
higher than the average experimental trace; subsequent 
predicted peaks and troughs fall within the envelopes of the 
experimental results. The calculations somewhat underpredict 
the decay of the flexible system oscillations. There is some 
phase shift between the predicted oscillations and the ex­
periments. The predicted frequencies of the oscillating compo­
nent of the flexible system response agree well with the ex­
perimental observations. 

Agreement between predicted and experimentally measured 
displacements is also good, though less so than for the 
pressures. For the lowest two rings (traces Di, D2, Fig. 9) 
where the displacements are greatest, the amplitude of the first 
peak is overpredicted by about 23 percent; many of the 
troughs are under-predicted and certain high frequency 
displacement components observed experimentally are not 
predicted at all. Nevertheless, the basic features of the 
predicted displacement responses agree well with the ex­
periments. Both prediction and experiment reveal that the 
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Fig. 9 Flexible system response predicted from rigid system data 

oscillation frequencies change with depth in the pool, increas­
ing with decreasing distance from the free surfaces. Both 
predicted and observed displacement amplitudes vary 
significantly from ring to ring along the side wall and the 
variation is at first surprising—displacement amplitudes at the 
sixth ring are larger than those at the fourth ring, even though 
the former is much closer to the pool's surface. The rate of 
decrease of displacement amplitude in both prediction and ex­
periment is greater at the second ring (traces D2, Figs. 7 and 9) 
than at the first (traces Dl, Figs. 7 and 9). The analysis sug­
gests that this is due to the rapid rate at which the free surface 
attached to the downcomer approaches the wall at that point. 
The liquid-gas interface is a surface of zero perturbation 
pressure and acts as a sink, reducing the amplitude of the per­
turbation pressures near it. 

The greatest discrepancy between displacement predictions 
and the experiment occurred at ring 3, not shown here, where 
the predicted amplitude of the first peak was 100 ̂ m, while ex­
periments recorded 44.6 jxm. The error may derive from the 
coarseness of the sidewall pressure history assumed for the 
calculation, which consisted of linearly interpolating the rigid 
system pressures between the sites of the transducer ports.x 

It is informative, finally, to compare the predictions we 
have presented with those of an identical computation that 
fails to account for the dynamic redistribution of the liquid 
mass during the transient. In Fig. 10 we show the results of 
such a computation. Equations (7) and (9) have been solved 
here as before, but the liquid distribution throughout the tran­
sient has been frozen in the distribution that occurs at time 
^ = 31.2 ms (see Fig. 8). (This particular time is somewhat ar­
bitrarily chosen "average" configuration.) The frequency of 
the predicted oscillations is, of course, constant and the 
oscillation amplitudes, low in the pool and late in the transient 
/>32 ms, are grossly overestimated. 

20 40 60 
TIME.(ms) 

Fig. 10 Flexible system response predicted from rigid system data us­
ing a frozen liquid distribution corresponding to the actual distribution 
at time t = 31.25 ms 

3 Calculating Rigid System Pressures From Flexible 
System Data. A more difficult application of the system 
equation involves the converse problem—extracting idealized 
rigid system characteristics from pressure or displacement 
data obtained in a flexible system. Total pressure and total 
displacement at each boundary are related by the constitutive 
equations, equations (30), (34), and (37) of Part 1; once one is 
known the other can thus be found directly. 

The perturbation displacements are the high frequency com­
ponents of the known total displacement. A zero phase shift, 
high-pass filter with a cutoff frequency between 1/TR and 1/TP 

can, therefore, be used to extract the displacement perturba­
tion yP or the component of the total pressure which produces 
yP. The rigid pressures are then obtained by rearranging equa­
tion (8). 

We can now predict pressure and displacement histories in a 
flexible system from information obtained in a geometrically 
identical system of different, known flexibility. The rigid 
system information is extracted from the flexible system data, 
and is then used in one of the system equations, (43) or (44) of 
Part 1, to predict flexible system pressures and displacements 
for different flexibilities. 

For the conditions of our experiments, equations (34) of 
Part 1 and (8) can be rewritten in matrix terms: 

and 

P=[*]y 

p R = p+p[H]y 

(10) 

(ii) 
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Fig. 11 Predicted variation of the lowest two system natural frequen­
cies during the transient 

where the structural mass and forcing pressure in equation 
(34) of Part 1 have been neglected, and we leave low frequency 
component displacement terms in equation (11) because their 
contribution to the acceleration term is negligible. As inputs 
we used the average flexible system experimental displacement 
results (Fig. 7) and the liquid distribution history. 

Equation (11) requires second derivatives in time to be 
calculated from the experimental signal. Performing these 
calculations mechanically yields predictions that deviate 
significantly from the rigid system experimental data (Fig. 6). 
Although the basic features of the rigid system transient 
emerge from the computations, the predictions contain signifi­
cant high frequency components that are not observed ex­
perimentally. But their presence is not altogether surprising; 
the input flexible system data were essentially unfiltered (only 
electrical noise had been removed with a 1 kHz digital low-
pass filter) and differentiating such experimental signals twice 
in time, as required by equation (11), greatly amplifies any 
high frequency content. This situation could have been avoid­
ed by also measuring normal surface accelerations; we decid­
ed, however, to solve this problem as indicated below. 

Suitable filtering of the rigid system predictions might suc­
cessfully remove these parasitic high frequency signals while 
preserving the rigid system features that the calculation is in­
tended to extract. But because the system natural frequencies 
vary with time it is not obvious which pass and stop-band 
filtering frequencies to choose. 

Figure 11 shows our predictions of the two lowest natural 
frequencies of the flexible system (found from the lowest 
eigenvalues of equation (7) as a function of time during the 
transient). It is, from inspection of the flexible system ex­
periments, not clear a priori when in the transient the flexible 
oscillations are excited. In trace PI, Fig. 7, for example, it ap­
pears that flexible system oscillations have been initiated at 
about ?=33 ms in the transient, although one cannot assert 
with any confidence that further significant excitation of the 
system does not continue beyond that time. Inspection of Fig. 
11 shows that at t= 33 ms the lowest system natural frequency 
is about 290 Hz. On this somewhat tenuous basis we filter our 
predictions using a low-pass, zero phase shift digital filter with 
cutoff and rejection frequencies 290 and 330 Hz. These two 
frequencies correspond to the lowest system natural frequen­
cies at ?=33 and 36 ms, respectively. Figure 12 shows the 
results of this modification in our rigid system predictions. 
The choice of pass and stop-band frequencies could be 
systematized and improved as follows. Following a choice of 
these frequencies the newly calculated (filtered) rigid pressure 
histories are used to recalculate the flexible system pressures 

20 40 60 
TIME, (ms) 

Fig. 12 Filtered rigid system response predicted from flexible system 
data 

and displacements. These predictions are compared with the 
original data. If the amplitudes of the predictions in the fun­
damental modes of the the flexible system do not compare well 
with the experimental data, the predicted rigid system 
pressures must lack (or contain an excess of) some frequency 
component that excites the flexible system. It should thus be 
possible, by iteration, to improve the choice of pass and stop-
band frequencies until the predicted rigid system histories 
prove acceptable at repredicting the flexible system responses 
from which they are derived. 

A comparison of Figs. 6 and 12 reveals that the filtered 
predictions match the rigid system experiments quite suc­
cessfully. If the traces in Fig. 6 are passed through the same 
digital filter, the amplitudes of the first peak in Fig. 8 are 
underpredicted by less than 15 percent of the maximum peak, 
an error that is consistent with our oye/'-prediction of tht flexi­
ble system responses in our calculations using the rigid data as 
input (Fig. 9). It is possible that one of the calculated matrix 
coefficients in equation (7), either [K]^1 or [H], is somewhat 
in error. That has led to an overprediction of the perturbation 
field components. When we add the predicted perturbations to 
rigid system data we overpredict the flexible transient 
somewhat; when we subtract the predicted perturbations from 
flexible system data we under-predict the rigid transient by 
about the same amount. Another possible source of error is 
the failure of the perturbation equations in the neighborhood 
of the downcomer when this peak occurs. 

The pressure traces in Fig. 12 have been obtained by passing 
the calculated rigid system pressures through the low-pass 
digital filter. Predictions essentially identical to those in Fig. 
12 can be obtained by filtering the experimental flexible 
pressure and displacement data first, then performing the 
equation (11) calculations. Because the liquid matrix [H] 
varies slowly in time, it has no high frequency components; 
thus filtering may be performed before or after the equation 
(11) computations. 

It is important to emphasize, however, that filtering alone 
will not successfully translate flexible data into rigid system 
predictions. Figure 13 shows the flexible system data filtered 
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Fig. 13 Flexible system data filtered through the low-pass filter used in 
Fig. 12 

at 290-330 Hz. A comparison with Figs. 6 and 12 demonstrates 
that the liquid-structure coupling is not eliminated simply by 
filtering the total pressure traces in the flexible system. The ac­
celeration terms in equation (11) are important and must be 
calculated and subtracted in going from flexible data to rigid 
system predictions. 

4 Verification of the Numerical Methods. To check the 
internal consistency of the two computational schemes used in 
the preceding subsections, we performed a circular calculation 
as follows. Starting with the rigid system experimental data 
and the matrix coefficients from equation (7), we calculated 

flexible system responses according to the Subsection III.B.2 
recipe. The predicted flexible system displacements were then 
used as the input "data" in the scheme described in Subsec­
tion III.B.3 to recompute the rigid system pressures. Apart 
from some sharp numerical peaks introduced by the abrupt 
changes in liquid distribution, the original rigid pressures were 
reproduced very accurately. 

IV Conclusion 

The prediction of large-scale coupled gas-liquid-structure 
flow fields by computation or experiment is difficult. Here we 
have demonstrated that, when simplifying criteria formulated 
in the companion paper are satisfied, the problem can be 
decomposed into two simpler ones. The first focuses on the 
gross deformations of the liquid; the second addresses 
oscillatory motion. 

Based on the analysis, a rigid system flow field can be com­
puted, measured directly, or extracted from data obtained in a 
flexible system. The rigid system characteristics can then be 
used as inputs to compute flow fields in a system of different 
flexibility. In addition, natural frequencies of a coupled gas-
liquid-structural system can be determined through a relatively 
simple calculation. 
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Mechanics of a Free-Surface 
Liquid Film Flow 
The mechanics of a free surface viscous liquid curtain flowing steadily between two 
vertical guide wires under the influence of gravity is investigated. The Navier-Stokes 
equation is integrated over the film thickness and an integro-differential equation is 
derived for the average film velocity. An approximate nonlinear differential equa­
tion, attributed to G. I. Taylor, is obtained by neglecting the higher order terms. An 
analytical solution is obtained for a similar equation which neglects the surface ten­
sion effects and the results are compared with the experimental measurements of 
Brown (1961). 

1 Introduction 

The process of film flow is used in single and multi-layer 
coating of photographic bases, spinning of liquid films, and 
protective organic coatings at high speed to continuous steel or 
tinplate strip. One method of film coating used in industry is 
to pump fluid through a narrow slot; as the liquid passes 
through this slot, it forms a continuous sheet or curtain which 
falls on the workpiece as it travels underneath. The thickness 
of the coating material applied depends on the mass flux of the 
fluid, the velocity and distance of the workpiece from the slot, 
and the velocity of the fluid. 

The dynamics of liquid sheets have been examined by 
Taylor (1959a, b, c), who studied the shapes of axially sym­
metric "water bells," capillary waves, and the disintegration 
of thin sheets of fluid. The stability of a liquid film with large 
viscosity was studied by Yeow (1974), who considered only the 
viscous and pressure terms in the momentum equation. By 
means of linear stability analysis, he formulated a set of eigen­
value problems and obtained the neutral-stability curves. 

The stability of a thin liquid curtain with respect to spatially 
as well as temporally changing disturbances is studied by Lin 
(1981). He showed that the liquid curtain is unstable to spatial­
ly growing sinuous disturbances if the Weber number exceeds 
1/2. 

The velocity distribution in a thin Newtonian liquid curtain 
falling between two guide wires (see Fig. 1) is measured by 
Brown (1961), and an equation based on the free-fall velocity 
of a particle is deduced by him. 

The following nonlinear differential equation, for the axial 
film velocity, is also cited in the appendix of Brown (1961), 
and is attributed to G. I. Taylor. 

dx dx V 
1 dU\ 
WHx-)+g (1) 

'Present address: Battelle Memorial Institute, 505 King Avenue, Columbus, 
Ohio 43201-2693. 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, July 25, 1986; final revision April 23, 1987. 

here, Uis the velocity in the direction of gravity g, and v is the 
kinematic viscosity. In citing this equation, Brown makes the 
assumption that the lateral component of the stress is cons­
tant, and the surface tension effects are negligible. Although 
the result predicted by equation (1) agrees well with the ex­
perimental data of Brown, the origin and limitations of this 
equation, however, are not well understood. A formal deriva­
tion would clarify some ambiguities associated with this equa­
tion. Also, in the standpoint of engineering applications, a 
closed-form solution for the liquid curtain velocity is highly 
desirable. 

The objectives of the present analysis are to apply the 
Navier-Stokes equation to a falling liquid curtain and present 
a formal derivation of equation (1), and to obtain an 
analytical solution of a similar equation valid for thin liquid 
curtains. In addition to engineering applications, an analytical 
solution will serve as a first order approximation of the veloci-

- V -

Slot 

Front View Cross-Section View 

Fig. 1 Schematic diagram of a free-surface liquid film flow 
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ty profile in a spinning or a falling curtain. The domain of 
validity for each equation is established by comparing the 
analytical results with the numerical solution of equation (1), 
the experimental results of Brown (1961), and the results from 
the free-fall equation. 

2 Formulation 

Normally, in the spinning or coating processes, the film 
thickness is much smaller than the width and end effects are 
negligible; therefore, we assume two-dimensional incom­
pressible flow governed by the following equations of motion: 

du dv 
continuity 1 = 0 

dx dy 

x-momentum 
du 

U—-+1 
dx 

du 

y 

/ d a \ 

dv dv 1 / d d \ 
•momentum u-— +v—— = — I ——wxy + ——wyyI 

dx dy p \dx y dy "/ 

(2) 

(3) 

(4) 

Here, u and v are the x and y components of velocity and -KXX, 
irxy, etc. are components of the total stress tensor ir, given in 
the standard notation. The density, p, is assumed to be cons­
tant throughout the process. 

We define the free surface of the film by the function F(x,y) 
where 

F(xj)&y-V(x)=0 (5) 

and ij (x) is the thickness of the film at x. The boundary of the 
film is a streamline; therefore, the material derivative of F, 
i.e., DF/Dt must vanish at F=0. This results in the following 
boundary condition 

v = uri' at y = T] (6) 

where ' indicates differentiation with respect to the single 
argument. The surface tension a, creates a stress on the free 
surface boundary. Balancing the surface forces on the boun­
dary yields 

irxyny + iTxxnx=---nx 

a 

(la) 

Ob) 

where the components of the unit normal vector n are given by 

nx=-t)'(.ri'2 + l)-W2, ny=(rj'2 + \)-y2 (8a,b) 

and the radius of curvature Z is given by 

Z = ( V 2 + 1) 3 / 2 /TJ" (9) 

We decompose velocity u and normal stress TT^ as 

u(x,y) = u(x)+eul(x,y) (10) 

•Kxx{x,y) = W^(x)+eicxx\(x,y) (11) 

here e is in someway related to t\'. The functions u(x) and 
W^ix) are unknowns at this point and will be derived later in 
the analysis. Further below we show that if -q'<<\, then 
e < < 1, and the functions u and -K^ are only weakly dependent 
on y. 

With this decomposition, the integral of the continuity 
equation over the film thickness is given by 

f * / du dv\ 
Jo \ ^ - + ^-)dy = rlii' -eu^x^r,' +v{x,r,) = 0 (12) 

where we have employed Leibnitz's rule to evaluate this in­
tegral. From boundary condition (6), we have 

v(x,v) = uii' +eul(x,7i)ri' (13) 

substituting this relation into equation (12), and integrating 

once with respect to x, results in the global form of the mass 
conservation, 

Q = un (14) 

where Q is a constant representing the volumetric mass flow 
and u is, therefore, the average velocity defined by 

u = — \ udy 
i\ Jo 

(15) 

We integrate the momentum equation over the film thickness 
in the same manner. The integrals of the nonlinear inertia 
terms in the x component of the momentum equation are 

i ' du e2 

u—-dy = T)Uu'~e-<)'ui(x,ri)u + —A(x) (16) 
o dx 2 

f i du e2 

v—-dy = ev{x,ij)ui{x,TJ) + —-A(x) (17) 
Jo 3JI 2 

where 

d f> 
A(x)s—\ u\dy-u2(x,i)-q' 

dx JO 

Using the decomposition for 7r„ given by equation (11), one 
can show that 

[id — f d f" 
}0^*xxdy = Wxx + e\-^\joTrxxidy-Trxxl(x,ri)V' 

and 

I 0-Q-*x:ydy=*xy(X,y) 

(18) 

(19) 

here, irxy(x,0) vanishes due to symmetry of the flow with 
respect to centerline. From equation (7), irxy(x,ri) is given by 

•KXy (X,n) =~[-Y~ Vxx (X, V) V (20) 

The integral of the x component of the momentum equation 
over the film thickness, after some manipulations, can now be 
written as 

uu' L'uux(x,t\)~ v(x,7})Ui(x,7])-eA (x) 

= 7^ + "^I"I"IO'- '* ' ] -^- (T-*- ) , ' ' + * (21) 

If the magnitude of x, u, and ut are assumed to be 0(1), then 
for a thin film, y and -q' are 0(?;), where r\ < < 1. Also, one can 
show from equation (6) that I> = 0(T?). Employing the Newto­
nian fluid model, i.e., 

/ dUj du, \ 
(22) 

\ dy /y=n 

where (xx, x2) = (x,y) and («,, H2) = (u, v), we can express the 
y component of equation (7) by 

dv(x,n) a f dv \ 
* ' " - — , ' + 2 p ( — — ) , ' (23) 
dx Z \ dy / y=v 

Since the right-hand side of equation (23) is of order (r/), we 
conclude that e = 0(i72). It can be shown from equation (3) that 

d_ 

dy' 

therefore, to the first order, we can assume that 

-^yy = °0/) (24) 

7ruv — - r n (25) 

where P0 is a constant representing the ambient pressure. The 
expression for pressure is then given by 

raw, i 
p(x,y) = P0-2nu' -2eix\~+ . . . J (26) 
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* ( $ • ) = -

Fig. 2 Average curtain velocity versus distance from the slot; H ex­
perimental result (Brown 1961); , numerical solution of equation 
(1); , analytical solution of equation (29); _ , _ , free-fall equation 
(Brown, 1961) 

The x component of the normal stress tensor can now be writ­
ten as 

(27) 

Note that the functional form of %„ is consistent with the 
decomposition given by equation (11), and therefore, 

* „ = - . P o + V " ' 
Substituting equation (27) for the x component of the nor­

mal stress tensor in equation (21), and neglecting the higher 
order terms results in 

uu = = —u" - — ( — + P 0 - V i ' +g (28) 

If we neglect the surface tension a and normalize pressure such 
that P0 = 0, then this equation reduces to equation (1). 

3 Thin Films 

The effect of the surface curvature can be neglected for thin 
films and equation (28) reduces to 

uu' = 4vu" +g 

We define the dimensionless variables 
1 \ i/3 

\4vgJ u 

- / 1 \ : 

K47) gmx 

(29) 

(30) 

(31) 

(32) 

and substitute (30) and (31) into equation (29) to get 
<|" = $<£>' — 1 

Integrating this equation results in a first order differential 
equation given by 

* ' = _ - * 2 - f - C (33) 

where C is the integration constant. Equation (33) can be writ­
ten in a more convenient form as 

* ' - * 2 + f = 0 (34) 

where $ and f are defined by 

$ = 2 - 2 / 3 * , f=2 - , / 3 ( f+C) 

To solve equation (34) we use a nonlinear transformation of 
the dependent variable given by 

*(f) 
(35) 

Substituting equation (35) into equation (34) yields the well-
known Airy's equation 

* " - f t f = 0 (36) 

The general solution to this equation is given by 

* (f) = f1/2 [c,/, (Af^) + Cif2 ( - | f^) ] (37) 

where / , and / 2 are the linearly independent solutions of the 
Bessel equation of order one-third and Cx and C2 are the in­
tegration constants. The solution can also be expressed in 
terms of the linearly independent Airy functions ^ , and ^ 2 

(see Abramowitz and Stegun, 1964). 

* = fl,*,(r) + a 2 * 2 (0 (38) 

here al and a2 are the integration constants. The properties of 
these solutions are: (i) For f >0 , one solution decays exponen­
tially as the other independent solution grows exponentially; 
(ii) Infinity is an irregular-singular point; and (Hi) For f <0 the 
solutions are oscillatory, similar to trigonometric sine and 
cosine functions. An oscillatory solution is not physically ac­
ceptable, since it contradicts the primary assumption of thin 
film with a smooth surface, therefore f and C are both 
positive. 

Brown (1961) showed that for f > 10, the curtain velocity 
can be closely approximated by the equation for the free-fall 
velocity of a particle originating at f = 2. This equation will be 
referred to as the free-fall equation. 

Equation (1) is solved numerically for the nondimensional 
average curtain velocity and the results are compared in Fig. 2 
with the analytical solution of equation (29) and the ex­
perimental results of Brown (1961). The velocity profile ob­
tained from the free-fall equation is also included in this figure 
for comparison purposes. The downstream velocity at f = 12 is 
extracted from the experimental results and the velocity gra­
dient at this position is computed based on the free-fall equa­
tion, i.e., 

(39a) 

(396) 

and 

*(12) = 4.6 

^ - = 1 / * at f=12 
d! 

The constant C is obtained directly from equation (33) and the 
boundary condition given by (39); the second arbitrary cons­
tant in the system is ax/a2 which is given by 

a, ¥ ' 2 +$4*2 

where 
¥ ' i + * 6 ¥ , 

f=12 (40) 

*„=2- 2 / 3 $(12) 

The symbolic manipulation software, MACSYMA (1983), 
is used to evaluate the Airy functions and their derivative. 

The results from equation (29) agree with the experimental 
results in the range where f > 3. For f < 3, however, the surface 
effects due to the surface curvature become important and 
equation (1) is more appropriate. 

4 Conclusion 

Information regarding the mechanics of a free-surface li­
quid film is important in industrial coating and spinning pro­
cesses. Film spinning, also referred to as film casting, involves 
drawing a molten liquid from a slot into a thin sheet. The flow 
is extensional type since the draw speed downstream is larger 
than the extrusion velocity. The analytical solution for the 
average velocity, derived above, is applied here to a coating 
process which involves a liquid film falling freely under the 
force of gravity. The analytical solution can also be applied to 
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spinning processes by using the appropriate boundary condi­
tions to compute the constants of integration. The 
downstream draw velocity is a controlled parameter in spinn­
ing processes and can serve as one of the boundary conditions. 
The choice of a second condition, however, is not trivial and 
depends on the particular process or experiment under in­
vestigation. Although the analytical solution was derived for 
thin films, it can also by used as a model for a first order ap­
proximation of the thickness and average velocity of a broader 
class of free-surface liquid films. 
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Discharge of a Compressible Fluid 
Through a Control Valve 
The original analysis on incompressible flow discharge from a vessel through an axi-
symmetric control valve has been extended to the discharge of a compressible fluid. 
The inviscid anlaysis is based on the method of hodograph transformation. While it 
is simple to account for the effect of compressibility for conditions of subcritical 
pressure ratios, special treatment must be applied to establish the sonic line and the 
free jet boundaries under conditions of supercritical pressure ratios. Discharge 
characteristics have been established for different pressure ratios and positions of 
the control valve. This series of investigations provides ample evidence that the 
hodograph transformation coupled with numerical computations is effective in deal­
ing with problems of this nature. 

Introduction 
The study of discharge from a vessel has been of con­

siderable interest in its simulation of practical flow conditions. 
Early studies were exclusively restricted to two-dimensional in-
viscid incompressible flow discharge, and the method of con-
formal mapping can be readily employed to solve these prob­
lems (e.g., Milne-Thompson, 1950; Mises, 1971). Inviscid 
flow analysis is adequate since the viscous effect often has 
negligible influence on the flow. For practical applications, 
the flow always assumes an axisymmetric geometry. Some 
theoretical studies were directed to inviscid compressible noz­
zle discharge to simulate flows from jet-propulsive systems. 
Brown and Chow (1974) studied the discharge from a conical 
nozzle on the basis of the tangent gas approximation. Their in­
terest was directed toward its application to ejector-propulsive 
systems (Anderson, 1974). Later, Fenain et al. (1974) exam­
ined this type of problem on the basis of the hodograph 
transformation. Due to the complicated geometry, flow 
through a control valve has not been studied. 

Recently, Chow et al. (1987) examined the incompressible 
flow discharge from a vessel through an axisymmetric control 
valve. As a usual practice, the effect of gravitation has been ig­
nored. This boundary value problem has an unusual feature in 
that part of the boundary in the hodograph plane is overlap­
ped. A specific manipulation which will be explained in more 
detail later was applied to produce the realistic jet boundaries 
under this condition. The discharge characteristics of the con­
trol valve have also been established. 

a = -90° 
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Fig. 1 Discharge through an axisymmetric control valve: (a) RE = Rc, 
eF * 0;(b)RE < RC,0F = 0 
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The present effort is an extension of this study to the com­
pressible flow regime. While similar considerations and treat­
ment can be employed for conditions of subcritical pressure 
ratios, the sonic line and free jet boundaries under conditions 
of supercritical pressure ratios lead to additional complica­
tions. Details of this study follow. 
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Fig. 2 The hodograph for subcritical discharge: (a) with overlapping
boundary (OF < 0); (b) without overlapping boundary (OF = 0)

Analytical Consideration

The general problem under consideration is illustrated in
Fig. I. The valve radius R E may be smaller or equal to the
opening radius R e so that a variety of flow patterns may
result. The reservoir is large enough that the approaching flow
velocity is vanishingly small. The flow pattern may also be fur­
ther classified to be subcritical or supercritical depending upon
the pressure ratio PamblPo' Since the effect of gravity is
always ignored, the free streamlines are also lines of constant
velocity according to Bernoulli's principle.

For subcritical flows, the asymptotic state must occur at a
far downstream position with a uniform velocity in the
horizontal direction. For a valve with a smaller radius, this
asymptotic state can be reached with the top free streamline
angle increasing monotonically after it leaves the valve open­
ing (Fig. I(b» and its hodograph is shown in Fig. 2(b) where
the streamline angle 0 has been normalized by Ci (Ci = - 90
deg). For an ordinary valve with R E = R e , the top free
streamline must change itself into a state of positive maximum
streamline angle (point F in Fig. I(a» be'fore it settles down
toward the asymptotic state, This behavior implicates a special
feature that part of the boundary of its hodograph is overlap­
ped (Fig. 2(a». Since the stream function has already been
normalized by the unknown discharge from the reservoir, the
boundary value of the stream function changes discontinuous­
ly from zero to unity at the asymptotic state 0, as it should.

For supercritical flows, the free streamlines assume super­
sonic Mach numbers. With a given pressure ratio, the sonic
line and the initial part of the free jet boundaries must be
established together with the internal elliptic flowfield. The
corresponding hodograph is shown in Fig, 3 where curves on
top of the figure represent the well-known characteristics of
the simple wave of two-dimensional flow. Point F separates
the sonic line EC into two branches. Details of this part of the
hodograph will be explained later. It is to be noted that the
present study shall not consider the case where the valve is
located far enough downstream that the problem becomes a

d¢ = V cosOdz + V sinOdr, dif; = -rp V sinOdz + rp V cosOdr.

(la,b)

Upon treating ¢ and if; as functions of V and 0, so that d¢ =

Fig. 4 A Schlieren photograph of a certain supercritical flow condition

tHere subscripts denote differentiations.

nonuniform supersonic jet past a blunt body. A Schlieren
photograph of this situation is shown in Fig. 4, where a
detached shock wave can be clearly seen.

In any event, the center streamline initially accelerates until
an unknown velocity VH is reached. Afterwards it decelerates
toward the stagnation state D. A barrier of if; = 0 is thus set up
in the middle of the hodograph which corresponds to two dif­
ferent parts of the center streamline. Clearly VH and OF for
both subcritical and supercritical flows are important
parameters for the problem.

Governing Equations. Hodograph transformation employs
the magnitude V and the streamline angle 0 of the velocity as
independent variables while the potential function ¢, stream
function if; , and also the physical coordinates Z and rare
dependent variables. In parallel with the derivation of the
hodograph transformation for a two-dimensional flow, Fe­
nain et al. (1974) obtained the corresponding equations for the
axisymmetric flow. This derivation is briefly outlined below.

From the conventional definitions for potential flow, one
has ¢z = u = VcosO, ¢, = v = VsinO,1 and if;, = rpu, if;z =
-rpv where p, the density, has already been normalized by
Pref' which is Poo for subcritical flow and Po' the stagnation
density, for supercritical flow. It follows immediately that

\jJ=1

H
I~ -----0

\jJ=O-t
~] \jJ=1-cosa8\jJ=O

D
8=-1

\jJ=O
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<t>vdV + <t>edd and d\// = ipvdV + \l/edd one may solve dz and 
dr from equation (1) to obtain 

/ cos 0 sin 8 , \ / cos 0 sin 8 \ 
dZ= ( — * „ - — *v)dV+ ( — +.-— h)d8 

(.2a) 

/ sin 6 cos 8 \ / 

*-{—*v+-W+v)dv+{: 

sin 6 cos 8 \ 
-^<t>»+——te)d8 rp\ 

(26) 

Equation (2) implies that 

cos 8 sin 8 cos 8 sin 8 
zv =——$v—7777 fv> ze=—TT~ ^e—7777 ^e (3«) rpV rpV 

sin 8 cos 8 sin 
—77- <t>v + 77 Vy> re = )+- • ^ 8 

since Zev = Z k 

be cross differentiated to yield 

rpK r " ' ° K r° ' rpV T° ( 3 & ) 

and rev = r,^, equations (3a) and (36) may 

rf^CM2- 1) + — (y,iv -yv^t)\ (4a, 

where j> = /-2 /2 , M = V/C and the relationship of dp/dV = 
— pV/C2 has been introduced; C being the velocity of sound. 
Equation (3b) can be written now as 

1 r cos 8 1 
y e = ]sm8^v + —T7~te\ (5a) 

y 

with 

y=~v[^ 
(M2 - l)sin 8 S • 

cos 6 -I ipf, H 

S = 
KQ',)i/-1/--jv^))sin0 

2j 
Equation (3a) can also be written as 

I f . . sin 8 
rze 

1 r sin 8 1 
= ^cos 8 i>v — i/^J 

(5 b) 

(5c) 

(6a) 

1 T( 1 rcos 0 ( ^ - 1 ) , 5 
rzv = —r;\ 7} Ye~sln » V H — r r c o t ° ] (6b) 

Since j>w = y g v , cross differentiations of equations (5a) and 
(5b) yield 

1 0 0 

^ 1 / ^ + ^ (A/ 2 + l ) i / v + (1 - iW 2 )^ , 
sin 0 99 

where S can also be written as 

(F 2 iA 2
K +(l -M 2 ) i / ' | ) s in 2 6i 

S = -
2 ^ p K + s i n 8 >pe 

(7) 

(8) 

on account of equations (5a) and (56) . It is recognized that the 
right-hand side of equation (7) is the only difference in the 
governing equations between a two-dimensional and an axi-
symmetric flow. 

Perhaps it is worthwhile to note that the original motivation 
of adopting the method of hodograph transformation lies in 
its reduction of the nonlinear partial differential equation 
governing the compressible flow into a linear one in the 
hodograph plane. For the axisymmetric problem, this advan­
tage is lost as a result of the existence of the nonlinear term on 
the right-hand side of equation (7). Nevertheless, the simplici­
ty in its specification of the boundary condition of the free 
boundary problem in the hodograph plane and the ease of fin­
ding the solution to the equation through iterations as describ­
ed later, make this approach very attractive to the present 
problem. 

So far, all variables, other than density, are the original 
flow quantities. It will be convenient to normalize V, 8, z, r, 4> 
by Vre[, a, Rc, \p0, respectively; \p0 being the unknown rate of 
discharge per radian from the reservoir while Vre[ = Vm for 
the subcritical flow and VK( = V* for the supercritical flow.2 

After normalization, equations (5) through (8) are changed, 
respectively, into 

V2^vv+V(M2 + l)^v + 
(1 - M 2 ) 

tm=-
1 dS 

a sin ad 38 

S=-
(F2i/<2

K + ( l - M ^ / o ^ s i n ^ a f l ) 

'RlV„t\ sin(oi0) /RiV„t\ sm(of 

/ ^o \ 1 / . , „ cos(a0) \ 

_( to \ 1 fcos(a8)^v 

(9) 

(10) 

(Hf l ) 

V r e f P v y 

(M2 - l)sin(a0) . S 

tV2 • * . + - ^ ) 

sin(a0) / Wo \ 1 / sin(a0) \ 
rz° = \-RJV-) -TV*cos(a9)^ — +>) 

(116) 

(12a) 

«'-yb)v(-1 / (M2 - l)cos(a8) 

sin(a0) 

V &V + 

iV2 

Scot(a0)'> 

V2 y 
(126) 

where all variables are dimensionless. •fy0/R
2

cVKi becomes an 
important parameter . Since the actual rate of discharge from 
the vessel is 2irpje{ij/0, this parameter is directly related to the 
discharge coefficient defined by 

Cd = t0/[(R2
cVnf)/2]. (13) 

Since the case of supercritical discharge needs additional 
treatment, the case of subcritical discharge is first discussed. 

Subcritical Discharge. For a high back-pressure rat io, i.e., 
Pamb/Po a P*/P0\ P* being the pressure corresponding to 
unity Mach number , the treatment is not much different from 
the case of incompressible flow (Chow et al . , 1987). The S 
function on the right-hand side of equation (9) is initially 
assumed to be vanishing everywhere. With a pair of values of 
VH and 8F, the \p function in the hodograph domain may be 
established through computat ions of equation (9) in its finite 
difference form. Part ial derivatives \pv and \p9 may be formed 
accordingly. The y values may be obtained by integrating 
equation (11a) from H to Q in the hodograph (see Fig. 2(a)) 
and equation (11 (6)) from Q to C. The parameter ip0/R

2 V„ is 
determined by imposing the end condition of y c = \/2(Rc = 
1). Once this is satisfied, the y values may be established 
throughout the whole domain. This allows the evaluation of S 
function and the right-hand side of equation (9). For all grid 
points along the line GH where 0 = 0 the right-hand side of 
equation (9) is evaluated by 

After normalization Vis M* for supercritical flow. 
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Fig, 5 Hodograph after transformation in the supersonic domain 
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Fig. 6 Computational grid for sonic point 
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WCi.jT -f-) Aq 
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(b) 

Fig. 7 Computational grid for supersonic point 

Fig. 8 Discharge characteristics for subcritical discharge 

1 dS 

( 1 - M 2 ) 

a sin a0 90 

Computations may be repeated until the change in the S value 
is less than a small margin for every grid point in the plane. It 
should be emphasized that under-relaxation of the S function 
must be used to reach a convergent solution. The solution is 
now established for the selected parameters VH and 6F. The 
physical location and the size (RE) of the valve can be deter­
mined through additional integrations of equation (11). The 
geometry of the free streamlines may also be traced. 

It should be stressed that for these computations with 6F < 
0, the value of \p on the overlapping boundary FG in Fig. 2(a) 
is unity since it is the value of the streamline immediately adja­
cent to the domain. The value of $ on EF is zero, leaving the 
natural discontinuity of \p at the point F. This is inherent to the 
method of hodograph transformation. In tracing the free 
streamline, there is no difficulty in establishing configurations 
corresponding to segments CF and EF. However, if unity 
value for \j/ were used for the segment of the top streamline 
FG, so that the values of \pv there were the same as those of 
the segment TF, the configuration of F T in the physical plane 
would be retraced since the only difference between them is 
the direction of tracing. Similarly, if zero were used for \p for 
the segment FG of the lower streamline, a corresponding curve 
with sharp curvature bending downward would be produced. 
They all do not realistically present these free jet configura­
tions. After some experimentations, it was decided to adopt 
their average value (^ = 0.5) for both portions of the free jet 
boundary. The supporting rationalities are (1) this manipula­
tion yielded realistic free jet configurations, (2) it indicates 
that the streamline of 41 = 0.5 is tracing such a geometry, and 

(3) only under the condition of overlap, use of this average 
value of i/" is justified. 

Usually, the valve radius RE so established is smaller than 
Rc. By varying both values of 6F and VH, the flow pattern cor­
responding to the valve of RE = Rc situated at a specific loca­
tion may be established. 8F should always be negative for RE 

= Rc. Computational experience has indicated that the size 
(RE) of the valve depends strongly upon 6F while the axial 
locations of the valve relies more on VH. 

Supercritical Discharge. For Pamb/P0 < P*/P0, the free 
streamlines are supersonic and a sonic line spans across the 
opening CE. Naturally the sonic line and the initial part of the 
free jet boundary must be solved together with the internal 
elliptic region of the flow. Even through the flow beyond the 
sonic line is supersonic, the problem may be classified as 
quasi-elliptic (i.e., elliptic although locally hyperbolic) since 
this portion of the flowfield including the shape of the sonic 
line is entirely influenced and determined by the pressure ratio 
Pim\y/P0. The present study benefited tremendously from a re­
cent investigation (Wu and Chow, 1985) on a two-dimensional 
asymmetric nozzle as a vector-thrust device. Point F is iden­
tified on the sonic line which is the only point where waves of 
two opposite families intersect. These waves are either directly 
originated from the two corners of the nozzle or are multipally 
reflected from the upstream sonic line and jet boundaries. 
This point naturally divides the sonic line EC into two 
branches for the present problem. For convenience of 
numerical computations, the curved characteristics in the 
region V > 1 on the hodograph are transformed into straight 
lines making 45 deg angles with the horizontal and vertical 
axes (see Fig. 5). It is well known that 

6 = ± / ( K ) + constant (14) 

represents the simple wave characteristics in a two-
dimensional flow 

where 
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f(V): = ~i-(VB tan 
yi-\ 

- - tan" 
G ( J ^ - 1 ) N 

G-V2 "V G-V2 

with G = ( 7 + l ) / ( 7 - l ) 

Under this condition one introduces a variable q defined by 

q=f(V) for V>\ (15) 

and the characteristic equation (equation (14)) becomes 

6±q = constant. (16) 

In the subsonic region, the governing equation (9) remains 
in the same form. In the supersonic region, equation (9) is 
transformed into 

1 
(V2-!)^ 

2 V4 

( 7 - l ) V G ( F 2 - l ) ( G - F 2 ) +a 

a-vf 
+ Wee=-

1 as (17) 
a. sm(a0) 30 

where S = [S(G — V2)/G\. This locally hyperbolic character 
can now be easily identified from this equation. 

While the numerical treatment in the subsonic region 
follows the scheme similar to the case of subcritical discharge, 
the sonic line and the supersonic region under this condition 
must be dealt with in different special manners. For a grid 
point on the sonic line, equation (9) is simplified into 

\l/vv + 2\j/y 
1 dS 

asin(a:0) dd 
(18) 

Referring to the transonic portion of the hodograph diagram 
(Fig. 6), the finite difference form of equation (18) is 
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Fig. 11 Discharge characteristics for supercritical discharge 
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CV-n.mpi+2 " (C+D)thmpl +D^Um 
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(19) 
2asin(a0) dd 

where C = A V(l + A V) and D = A V+ (1 - A V+.) (20) 

with /I = i — 1 for the left branch (i.e., 0; < 8F), and i\ = i 
+ 1 for the right branch (i.e., 0,- > 6F). AV+ is given by 

AF + = K - 1 (21) 

where V satisfies 

A0= — 
1 iVGtan" 

G-V2 — tan" 
G ( V ^ - l ) 

G-V2 (22) 

For an unknown grid point (i, j) in the supersonic region of the 
hodograph (Fig. 7), we may find \piyj by writing equation (17) 
in its finite difference form around the point 0. It would yield 

^i,j = ^i+i,j+i+ii,j-i-^i+i,j-S(yj)(^i+ij+i-'Pij-i) 

^ > 2 ( l dA) (23) 
4(Vj-l) \sin(a0) dd Jo 

for the right branch, where point W\% the unknown grid point 
in Fig. (7(a)) and 

i<ij = ti-ij+i+<l<i,j-i-i'i-ij-g(Vj)(ti-ij+i->l>ij-i) 

a(A^)2 / 1 dS 

\sma6 dd Jo 4(F?-1) Vsina0 dd 
(24) 

for the left branch where point E is the unknown grid point in 
Fig. (1(b)). g( Vj) is given by 

g(Vj) = 
aAOVj 

2(7 - \)(VJ - l)^G(Vj-l)(G-Vj) 
(25) 
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It is now obvious that from the given boundary conditions 
on the hodograph, computations are possible by sweeping the 
hodograph from the two sides of the two branches toward the 
middle. Although the subsonic part of the flowfield is linked 
in a way similar to the subcritical discharge, there is no linkage 
between the two branches of the supersonic flow region even 
though there is a small overlapping triangular domain on the 
hodograph. Again the S (or S) function is iterated and built 
up slowly until its change at every grid point is smaller than a 
small margin. The solution is thus established for the super­
critical discharge condition. 

With the established sonic line, the adjacent supersonic flow 
region, and the free jet boundaries, additional computations 
are continued with the well known method of characteristics 
for axisymmetric supersonic flow. Other than a small 
modification introduced near point F on the sonic line, the 
computational scheme is well known and is not presented 
here. Wave coalescence will set in soon and computations can­
not proceed further unless one is prepared to account for the 
entropy gradient prevailing within the flow (Chang and Chow, 
1974). 

Results and Discussion 

For the range of the subcritical pressure ratios, the 
discharge characteristics have been established for a valve of 
RE = Rc with M„ = 1 by using a 41 x 21 uniform grid. It is 
presented in Fig. 8 together with previous results for incom­
pressible flow. Typical flow patterns and free streamline con­
figurations for both 6F = 0 (RE < Rc) and 9F - - 0.75 (when 
RE = Rc) are presented in Figs. 9 and 10. It is obvious that the 
velocity changes tremendously near the lip of the opening. 

For supercritical pressure ratios, the discharge 
characteristics have also been obtained for Mm = 1.294, 
1.544, and 1.914. They are presented in Fig. 11 including the 
previous results for M„ = 1 modified by a factor of p*/p0 due 
to the change in the reference density from the two formula­
tions. In both Figs. 8 and 11, solid lines indicate computed 
results with VH ^ 0.05; 0.05 being the smallest grid value of 
K in a 41 x 21 grid, while broken lines indicate expected 
values for VH < 0.05 from extrapolations. 

A series of simple experiments was also carried out in the 
laboratory. Other than data points at small valve opening con­
ditions, the agreement between the results of computation and 
the corresponding experimental data is reasonably good. It 
was also learned that at small opening positions, the outside 
wall of the model interfered with the discharge. A typical flow 
pattern obtained for M„ = 1.294 is also presented in Fig. 12 
where the sonic line and the free jet boundaries are also 
shown. The extremely large curvatures of the sonic line at 
edges of the nozzle opening made it impossible to show the 
details within these regions. 

In the case of supercritical discharge, it has been learned 
through computations that the i/' function varies drastically in 
the vicinity of point F along the sonic line indicating a fairly 
uniform flow there. It is for this reason that a coarser 31 x 21 
uniform grid has been employed for computations of super­
critical discharge. Furthermore, it is also convenient to keep 

point F in the middle of the two grid points. Since point F 
must be a point of large curvature on the sonic line and the 
sonic line has been obtained from finite grid computations, 
the Mach number of the two adjacent grid points on the sonic 
line has been modified to 1.035 for the subsequent computa­
tions of the jet by the method of characteristics. It is believed 
that this modification is not serious enough to affect the ac­
curacy of the results of subsequent computations. 

It should be mentioned that for the case of subcritical 
discharge such as that shown in Fig. 1, the pressure within the 
jet is always higher than the ambient pressure and the later 
portion of the free jet boundary must assume a downward-
curved geometry. For the top free jet boundary in Fig. 1, 
gravitation is responsible for balancing effects of both cur­
vature and pressure gradient (Chow et al., 1987). It is, 
however, the usual practice that the gravity effect be ignored 
for the present problem, especially so for a compressible fluid. 
Otherwise, the problem becomes three-dimensional and it 
would be impossible to treat the problem under the present 
scheme. Judging from the agreement between the computa­
tional results and experimental data, the present scheme is 
useful, at least in predicting the discharge characteristics under 
this condition. There is no doubt that the present study can be 
extended to consider cases of valves with different geometries 
including valves with stems, finite approaching flow velocities, 
and reservoir walls of different angles. 

The longest computational time for each case of the present 
series of investigation required only 60 seconds on the Cyber 
175 computing system. 
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Utilizing Dynamic Stability to Orient Parts 
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The intent of this research is to study the dynamic behavior of 
a solid body resting on a moving surface. Results of the study 
are then used to propose methods for controlling the orienta­
tion of parts in preparation for automatic assembly. Two 
dynamic models are discussed in detail. The first examines the 
impacts required to cause reorientation of a part. The second 
investigates the use of oscillatory motion to selectively reorient 
parts. This study demonstrates that the dynamic behaviors of 
solid bodies, under the conditions mentioned above, vary con­
siderably with small changes in geometry or orientation. 

1 Introduction and Problem Definition 

Conventionally, small parts are oriented by bowl feeders. 
These machines vibrate and thereby convey parts through a 
series of filters which reject all but a particular orientation. 
Rejected parts are returned to storage. Many researchers have 
examined the implementation of programmable or adjustable 
filter stages (Boothroyd, 1975; Boothroyd and Ho, 1977; 
Boothroyd and Murch, 1970; Boothroyd et al., 1982; 
Boothroyd et al., 1977; Lozano-Perez, 1986; Murch, 1977; 
Murch and Boothroyd, 1975; Murch and Poli, 1977; Redford 
et al., 1983a; Redford et al., 1983b; Singer, 1985; Suzuki and 
Kohno, 1981). These techniques are often successful for 
limited classes of parts. The scope of this paper is to present 
theoretical results which may be useful in feeder designs. It is 
hoped that a more detailed understanding of the dynamic 
behavior of bodies resting on a moving surface will facilitate 
the design of new types of programmable parts feeders. 

2 Impact Reorientation 

In this section, we determine the conditions necessary to 
cause part reorientation. A part starts in a stable orientation (a 
natural resting aspect, (Boothroyd and Ho, 1977)) on a flat 
surface. It is then given an initial horizontal velocity after 
which it impacts a wall near the surface upon which it is 
resting (Fig. 1). The equations describing the impact are based 
on conservation of angular momentum about the impact 
point. After impact, the principle of conservation of energy is 
applied in order to determine whether reorientation occurs. 

Research Assistant, Mem. ASME. 
2Associate Professor, Mem. ASME. 
3 Department of Mechanical Engineering, Massachusetts Institute of 

Technology, Cambridge, MA 02139. 
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Fig. 1 Impact reorientation model 

The part shown in Fig. 1 is a cylinder, but the analysis easily 
generalizes to any object. The important parameters are the 
mass, m of the part, the moment of inertia, / , and the con­
stants, / and h, which locate the center of mass, cm, with 
respect to the impact point. The expressions for angular 
momentum, L-„ before and, Lj, after impact are (Klepner and 
Kolenkow, 1973): 

L: = mV:h 

Lf = 
hVj 

where V-, is the speed of the center of mass prior to impact, Vf 

is its speed just after impact, and /„, the inertia about the im­
pact point, is defined as 

Ia=Ic + (h2 + P)m 

with Ic the inertia about the center of mass. Equating kinetic 
energy just after impact to the change in potential energy 
which will cause the part to reorient yields 

~Yh
 (IJTP)

 = mg{{hl + P)W2~h] (2,2) 

Solving equations (2.1) for Vf, substituting into equation 
(2.2), and then solving the result for the critical value of K; 

yields 

V _V2gP2+/2)1 /2-/ i l ' / 2P2+/2)+/c/"3] ' / 2 „ , . 
* c r i t ; ' V"3) 
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Table 1 Selected impact reorientation results for two parts which are 
physically different yet possess the same reorientation velocity 

\\\\\\\\\W\Y\\V\ 
Fig. 2(a) Two similar parts 

V— V V V _ V V 
fall med fall fall med fall 

1 1 1 2 2 2 

Fig. 2(b) Distinguishing the parts in Fig. 2(a) 

V-+ 

which is an equation for the minimum initial horizontal veloci­
ty that will cause reorientation. For cylinders, Ic/m is Vi h2 + 
!4 I2; for rectangular parts, Ic/m is lA {h2 + P). 

In order to test the ability of impact reorientation to 
discriminate among different orientations, it is useful to con­
sider a part which has two very similar orientations. Figure 
2(a) shows a rectangular solid part in two possible orienta­
tions. One edge is b8 longer than the other where 8 is expressed 
as a fraction less than one. As the part exchanges orientations, 
the center of mass location changes in both height and 
horizontal distance from the impact point by b8/2. The ratio 
of Kcrit of orientations one and two (denoted by K, and Vz) ex­
panded in a power series in 8 is expressed as: 

Vi 
-=l+2.2<5+1.3352. (2.4) 

This equation illustrates that small differences in location of 
the center of mass result in significant variations in impact 
reorientation velocity. 

To verify the equations and to get a measure of experimen­
tal error, tests were performed. Cylinders of different size 
were placed on a moving conveyor belt. The cylinders im­
pacted a steel wall, 0.889 mm (0.035 in.) high. Fifteen trials 
were made for each velocity set point and the number of pegs 
which reoriented was counted. The velocity of the belt was 
monitored by a tachometer which was friction driven directly 
by the belt. 

Several tests were performed. First, the lower threshold 
velocity, Vj^j, was determined by finding the maximum 
velocity at which no pegs fell over in fifteen trials. The upper 
threshold velocity, Vfalh was determined similarly by finding 
the lowest velocity at which all pegs fell over. The median 
velocity Fmed is simply the center of the velocity band defined 
by Fjyj and Vfall. Finally, two percentages have been deter­
mined from this data. The percentage of error is calculated 
between the theoretical velocity, VTheory, and the median ex­
perimental velocity, Kmed. The uncertainty band of the experi­
ment is calculated from Vjgj and Vfall; this band is represented 
as a percentage of Vmed. 

Results confirm that the system model adequately 
represents the experimental situation. All tests performed had 
narrow uncertainty bands. This indicates that there is a sharp 
cutoff between not having enough energy to cause reorienta­
tion and having enough energy to guarantee reorientation. In 
addition, the error percentages between VTheory and Vmed are 

Test Ob jec t 

N o 

1 

2 

Size 

50.8 mm dia 
113 mm long 

25,4 mm dia 

34 mm long 

Veloci t ies ( M e t e r s / S e c ) 

V 
Theory 

0.409 

0.409 

V 
fall 

0.399 

0.384 

V 
fall 

0.429 

0.429 

V 
med 

0.414 

0.406 

E r r o r s 

% 
Error 

1.2% 

0 .6% 

Unc. 
Band 

± 3 . 7 % 

± 5 . 6 % 

g i 
I„ Moment of Iner t ia 

m Mass 

IM l|Ul ^|J ^ M ^ ^ M M |Ml |Ml II ll^ll I tUl ll « l l|m IM mjl ^ UMllllllMll IIW 

Fig. 3 Vibration reorientation model 

small. Furthermore, the scaling of the velocity agrees with the 
scaling predicted in equation (2.3). Two pegs which vary great­
ly in size and length to diameter ratio can have the same 
reorientation velocity. Table 1 gives typical results for two dif­
ferent cylinders. 

The ability to discriminate between orientations, or to 
reorient one object while not reorienting another, depends 
heavily on the quality of the velocity source. Fortunately, ex­
cellent velocity sources are inexpensive and easy to build. 
Figure 2{b) presents a velocity line with the reorientation 
velocities for the two parts shown in Fig. 2(a). The dark sec­
tion of the line identifies the desired operating velocity range. 
Within this range part 1 will always be reoriented, while part 2 
will never be reoriented. By cascading several of these impacts 
at different velocities, a set of like parts, initiallly oriented ran­
domly can all be driven to the same orientation. 

3 Vibratory Reorientation 

3a Modelling. 

The model for this section is an object in a gravity field. The 
table on which the object rests oscillates vertically (Fig. 3). The 
object is first given some initial angle, </>0, possibly by a sudden 
motion of the table. For a proper choice of X(t), the table 
driving function, the given object can be maintained in a rock­
ing motion of fixed amplitude. The driving function of the 
table can then be changed, causing an increase in the 
amplitude at which the object will continue rocking. Finally, 
the amplitude can be increased until the object reorients. 

Because of the discontinuity of motion as the part impacts 
the table, the solution to the equations governing the system 
must be broken into regions. First, the region in which there is 
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no impact will be examined. The equations of this motion may 
be generated using Lagrange's method. The potential energy 
function can be expressed as 

. V=mg(r sin (j> + x), (3.1) 

where V is the potential energy, m is the part mass, r is the 
distance from the contact point to the center of mass, 4> is the 
angle between the horizontal and the vector r, and x is the ver­
tical position of the table. The kinetic coenergy can be express­
ed as: 

*r* . 
1 / d<j> \ 2 1 V dx d<f> "1 • 

Ic I —— I + —T-m —— + r—-—cos<£ c \ dt / 2 L dt dt J 

'[' 
1 r d<j> . I 2 

(3.2) 

where Ic is the moment of inertia of the part about the center 
of mass. These two terms can be used to form the Lagrangian 
which is then substituted into Lagrange's equation, yielding 
the two equations of motion for the system, 

->, &<$> ( dP-x\ 
(/c +

 mr)—-[jr + mrcos<j> [g + —rzr) = 0 
(3.3) 

cfx d2^ ( d<f>\2 

-+mr—^—cos(/> — rnry—-—1 sm<j> + mg=F, dt2 dt2 

The first of the equations gives the basic motion of the object, 
while the second equation is an expression for F, the contact 
force. These equations are valid in the conservative regions 
without impact. 

The next step in formulating the model is to represent the 
impact of a part with the table. At impact, the center of mass 
of the object has a vertical velocity which is reflected with a 
coefficient of restitution, e. In a perfectly elastic impact, e is 
equal to one. Physical experiments were performed to deter­
mine the coefficient of restitution for aluminum parts rocking 
on an aluminum plate. The coefficient of restitution was 
determined to be between 0.7 and 0.75 for these tests. For all 
of the simulations in this paper, an e of 0.5 was used to be 
conservative. 

As a part hits the table, the impact will also affect the 
horizontal velocity. If the table is frictionless, the part will 
slide. In this derivation the table was assumed to be rough 
enough so that the contact surface of the part will not slide on 
the table and after impact the part will continue to rock by 
rotating about the new contact point. 

The next step in creating steady rocking motion was to 
determine table acceleration profiles which would cause a part 
to oscillate at fixed amplitude. The amplitude of vibration is 
coupled with the frequency of oscillation. As the part gains 
energy, both the amplitude and the period of oscillation 
become greater. This response makes analysis difficult; few 
tools are available for predicting the behavior of this type of 
system (Meirovitch, 1975). 

An analytical solution to the system equations for time re­
quired for passage from an initial to a final angle can be de­
rived for the case in which the driving function, d2x/dt2 re­
mains constant. The derivation of this solution is based on 
conservation of energy in the region without impact. For a 
constant table acceleration, the part can be considered to be in 
a conservative field as shown in equation (3.3a). In this par­
ticular case the energy balance equation becomes 

1 
-(/c + mr 

' > ( * ) 

2 / d2x\ . 

= -L(Ic + mr2) ( - ^ - ) +m{g + ^pjrsin<j>, (3.4) 

where </>0 is the starting angle of the object, and 4> is some 

angle of interest. Note that the derivative of this expression is 
the result obtained in equation (3.3a). Equation (3.4) can be 
solved for dcfr/dt, 

d<t> 
~dT 

2m(g + -f) 
I- + mr2 

(Ic + mr 
<%) 

2m(s*-w-)r 
- + sin</>0-sin<£. (3.5) 

This equation can in turn be solved by separation of 
variables and then integration with respect to time. For conve­
nience the constant A is defined as 

d2x\ 
2m[g-\—r^)r 

\8+ ~df, 

+ s i n <t>Q , (3.6) 

dt2/ 

and the result is 

2m(^ + ^f)r 
(•** dd> r x «' ' 

, . A ; * , (3.7) J«o \A-sm<j) J" \ Ic + mr2 

where <j>e is the ending angle of interest. The right side is a sim­
ple integral; the left side is an elliptic integral. The solution to 
this equation will be presented as a combination of elliptic 
functions. Though elliptic functions cannot be expressed in 
terms of elementary functions, they are well understood and 
are easily computed. In order to show that equation (3.7) 
becomes an elliptic integral, a change of variables must be 
made. Let 

so that 

w = 4> + 

sin 0 = - cos w, 

(3.8) 

(3.9) 

Fig. 4 Square wave acceleration input 
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desired level 

6.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Time (seconds) 

Fig. 5(a) Response of a part to input in Fig. 5(b) 

0.20 

0.15 

0.10 . 

0.05 

0.00 

-0.05 

-0.10 L 

"a 0.25 r 

0.2 1.4 0.8 L.0 1.4 1.6 
mefseiohds) 

Fig. 5(b) Square wave input 

— 0.20 

0.05 

o.oq 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Time (seconds) 
Fig. 6 Unstable response for a part starting 6 percent above the 
desired level 

and 

cos 4>d<j> = sin wdw, 

From these we get 

sin wdw 
d<j>= =dw. 

V l - c o s z w 

(3.10) 

(3.11) 

Substituting equations (3.11) and (3.8) into the left-hand side 
of equation (3.7) produces the following expression 

- » 

AX1 

0 

-AX2 

TZ1 TZ2 

/ \ 

" 
\ 4 

1 ] 

TZ3 

S \ 
X 

•*^NNNNN\\\NNNN\\\ \ 

T i 

A2 / 

TZ4 

Time 

Fig. 7 Ramped square wave input 

d4> 

.U0 + jr/2 sJA + 
(3.12) 

J*o V 4̂ - sin <f> 

In the case of impact 

where \p is defined as the angle between the bottom of the part 
and the vector r from the contact point to the center of mass. 
If the integral is then rewritten as two integrals starting from 
zero, equation (3.12) can be expressed in terms of the elliptic 
integral of the first kind (Gradshteyn and Ryzhik, 1980): 
r*e + */2 dw [•0o + 'r/2 dW 

+ cos w J° \/A + cos w 

^2(F(xl,ki)-F{x2,kl)) A<\ 

(3.13) 

j^j{F(x„k2)-F{Xi, k2)) A>1 

The elliptic integral of the first kind expressed in normal 
trigonometric form is 

( ar 

0 

and the limits are 

da 

V l - fc2sin2a 

j 1 + sin 4>o 

V \+A 

j 1 + sin 4>e 

"V l+A 

Jl:A 

(3.14) 

k, = 

* 3 = - ^ + — 
2 4 

*4 _ _ + _ 

964/Vol. 54, DECEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



.20- , 

.15 .20 .25 .30 .35 .40 .45 .50 

Time (Second) 

Fig. 8(a) Stable response to input in Fig. 8(b) 
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Fig. 8(b) Ramped square wave input 

* , = 
l+A (3.15) 

in terms of the system parameters. 

3b Choice of Driving Function. 
As mentioned previously, this analysis is correct only for 

constant values of cPx/dt2. The first driving function to be 
considered was a periodic rectangular wave in acceleration 
(Fig. 4). Four parameters must be selected to fully specify the 
waveform—the acceleration upward, AX\; the acceleration 
downward, AX2; and the switch times, 71 and 72. The selec­
tion of these parameters is constrained by several relations. 
First, the areas A1 and A2 must be equal in order for the table 
to return to its initial position and velocity after each cycle. 
Second, the part must start and finish the cycle at the same 
angle (the stability requirement). Lastly, the acceleration 
downward must never exceed gravity. This constraint is set so 
that the part does not lose contact with the table. 

Equations (3.13) and (3.15) were substituted into a 
nonlinear equation solving program which calculated accelera-

a 
a 

a 
< 

\ * \ ^ + s \ 

Orientation 1 

s, :x 

Time 
(Seconds) 

Fig. 9 Ability to separate orientations 

tions and switch times that brought a chosen part back to its 
initial angle in exactly one cycle. Figure 5 shows a time history 
of the acceleration of the table, d2x/dt2, and of the angle <j> as 
determined by numerical simulation of equation (3.3) in­
cluding the model for impact. For this case, the rocking mo­
tion is stable. However, small parameter variations cause an 
instability. Figure 6 shows the rocking motion for an object 
given a slightly larger initial amplitude than that of Fig. 5. 
After the first impact, the peak amplitude is too low; after the 
second, it is too high. Eventually, the phasing between input 
and output is lost and the part ceases to rock. 

Because our goal is to bring parts to a stable rocking motion 
from a range of initial conditions, the rectangular acceleration 
waveform will not do the job. A variety of waveforms were 
tested. One which exhibited good performance is shown in 
Fig. 7. It is simply the rectangular waveform with the edges 
sloped. Figure 8 shows results from a numerical simulation us­
ing this forcing function as input. A part is started with an in­
itial angle which is twice the steady state angle yet it still 
reaches a stable equilibrium motion. This suggests that by us­
ing the proper waveform, a great range of initial conditions of 
the part can be tolerated. 

If this method is to be used to selectively reorient parts, dif­
ferent parts should exhibit significantly different responses. 
Figure 9 shows variation in response for two similar parts 
given the same initial angle and subjected to the same accelera­
tion profile. For these simulations, upward acceleration was 
set to occur around the time of impact. Several simulations 
were executed with various length "windows" of upward ac­
celeration. The ability to discriminate degraded as the window 
became very large in comparison with the difference in impact 
times. 
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An attempt was made to design an experimental apparatus 
for study of the behavior described above. No satisfactory 
configuration could be created at a reasonable cost. To drive 
reasonably large parts with periods of oscillation greater than 
0.5 seconds would require a table with a range of motion 
substantially greater than that of available electromagnetic 
shakers. Hydraulic shakers are designed to deliver large 
forces; they have servo valves which are too small to supply 
the flow rates necessary to achieve the required velocities. The 
ideal driving system would be a small diameter hydraulic ac­
tuator with a relatively large servo valve. 

4 Conclusion 
This study of part motion has demonstrated that small 

variations in inertial properties from one part to another cause 
significant differences in the dynamic behavior of the two 
parts. Two example techniques which capitalize on this pro­
perty were presented. Practical implementation of the first 
technique, impact reorientation, is feasible given current 
design technology. The second technique, vibratory reorienta­
tion, will require construction of oscillating tables with perfor­
mance characteristics available only through custom design. 
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On the Critical Speed of a Rotating 
Circular Plate 

S. Chonan1 

Introduction 
It is well known that the response amplitude of a rotating 

circular plate subjected to a stationary lateral load increases 
rapidly as the rotation speed approaches a certain value, 
generally referred to as the critical speed. There are many 
papers which are concerned with the critical speed of rotating 
plates (Mote, Jr., 1965, 1967; Eversman and Dodson, 1969; 
Iwan and Stahl, 1973; Iwan and Moeller, 1976; Benson and 
Bogy, 1978). In this note a simple arithmetic equation is 
presented for the determination of the critical speed of plates 
with a clamped inner boundary and free outer boundary. 

Governing Equations 
Consider a plate of inner radius b and outer radius a 

rotating freely with a constant angular speed fi about its axis. 
Denoting the lateral displacement of the plate by w the equa­
tion of motion is, with respect to the coordinate frame (r,ff) 
rotating with the plate, 

D[d2/dr2 + (l/r)d/dr+(l/r)2d2/d62]2w 

+ ph[d/dt + Qd/d8]2w-h[(l/r)(.d/dr)(rordw/dr) 

+ (l/r)2(d/dd)(<redw/dO)] = 0, (1) 

where D = Eh3/\2(l -v2); E is the Young's modulus, v the 
Poisson's ratio, and h the plate thickness. The plate is fully 
clamped at the hub radius r = b while free along the outer edge 
r = a. The inplane boundary conditions in this case are 

v(b,e,t) = or(,a,e,t) = 0, (2) 

where v is the in-plane radial displacement. The out-of-plane 
boundary conditions are the usual clamped-free boundary 
conditions (Iwan and Stahl, 1973). The in-plane stresses ar and 
ae in a rotating annular plate satisfying equation (2) are found 
in the paper by Srinivasan and Ramamurti (1980). 

One assumes the solution in the form 

'Associate Professor, Department of Mechanical Engineering, Tohoku 
University, Sendai, Japan 980. 
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w(r,6,t)= £ XJ[Cm„(f)cos(n0) 
m = 0 n = 0 

+ Sm„(t)sm(ne)]Rm„(r). (3) 

In the present analysis the mode function of a nonrotating 
plate is introduced as Rmn, i.e., 
R

mn (r) = J„ (km„r/a)+Am„ Y„ (km„r/a) 

+ BnJn (kmnr/a) + Cm„K„ (kmnr/a), (4) 

where /„ , Yn, In, and Kn are the Bessel and the modified 
Bessel functions of order n; Amn through Cmn and kmn are 
determined from the clamped-free boundary conditions. 

The frequency equation is derived from these equations us­
ing a Galerkin formulation (Iwan and Moeller, 1976), 
separately for each value of n. 

Numerical Results and Discussion 
Numerical results that follow were obtained by taking the 

series terms up to m = 5, It is well known that some of the 
natural frequencies decrease and finally come to zero as the 
rotation speed of the plate increases. Physically this means 
that a resonance appears in the system when the plate is sub­
jected to a stationary (zero frequency) lateral load. The speed 
of rotation which brings about this type of instability is 
generally referred to as the critical speed. 

Figure 1 shows the nondimensional critical speeds (fl0)cr = 
[pha4/D]l/2(Q)cr as functions of the radii ratio of plate b/a. 
In the figure the symbol (m,ri), m, « = 0, 1, . . . , denotes the 
vibration mode with m nodal circles and n nodal diameters. It 
is noted that (0,0) and (0,1) do not have a critical speed. The 
vibration mode which brings the lowest critical speed is 
transferred from (0,2) mode to the higher modes as b/a in­
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Fig. 1 Critical speeds versus inner-to-outer radius ratio; c = 0.33 

«cr=1070 rpm. Further, for a floppy disk of £ '=4 .9x l0 9 

N / m 2 , p = 1 . 3 x l 0 3 kg/m3, h = 7.8 x l 0 - 5 m , a = 1.0x10"'m, 
and 6 = 2.5 x l0~ 2 m, the theoretical value of n„ based on 
FEM was 230 rpm (Ono et al., 1986), while it is 216 rpm from 
equation (5). These examples show the effectiveness of equa­
tion (5) in predicting the critical speed of rotating clamped-
free plates. 
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strains and simplified by the use of the deformation theory, 
implies a nonlinear differential equation that can be solved, in 
general, only by direct numerical methods. Attempts to pro­
duce closed-form analytical solutions for stress concentration 
problems proved successful only for particular uniaxial stress-
strain curves. Budiansky (1971) has obtained elegant expres­
sions for the stress concentration factor at a circular hole 
embedded in an infinite sheet under remote uniform tension. 
That analysis is for Hill's (1948) orthotropic material in con­
junction with a pure power law in the post yield range. Further 
results for the hole problem are presented in Budiansky (1984) 
for a whole class of anisotropic plastic solids along with a pure 
power law characteristic. Similar studies for the stress concen­
tration around rigid fastening rings were given by Yang (1969) 
and Durban (1987a) for the power hardening law, and in Dur­
ban (1987b) for elastic/linear-hardening solids with plastic 
orthotropy. 

In this note we suggest a new approximate method aimed at 
a quick, yet reliable, assessment of stress concentration fac­
tors. Material behavior is modeled by the small strain J2 

deformation theory with arbitrary hardening characteristics. 
We show that the governing equation for the stress com­
ponents admits a solution by quadratures when the operative 
part of the yield locus is approximated by a suitably chosen 
straight line. Comparison with numerical results for the stress 
concentration factor at the circular hole, obtained from the 
exact stress equation, indicates a very good agreement over the 
entire elastoplastic range. The applicability of the method for 
other problems is demonstrated by evaluating the stress con­
centration factor at a rigid fastening ring. 

Extension of the proposed approximation technique to or­
thotropic materials based on Hill's (1948) theory is 
straightforward. 

The Method as Illustrated by the Hole Problem 

Using the standard axially-symmetric plane-stress notation, 
we have the elastoplastic constitutive relations, of the small 
strain deformation theory, in the form 

1 / 1 1 \ / 
e r = — (<fr-pat)+{ — -—)[ar~ 

1 

~E 

rff«) (1) 

(2) 

where (er, ee) are the strains, (ar, ae) the stresses, (y, E) the 
elastic constants, and Es is the secant modulus and a known 
function of the effective stress 

o-2 = o-2 + a\ - arae (3) 

Following the common practice of axially-symmetric plane-
stress problems we combine the equilibrium equation with the 
compatibility condition to obtain the differential identity 

(a, - ae)dee +(er~ee )dar = 0 (4) 

Substituting now the constitutive relations (1) and (2) in equa­
tion (4) gives the differential relation 

rfffr + rfffi+(al-J-ar)(-^-l)^. = 0 (5) 

where ET is the tangent modulus and a known function of the 
effective stress ae. 

At this stage we introduce an approximation whereby the 
operative part of the yield locus (3) is replaced by the cor­
responding straight line. Taking the hole problem, as an exam­
ple, we have at infinity ar = de = aa, where a„ is the applied 
uniform tension, while at the hole ar = 0. The operative part 
is therefore the curved lineAB (Fig. 1) and the appropriate ap­
proximation of equation (3) is given here by the straight line 
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We show that the governing equation for the stress com­
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straight line. Comparison with numerical results for the stress 
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Fig. 2 The stress concentration factor at a circular hole for the 
RambergOsgood hardening rule. The exact solution is taken from 
Budinansky and Mangasarian (1960). 

AB. Thus, the exact definition of the effective stress (3) is now 
replaced by the approximation 

ae=ae (6) 

Inserting this approximation in equation (5) and taking ae as 
the independent variable we get the linear differential equation 

dar 1 / 

daL 

with the solution 

= 0 

da0 

(7) 

(8) 

m in n r * *..—* i* t 

' « exact solution 

approximation 

__i i i i L 
1-0 

Fig. 3 Stress concentration factors for pure power hardening 
materials: (a) the hole problem; (b) the rigid ring problem 

where Esa, is the value of the secant modulus at infinity. Note 
that the effective stress at infinity is the same with equations 
(3) and (6) and is equal to a„ . Specifying (8) at the hole where 
ar = 0 and ae = k<ja, k being the stress concentration factor, 
gives the transcendental equation 

^ - doe (9) p l / 2 i ka 

which is easily solved, with any specified hardening 
characteristic, to obtain the dependence of the stress concen­
tration factor on the applied load. 

A numerical solution of equation (5) in conjunction with 
equation (3) has been given by Budinansky and Mangasarian 
(1960) for the Ramberg-Osgood hardening rule 

T[^&1 (10) 

where e is the total uniaxial strain and (at ,n) are material con­
stants. To find the corresponding approximate solution we in­
sert equation (10) in (9) and solve the resulting equation for k 

(I+J-X»-.)- , /2=J;(I+A„X-E«-.) 

/ 3 \ ~3/2 

( l+J_X»-») dL (11) 
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where X = crO0/a1 is the nondimensionalized load and 
E = <je/<7„. Comparison of the results for k from equation (11) 
with the numerical solution of the exact equation shows (Fig. 
2) a very good agreement, with an error of just a few percent. 

Consider next the pure power hardening relation 
e= (e/Oi)". The solution of equation (9) is then simply 

k = 

2 
n - 3 

(12) 

The exact result for that case (Budiansky and Mangasarian, 
1960)reads 

Comparison of equation (12) with equation (13) shows again 
(Fig. 3(a)) an agreement, to within a few percent, over the en­
tire range of n. 

Stress Concentration at a Rigid Ring 

The conditions at infinity are the same as in the hole 
problem with ar = 6e = a„. At the ring we have that eg=0 or, 
by equation (2), that ae = vsar where vs is the secant Poisson 
ratio 

'.-r-(i-)# 
It follows from equation (3) that the operative part of the yield 
locus (Fig. 1) extends fromyl to point C whose coordinates are 

- = J7 1 —=?„$•,,-' r 0 = v r ^ ^ i as) 
where vsa is the value of vs at the ring. The corresponding 
straight line approximation A C is here given by 

( l - f„ ) f f 9 =(y s a - f 0 ) (T r + (\-vsa)ae (16) 

Note, that unlike the hole problem, the location of point C is 
here dependent on the external load ax. Combining equation 
(16) with equation (5), we get again a linear differential 
equation 

(2f„-*„-!) 
dar 

dae 

E, 

• + ~2- ( f a - 2 ^ + 1 ) 

/ Es \ Or E, 
( ^ - 1 ) ^ - 0 - 0 ^ = 0 (17) 

that admits a solution by quadratures. The stress concentra­
tion factor is here defined as the ratio of the effective stress at 
the hole to the applied load at infinity. Put differently, we 
have at the hole 

°r = $a lkoa (18) 

The resulting transcendental equation for k is similar to equa­
tion (9) but somewhat more complicated due to the coeffi­
cients of equation (17). On balance, however, it is much 
simpler to determine k by the present approximate method in 
comparison with the full numerical solution. 

For the pure power law material with n , s l / 2 , f a=V3/2, 
ES/ET = n, we find 

2 

n + 2, \ (2+V3)«-^ 

*-(-£-) (19) 

while the exact result (Yang, 1969; Durban, 1987a) reads 

Ir lfJHL\ " +3 1 f ^ " - D ] (20) 

Comparison of equation (19) with equation (20) reveals (Fig. 
3(b)) a very close agreement. 

Extension to Orthotropic Materials 

There is no difficulty in applying the same method of ap­
proximation to Hill's (1948) family of anisotropic materials 
where definition (3) is generalized by 

2R 
or{js (21) a\ = a\ + a\ • 

\+R 
R being the measure of transverse orthotropy. 

Taking again the hole problem as an example, with a pure 
power law characteristic, we find the stress concentration 
factor 

1 

k = 2Q r ^ 1 
L ( « - i ) C 2 + i J 

( n - l ) G - l 

Q=(2 + 2R)-in (22) 

1 we recover from equation 

(n-\)Q2 + l. 

For the Mises material with R 
(22) relation (12). 

A comparison of equation (22) with the exact solution 
(equation (25) in Budiansky, 1971) shows again an excellent 
agreement over the entire range of parameters R and n. The 
two results become identical for « = 1 (Jc = 2) and for « = oo 
(A: = 2Q). 
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The Apparent Fracture Energy for 
Dynamic Crack Growth With Fine Scale 
Periodic Fraction Resistance 

L. B. Freund4 

Introduction 

In the analysis of dynamic fracture phenomena or in the in­
terpretation of experiments, it is commonly assumed that the 
crack tip speed varies in phase with the intensity of loading on 
the crack tip region. In other words, the speed increases or 
decreases as the load intensity increases or decreases, respec­
tively. This is the case if the fracture resistance of the material 
appears to be spatially uniform. Suppose that, on a finer scale 
of observation, the fracture resistance of the material is 
nonuniform, so that the crack speed will be influenced by this 
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appears to be spatially uniform. Suppose that, on a finer scale 
of observation, the fracture resistance of the material is 
nonuniform, so that the crack speed will be influenced by this 
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local variation in resistance as well as by the remote loading. 
This appears to be the case in brittle fracture of polycrystalline 
materials or composite materials, or the cleavage of a single 
crystal with dispersed particles or cavity in the path of the 
crack front (Forwood and Forty, 1965; Forwood, 1968). Even 
in pure cleavage of a single crystal, the advancing crack ex­
periences varying resistance due to periodicity of the lattice, 
although this may be pushing a continuum model beyond ac­
ceptable limits. In any case, the actual crack motion on the 
finer scale fluctuates, and the comparatively smooth motion 
on the macroscopic scale is termed the apparent motion in the 
present discussion. In this note, the following question is ad­
dressed: If a crack is perceived to be advancing at a uniform 
rate in a material, but it is known that the material has some 
structure on a smaller scale that leads to local variation of the 
fracture resistance, then what features of the physical process 
of fracture can be discerned at the macroscopic level? The 
question is considered on the basis of a simple model of crack 
advance through a material with fine scale periodic resistance, 
and some implications for the apparent features of the process 
at the macroscopic level are examined. The simple analysis is 
based on the premise that the size of the crack tip process zone 
is small compared to the scale of the variation of fracture 
resistance, so that a semi-infinite crack idealization may be 
employed. 

Consider rapid growth of a planar crack through a nominal­
ly elastic isotropic material under plane strain conditions. The 
tensile opening mode of deformation, or mode I, is assumed. 
The elastic modulus and Poisson's ratio of the material are E 
and v, respectively. Attention is focused on points close to the 
crack tip compared to the in-plane dimensions of the body in 
which the crack grows, that is, the case of a semi-infinite crack 
in an otherwise unbounded body is considered. At any instant, 
the mechanical field surrounding the crack tip is characterized 
by the stress intensity factor and the speed of the crack tip. 
The instantaneous crack length measured with respect to some 
arbitrary reference point is denoted by t(t) and the instan­
taneous crack tip speed is i(t). 

Irwin's generalization of the Griffith fracture energy con­
cept is adopted, and it is assumed that the crack grows ac­
cording to an overall energy balance criterion. Thus, if T is the 
energy per unit crack advance in the plane that must be sup­
plied to sustain growth, then the equation of motion of the 
crack tip is 

E r 
-=g(0 (1) 1 Kl 

where K0 is the instantaneous value that the stress intensity 
factor would have due to the applied loading if the crack tip 
were not moving and g(() is a universal function of crack tip 
speed given by Freund (1972). Although the mathematical ex­
pression for g is complicated, the behavior of the function is 
simple. For all practical purposes, this function may be ap­
proximated by 

g(i)=\-t/cr (2) 

where cr is the Rayleigh wave speed of the material. The con­
dition (1) ensures that the rate of energy flow into the crack tip 
through the region in which the stress intensity factor field 
dominates the full mechanical field is equal to the specific 
fracture energy of the material. The specific fracture energy V 
may depend on crack tip position, speed, or other system 
parameters, in general. 

The main purpose here is to examine a crack propagation 
situation in which the nature of the resistance T is fundamen­
tally different for two different levels of observation of the 
same process. On a macroscopic scale of observation, the 
material appears to have spatially homogeneous fracture 
resistance T„, a constant. When observed on a fine scale, 

however, the material actually has a periodic (not necessarily 
sinusoidal) resistance to crack growth, say 

r=r,„7(n (3) 
where r,„ is a constant and y(l) is a periodic function of crack 
tip position with spatial period X, defined for all L Suppose 
y{l) has the properties that 

maxY(£)= 1 
0<fsX 

min Y ( £ ) £ : 0 . 
0<te\ 

(4) 

Thus, the constant T,„ is the maximum value of the periodic 
specific fracture energy V. 

Analysis 

The actual crack speed as observed at the finer level of 
observation is determined by examining the crack tip equation 
of motion (1) for the periodic specific fracture energy (3). In­
corporating the approximation (2), the result is 

i E r,„ 
7 ( 0 . (5) 1 

1 Kl 
The applied stress intensity factor is assumed to have little 
variation over distances equal to many times X or during times 
equal to many times tx, so it is taken to be a constant for 
simplicity. The quantity tx is the time required for the crack 
tip to travel a distance equal to one wave length X, and its 
dependence on loading level is obtained by integration as 

fx di 
crt\ = (6) 

r x Jo l-By(l) K ' 
where B is the dimensionless combination of parameters 
£T,„/(1 - p2)Kl which has the range 0 < B < 1. The extreme 
values of 5—1 ~ and B—0+ correspond, respectively, to the 
applied stress intensity factor at a level just large enough to 
push the crack tip past the peaks in the fracture resistance and 
at a level many times greater than this minimum level. 

Consider now the same process at a macroscopic level at 
which the crack tip appears to move along steadily at constant 
speed, say, v0, under the action of the uniform applied stress 
intensity factor K0. This crack speed must be the average 
speed in the periodic fine scale fracture resistance, that is, 

"•^HH'OoT 
dt 

(7) 

If the crack tip equation of motion is applied at the 
macroscopic level, then 

E r „ . v0(B) 

1 n 
= 1 (8) 

where T0 is the macroscopically uniform specific fracture 
energy. The parameters on the left side of (8) are conveniently 
expressed in terms of B, so that the ratio of the apparent 
macroscopic fracture energy to the maximum in the fine scale 
periodic variation is 

r o l-v0(B)/cr_ l-v0/cr 

r m B B(v0) • 

This is the main result for the apparent fracture energy in 
terms of the details of the periodic variation of the fine scale 
resistance and the applied load level. It is written in two ways 
to make clear that the ratio may be expressed in terms of the 
load parameter B or the average crack speed v0, these two 
quantities being related through (7). 

The limiting values of the ratio (9) for very slow and very 
fast crack growth are easily deduced for arbitrary y (I). Recall 
that for very slow crack growth, 5— 1 _ . In view of the proper-
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Fig. 1 A representative fine scale periodic fracture resistance, show­
ing the limits of apparent macroscopic fracture resistance for very slow 
and very fast crack growth. The shaded area represents the radiated 
energy for macroscopically slow crack growth. 

ty (4), it is clear that tx — oo as 5—1 . This, in turn, implies 
that v0 (B) - 0 so that 

r 0 / T „ , - l as vo/cr-0 or B-l. (10) 

On the other hand, for severely over-driven crack growth, 
B<K 1. Thus, to first order in small values of B, 

c r / x « [ H+By(0}de=Ul+By) (11) 
Jo 

where 7 < 1 is the average value of y(l) within one wave 
length X. The uniform macroscopic speed is then approximate­
ly (1 -By)cr, so that 

r o /T m -*7 as v0/cr-~\ or B-0. (12) 

Discussion 
These extreme cases (10) and (12) may be interpreted as 

follows. Consider first the case when B is only slightly greater 
than unity or v0/cr « 1. Suppose that the variation in frac­
ture energy has the qualitative features shown in Fig. 1. Thus, 
the crack tip driving force is barely large enough to push the 
crack tip past the maxima in the fracture energy and, accord­
ing to the equation of motion, the crack tip moves slowly as it 
passes a maximum in fracture energy. Between the maxima, 
the crack tip rapidly accelerates to a relatively high speed and 
decelerates as it approaches the next maximum in y((). Of the 
total time required for the crack tip to traverse a wave length X 
in fracture energy variation, the crack tip, spends most of its 
time in regions where the fracture energy is Tm. If this result is 
now interpreted in terms of a uniform crack tip speed v0, then 
the apparent time rate of energy flux into the crack tip is Vmv0 

for most of the time. This is the conclusion reached in (10). Of 
course, the actual energy absorbed per wave length X in the 
fracture process differs from the apparent energy absorbed by 
the amount represented as a shaded area in Fig. 1. This 
amount of energy, which is included in the macroscopic 
energy flow into the crack tip region, is radiated outward from 
the crack tip as it accelerates and decelerates. The spectrum of 
this radiation is dominated by wave lengths on the order of X 
and it is not accounted for in the macroscopic crack tip energy 
flux. 

The other extreme case, which is perhaps less interesting 
from a physical point of view, is when B has a value only 
slightly greater than zero. This is the situation when the driv­
ing force is far greater than the minimum required to push the 
crack tip past the maxima in the fracture resistance. In this 

case, the crack speed is always near the ideal upper limit cr and 
there is little acceleration or deceleration due to the variation 
in the fracture energy. The crack motion is essentially uniform 
with the crack tip spending about equal time at all resistance 
levels within a wave length. Thus, the macroscopic interpreta­
tion of the process occurring with uniform crack speed v0 

leads to the conclusion that the apparent fracture energy is the 
wave length average of fine scale periodic fracture energy, as 
in (12). 

In general, the difference between the apparent rate of 
energy flow into the crack tip and the actual energy consumed 
in the fracture process is radiated as high frequency wave mo­
tion. The amount of energy radiated per unit crack advance is 

ER=~^{r0-rmy(t)}de (13) 

which is the algebraic difference in area under graphs of the 
apparent fracture energy and the actual fracture energy versus 
distance. 

Although the main results are evident in (10) and (12) for ar­
bitrary periodic variation of the specific fracture energy, it is 
instructive to consider some special cases of y(l). For exam­
ple, suppose that 7( f ) = cos2(7rf/X). This variation obviously 
satisfies the conditions in (4). The integral in (6) may be 
evaluated with the result that 

It is evident that this special case has the general properties in 
(10) and (12). A second instructive example is the piecewise 
constant function y(H) = 1 for 0 < I < n\ and y(() = q for 
rcX<£<X, where 0<n, q< 1. Evaluation of the integral in (6) 
for the particular case with n = q = Vi yields 

T0 3 - 2 B 

6 ( ^ c J + 2 V 4 ^ K / Q + 9 0 v ^ ? „ 5 ) 

9(w 0 /c f ) -2 + 3 V 4 ^ 4 ( l ^ 7 c J + 9 ( v ^ p ' 

Again, the general features already discussed are evident in the 
result. A piecewise constant fracture resistance was used by 
Das and Aki (1977) in their study of strength inhomogenieties 
on a crustal fault in the earth during seismic slip. 

It is noted that the general features of the analysis here 
would be the same if a stress intensity factor criterion for 
crack growth had been adopted, instead of the energy 
criterion. One issue raised by this simple calculation is whether 
or not the macroscopic fracture energy of a material perceived 
through brittle crack propagation experiments has a direct 
relationship with the true "surface energy" of the material. If 
the fracture energy of the material is inhomogeneous on a fine 
scale, then the answer would appear to be negative. Instead, 
the macroscopically perceived fracture energy represents a 
maximum, rather than average, of the fine scale fracture 
resistance. Finally, it is noted that this effect is quite different 
from the "lattice trapping" effect introduced by Thomson et 
al. (1971) and discussed by Lawn and Wilshaw (1975). 
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Eigenvalues for Interface Cracks in Linear 
Elasticity 

M. F. Symington5 

Two useful techniques for obtaining the elastic fields near 
the tip of a crack in a homogeneous medium are the eigenfunc-
tion method used by Williams (1957) and the analytic function 
method introduced by Muskhelishvili (1933). The first of these 
yields a solution in the form of a power series in r, the radial 
distance from the crack tip. The latter method gives a closed 
form solution which, when expanded in a series, is identical to 
the first solution. 

Both of these methods can be used to find the linear elastic 
fields near the tip of a crack on the interface between two 
dissimilar media. However, the near-tip fields that have been 
derived for this problem (Williams, 1959; Erdogan, 1963; Sih 
and Rice, 1964) are not complete. The solutions properly 
characterize the singular (0(r~l/2)) behavior of the stresses at 
the crack tip but, unlike the homogeneous case, the series have 
no terms of integer order. The second order term (O(l)) not 
being included, the solution is asymptotically correct only to 
the first term. 

Consider the stress state in a cracked composite medium due 
to two uniform stresses applied parallel to the crack (one 
above the bond line and one below it). Assuming the stresses 
are related by the jump condition required to maintain com­
patibility along the bond (Rice and Sih, 1965), a constant 
stress state, O(l) throughout, would result. The homogeneous 
analog of that problem was examined by Williams (1957). The 
bimaterial solutions mentioned above cannot be matched to 
such a stress state. Using an analytic function formulation, 
Rice (1987) has recently given a complete series solution that 
includes integer order terms. It will be shown in this note that 
the complete series can also be obtained using Williams' 
method (Williams, 1959). The problem can be posed as 
follows. 

Consider a semi-infinite crack along the interface of two 
bonded dissimilar media subject to arbitrary remote load. Let 
the medium be oriented in a Cartesian coordinate system so 
that the crack lies on the x axis. Position a polar coordinate 
system at the crack tip with the bond line along 8 = 0 so that 
material 1 occupies the upper half plane (0 < 6 < 7r) and 
material 2 occupies the lower half plane (-•&• < 8 < 0). 
Poisson's ratio and the shear modulus for each material are v-, 
and iiit i = 1,2. 
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Two stress functions, one for each medium, are required in 
order to pose this bimaterial problem. Allowing the eigen­
values Xc to be complex, the stress functions given by Williams 
(1959) are 

£/,. = (Re[A+iF,.(0;Xc)], / = l , 2 (1) 

(2) 

where 

Fi(B; Xc) = [«,sin(Xc + 1)8 + b tcos(\c + 1)0 

+ c,sin(Xc -1)8 + tf,cos(Xc - 1)0]. 

The boundary conditions—traction free crack surfaces and 
continuity of traction and displacement across the bond 
line—provide eight equations in eight unknowns (a-„ bh cit 

and dh i = 1,2) (Williams, 1959). Because the equations are 
homogeneous, a solution exists only for Xc such that the deter­
minant of the matrix of coefficients for the system of linear 
equations vanishes. Evaluating this determinant, the 
characteristic equation is 

(Xc + l)Psin2Xcvr = 0 (3) 

where 

P=lV-l(K2 + l) + l*2<.Kl + l ) j 2 - 4 ( / X 1 K 2 + / « 2 ) 0 * 2 ' < l + ftl)sin2Xc7T 

and 

3 - Av-, for plane strain 

for plane stress. 

(4) 

(5) 

1 + *, 

The set of all eigenvalues is the set of all Xc that satisfy the 
characteristic equation. Therefore, consider possible solutions 
to equation (3): 

(a) (Xc + 1) = 0 does not give an admissible eigenvalue 
because bounded displacements at the crack tip and bounded 
strain energy in finite regions about the crack tip require (Re 
[Xc| > 0 . 

(b) The condition P = 0 is equivalent to the characteristic 
equation given by Williams (1959), for which the eigenvalues 
are Xc = X + ie such that 

(6) 

(7) 

(c) The last possibility, sin Xc IT = 0, provides the purely 
real integer eigenvalues 

\=n+\, « = 0,1,2, . . . . 

Thus the complete series solution includes eigenfunctions 
given by two different sets of coefficients. The coefficients for 
the eigenfunctions associated with the complex eigenvalues (6, 
7) have been given explicitly by Sih and Rice (1964). They can 
be conveniently written as (Symington, 1987) 

n-¥ 

1 

2ir~ 

1/2, 

4-
n = 0,1,2, . . . 

+ /*i 1 
+ u2 J 

1 Xc + 1 

e*e-\ce-* 
bl= xc + i 

c, = —ie~Tti\ 

' + \re
7r 

X„ + l 

S-X,e* 

- l • 

dy- CV 

Xc + 1 

C2= — K™I) 

rf2 = e"7j 

(8) 

where ?/ is a different undetermined complex constant for each 
complex eigenvalue. The coefficients associated with the in­
teger eigenvalues are 
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stress state, O(l) throughout, would result. The homogeneous 
analog of that problem was examined by Williams (1957). The 
bimaterial solutions mentioned above cannot be matched to 
such a stress state. Using an analytic function formulation, 
Rice (1987) has recently given a complete series solution that 
includes integer order terms. It will be shown in this note that 
the complete series can also be obtained using Williams' 
method (Williams, 1959). The problem can be posed as 
follows. 

Consider a semi-infinite crack along the interface of two 
bonded dissimilar media subject to arbitrary remote load. Let 
the medium be oriented in a Cartesian coordinate system so 
that the crack lies on the x axis. Position a polar coordinate 
system at the crack tip with the bond line along 8 = 0 so that 
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Two stress functions, one for each medium, are required in 
order to pose this bimaterial problem. Allowing the eigen­
values Xc to be complex, the stress functions given by Williams 
(1959) are 

£/,. = (Re[A+iF,.(0;Xc)], / = l , 2 (1) 

(2) 

where 

Fi(B; Xc) = [«,sin(Xc + 1)8 + b tcos(\c + 1)0 
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The boundary conditions—traction free crack surfaces and 
continuity of traction and displacement across the bond 
line—provide eight equations in eight unknowns (a-„ bh cit 

and dh i = 1,2) (Williams, 1959). Because the equations are 
homogeneous, a solution exists only for Xc such that the deter­
minant of the matrix of coefficients for the system of linear 
equations vanishes. Evaluating this determinant, the 
characteristic equation is 
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The set of all eigenvalues is the set of all Xc that satisfy the 
characteristic equation. Therefore, consider possible solutions 
to equation (3): 

(a) (Xc + 1) = 0 does not give an admissible eigenvalue 
because bounded displacements at the crack tip and bounded 
strain energy in finite regions about the crack tip require (Re 
[Xc| > 0 . 

(b) The condition P = 0 is equivalent to the characteristic 
equation given by Williams (1959), for which the eigenvalues 
are Xc = X + ie such that 
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(c) The last possibility, sin Xc IT = 0, provides the purely 
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given by two different sets of coefficients. The coefficients for 
the eigenfunctions associated with the complex eigenvalues (6, 
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r= l , 2 (9) 

Cj = ia& 

where £ is a different undetermined complex constant for each 
integer eigenvalue and 

2 f t («,- + !) 
ft(K;+l) + /iy(K, + l) 

with j = 2, 1 when / = 1,2. To make contact with the 
homogeneous problem, the above coefficients have been 
scaled so that they do not depend on material constants if the 
two media are the same. 

The linear combination of all the eigenfunctions (1, 2) 
associated with the admissible complex and integer eigen­
values constitutes the complete series solution. This solution is 
identical to the one given by Rice (1987) when written in terms 
of two complex functions, *,(z) and A ;(z). Define these 
functions such that the stresses are given by 

<^ + <V=4<3le[* ;U)) 

°yy - axx + 2i°xy = 2 [ ( z " - Z ) * , ' ( z ) - * , • ( z ) + A,- ( z ) ] 

then (Rice, 1987), 

*,(z) =e- ' r e s s n V 1 / 2 - / £ / (z ) +a,-g(z) 

i=l,2 (12) 

A,(z) =e^^z-W2+iefU) -a , - l (z ) 

where f(z) and g(z) are power series with complex 
coefficients, 

f(z) = £ a„z" g(z) = £ bnz". (13) 

The undetermined constants of the complex stress functions, 
a„ and b„, are related to the undetermined constants of the 
Airy stress function by 

a„ = (n+\/2-ie)fi 

n = 0,l,2. . . (14) 

b„ = (n+m 
where t] and £ are different complex constants for each value 
of n. 

The inclusion of the integer order terms allows the constant 
stress state discussed earlier to be found exactly. It also allows 
the domain of validity of the series solution to be increased by 
matching integer order terms to the remote stress field. 
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Complex Singularities of the Transfer 
Function for Cylindrical Cavities in Elastic 
Media 

A. N. Stokes6 and A. F. Siggins7 

1 Introduction 

The response of a cylindrical cavity in an elastic medium to 
incoming disturbance has been much examined in recent 
years. A knowledge of the cavity transfer function is of impor­
tance in such areas as the seismic response of underground ex­
cavations, the response of geophones placed within boreholes, 
and various non-destructive testing applications. From some 
early work of Viktorov (1958), Fourier-Bessel series methods 
have been developed (Pao and Mow, 1973; Baron and Mat­
thews, 1961), and "wave-sum" integral methods (Miklowitz, 
1978) have been used to describe the transfer function. 

The "wave-sum" method is useful at high frequencies giv­
ing a solution which can be conveniently divided into a 
Rayleigh wave component and various P and S waves. There 
are some difficulties in applying the method in the 
"illuminated zone." In this method an expression corre­
sponding to a Fourier-Bessel series coefficient is evaluated by 
summing residues at singularities in a complex plane of spatial 
frequencies. Miklowitz (1978) discusses asymptotic properties 
which are associated with each type of wave. 

The Fourier-Bessel series converge best for disturbances 
whose wavelength is rather large compared with the cavity 
diameter. In this case, for subsequent convolution of the 
transfer function with a specific disturbance, it is desirable to 
find singularities of the coefficients in the complex plane of 
temporal frequency. This has been done and some values for 
the first few coefficients are given by Pao and Mow (1973) and 
Baron and Matthews (1961). In the methods used there the 
numerical difficulty increases with increasing order of 
coefficients. 

The singularities are studied by Pao and Mow (1973) 
because they are important in the long-term behavior of the 
solution. In this report a different method of computing them 
is described which does not seem to have that numerical 
problem, so that calculation of the poles can be extended into 
a region where asymptotic high frequency approximations 
apply. 

2 Various Transfer Functions 

A Fourier-Bessel series for the cavity hoop-stress response 
to an incoming steady state compressional plane wave is de­
rived by Pao and Mow (1973) and is also described in Peck 
(1965). With a change of notation, its pth coefficient has a 
denominator, Dp, given by 

D„ ̂ xHp^x)[(p2 - l)yHp_,(y) - (p3 -p + y2/2)Hp(y)] 

-Hp(x)[(p3 -P+y2/2)yHp^ (y) - (p2+p~y2/4)y2Hp(y)] 

(1) 
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r= l , 2 (9) 

Cj = ia& 

where £ is a different undetermined complex constant for each 
integer eigenvalue and 

2 f t («,- + !) 
ft(K;+l) + /iy(K, + l) 

with j = 2, 1 when / = 1,2. To make contact with the 
homogeneous problem, the above coefficients have been 
scaled so that they do not depend on material constants if the 
two media are the same. 

The linear combination of all the eigenfunctions (1, 2) 
associated with the admissible complex and integer eigen­
values constitutes the complete series solution. This solution is 
identical to the one given by Rice (1987) when written in terms 
of two complex functions, *,(z) and A ;(z). Define these 
functions such that the stresses are given by 

<^ + <V=4<3le[* ;U)) 

°yy - axx + 2i°xy = 2 [ ( z " - Z ) * , ' ( z ) - * , • ( z ) + A,- ( z ) ] 

then (Rice, 1987), 

*,(z) =e- ' r e s s n V 1 / 2 - / £ / (z ) +a,-g(z) 

i=l,2 (12) 

A,(z) =e^^z-W2+iefU) -a , - l (z ) 

where f(z) and g(z) are power series with complex 
coefficients, 

f(z) = £ a„z" g(z) = £ bnz". (13) 

The undetermined constants of the complex stress functions, 
a„ and b„, are related to the undetermined constants of the 
Airy stress function by 

a„ = (n+\/2-ie)fi 

n = 0,l,2. . . (14) 

b„ = (n+m 
where t] and £ are different complex constants for each value 
of n. 

The inclusion of the integer order terms allows the constant 
stress state discussed earlier to be found exactly. It also allows 
the domain of validity of the series solution to be increased by 
matching integer order terms to the remote stress field. 
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The response of a cylindrical cavity in an elastic medium to 
incoming disturbance has been much examined in recent 
years. A knowledge of the cavity transfer function is of impor­
tance in such areas as the seismic response of underground ex­
cavations, the response of geophones placed within boreholes, 
and various non-destructive testing applications. From some 
early work of Viktorov (1958), Fourier-Bessel series methods 
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ing a solution which can be conveniently divided into a 
Rayleigh wave component and various P and S waves. There 
are some difficulties in applying the method in the 
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summing residues at singularities in a complex plane of spatial 
frequencies. Miklowitz (1978) discusses asymptotic properties 
which are associated with each type of wave. 

The Fourier-Bessel series converge best for disturbances 
whose wavelength is rather large compared with the cavity 
diameter. In this case, for subsequent convolution of the 
transfer function with a specific disturbance, it is desirable to 
find singularities of the coefficients in the complex plane of 
temporal frequency. This has been done and some values for 
the first few coefficients are given by Pao and Mow (1973) and 
Baron and Matthews (1961). In the methods used there the 
numerical difficulty increases with increasing order of 
coefficients. 

The singularities are studied by Pao and Mow (1973) 
because they are important in the long-term behavior of the 
solution. In this report a different method of computing them 
is described which does not seem to have that numerical 
problem, so that calculation of the poles can be extended into 
a region where asymptotic high frequency approximations 
apply. 

2 Various Transfer Functions 

A Fourier-Bessel series for the cavity hoop-stress response 
to an incoming steady state compressional plane wave is de­
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Table 1 Comparison of calculated eigenvalues for circular cavities in 
elastic media. Poisson's ratio = 0.25. 

p 

0 
1 
2 
3 
4 
5 

Our value 

0.4474 - .4420 i 
1.09272 - 0.7653 i 
1.90754 - 0.8978 i 
2.75652 - 0.9915 i 
3.63132 - 1.0666 i 
4.52440- 1.1314 i 

Pao and Mow 1973 

0.44647 - 0.44127 i 
1.09272 - 0.7653 i 
1.90754 - 0.8978 i 
2.75652 - 0.9915 i 
3.63132 - 1.0666 i 
4.52440 - 1.1314 i 

Baron and Parnes 1961 

0.4464 - 0.4410 i 
1.0929 - 0.441 i 
1.9076 - 0.897 i 

V„=-

Cp=- Wp/(x
2y2Hp (x)Hp 0 0 ) 

-8D„ 
(7) 

0 2-0 8-0 4-0 6-0 
Re x 

Fig. 1 Trajectories of the poles in the complex x plane 

where 

x is the wavenumber o>a(p/ (X + 2n))in; 

y is the wavenumber co«(p//x)1/2; 
X and p. are Lame elastic constants; 
p is density; 
to is circular frequency; 
a is cavity radius. 

The omission by Pao and Mow (1973) of y1 in the last term in 
equation (1) appears to be an error. The Hankel function, 
Hp (x) is usually taken to be Hp

l) (x). 
The steady-state solution for general frequency may be used 

to derive solutions for transient problems. For example 
Miklowitz (1978) derived the cavity response to a line-load 
source within the medium. The line load is impulsive in time 
but its Laplace or Fourier transform corresponds to a steady-
state solution and an appropriate denominator, Cp, is found 
where 

x2y2(Hp+2 (x) -Hp_2 (x)) (Hp+2 0 0 +Hp_2 (y)) 
Since Hankel functions have no singularities, except at x = 

y = 0, the zeros of Vp and Cp are those of Dp. 
Dividing Dp by Hp (x) Hp (v) yields: 

(p2 - l)F{x)F(y) -y2/2(F(x) +F(y)) 

+p2-(p2-y2/2)2=0 (8) 

where F(x) = xHp(x)/Hp(x). 
The Hankel function ratios, F(x), can be conveniently com­

puted by the use of continued fraction expansions. The expan­
sion is derived from the recurrence relation for the confluent 
hypergeometric function (Abramowitz and Stegun, 1965; 
13.4.15); the theory is set out by Temme (1975), but in the 
present case is rather simpler, because a normalizing sum is 
not required. Then: 

p-1/4 
F(x)=ix-1/2 + — (9) 

2-2ix-
(p-9/4) 

4-2/x-
(P-25/4) 

6 - 2ix . . . 

where i2 1. 

This is an expansion suitable for large arguments analogous 
to the asymptotic series used in such cases but convergent. 
Methods for evaluating such fractions are described in 
Abramowitz and Stegun (1965). 

C„ = 
Hp+2(x)Hp_2QO +Hp+2(y)Hp^2(x) + {y2/x2- \)Hp(x)[Hp+2(y) +Hp_2(y)] 

Hp(x)Hp(y) 

Viktorov (1958), studying Rayleigh waves on the surface of a 
concave cylinder, derived a frequency equation, 

Hp+2 (x) + Hp_2(x)-2(y2/x2-l)Hp(x) 

(2) 

VP = 
Hp+2(x)-Hp„2(x) 

Hp+2(y)~Hp_2(y) 
= 0 (3) 

In fact the expressions Dp, Cp, and Vp are closely related 
and have the same zeros. By using the recurrence relations 

Hp+l (x) +Hp_l (x) = - ^ Hp (x) 

and 

(4) 

xH'p (x) =pHp (x) -xHp+, (x) =xHp. , (x) ~pHp (x) (5) 

it is possible to reduce Dp to the form 

y2 

Dp = (p2 - \)xyH'p (x)H'p O0 ~ (xH,', (x)Hp (y) 

+yHp(y)Hp(x))+[P
2-(p2-^) ]Hp(x)Hp(y) (6) 

and to show that 

3 Calculation of Poles and Their Interpretation 

Being an expansion for large argument, expression (8) seems 
to avoid the numerical difficulties found by Pao and Mow 
(1973) as p increased. Convergence difficulties arose only 
when x came very close to the negative imaginary axis. 

Expression (8) is an analytic function in both p and x (and 
hence y). Consequently the equation implicitly determines 
either p as a function of x or vice versa, and that function is 
generally multi-valued and analytic except at branch points. 
For various purposes it is convenient to hold either p or x real 
and consider poles in the complex domain of the other 
variable. Miklowitz (1978), following Peck (1965), constrains 
x to be real, while Pao and Mow (1973) and Baron and Mat­
thews (1961) consider x complex with p integer. 

Table 1 gives a comparison of some poles calculated by the 
method described here with other values in the literature for 
Poisson's ratio, v = 0.25 (v = X/2(X + /x)). Agreement with 
Pao and Mow (1973) in particular is complete except for a 
puzzling small discrepancy at p = 0. Our value was checked 
carefully and seems correct, notwithstanding that two other 
published values are closer to each other than to ours. 

Continuous trajectories of the poles in the complex 
x — plane for real positive p up to p= 10 were calculated and 
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Table 2 Table of zeros of Dp(x) for small integer p, and complex x. The 
derivatives of D with respecf to x at the zeros are also given; these are 
needed in calculating residues. 

p X value at zero of D Derivative 
~Real j Imag | Real [ Imag ~j 

PI branch 
0.000 

1.000 

2.000 

3.000 

4.000 

S.000 

6.000 

7.000 

8.000 

9.000 

10.000 

0.4474 

1.0927 

1.9075 

2.7565 

3.6313 

4.5244 

5.4306 

6.3467 

7.2702 

8.1998 

9.1342 

-0.4420 

-0.7654 

-0.8978 

-0.9915 

-1.0666 

-1.1314 

-1.1899 

-1.2440 

-1.2950 

-1.3435 

-1.3900 

-0.4999 

-4.9668 

-30.0801 

-99.0362 

-241.8189 

-492.8187 

-889.7499 

-1473.0596 

-2285.5579 

-3372.2041 

-4779.8574 

-0.2448 

7.4510 

36.8774 

105.8696 

235.9453 

451.8991 

781.5193 

1255.3524 

1906.5410 

2770.6892 

3885.7664 

R branch 
2.000 

3.000 

4.000 

5.000 

6.000 

7.000 

8.000 

9.000 

10.000 

0.2862 

0.7946 

1.2979 

1,8027 

2.3098 

2.8192 

3.3307 

3.8440 

4.3588 

-0.2786 

-0.3245 

-0.3437 

-0.3525 

-0.3559 

-0.3560 

-0.3542 

-0.3510 

-0.3469 

-4.9601 

-26.0566 

-71.0670 

-151.0883 

-278.2668 

-465.3952 

-725.7965 

-1073.1565 

-1521.5138 

1.4331 

-6.9026 

-30.3484 

-74.4564 

-144.4714 

-245.1723 

-380.8448 

-555.3453 

-772.0622 

P2 branch 
2.000 

3.000 

4.000 

5,000 

6.000 

7.000 

8.000 

9.000 

10.000 

0.4041 

1.2325 

2.0782 

2.9359 

3.8033 

4.6787 

5.5612 

6.4501 

7.3446 

64.5148 

381.3022 

874.4141 

1414.0438 

1860.6656 

2074.7217 

1917.3248 

1249.5570 

-68.2529 

-77.1535 

-23.6993 

395.4999 

1339.6630 

2926.2717 

5252.8540 

8407.5664 

12474.1729 

17534.6934 

Si branch 
4.000 

5.000 

6.000 

7.000 

8.000 

9.000 

10.000 

P 

0.2580 

0.7711 

1.2858 

1.8036 

2.3246 

2.8486 

3.3752 

X value 

-1.1025 

-1.3573 

-1.5530 

-1.7144 

-1.8528 

-1.9745 

-2.0835 

at zero of D 

-85.9125 

-428.2726 

-1015.4634 

-1868.3984 

-3012.7083 

-4474.5874 

-6279.9517 

Deriv 

193.4471 

306.4424 

306.9080 

129.3510 

-288.1648 

-1009.1045 

-2099.0527 

ative 

P3 branch 
4.000 

5.000 

6.000 

7.000 

8.000 

9.000 

10.000 

0.4155 

1.2554 

2.1053 

2.9635 

3.8289 

4.7005 

5.5777 

-3.1005 

-3.6245 

-4.0664 

-4.4518 

-4.7958 

-5.1076 

-5.3938 

496.9440 

2376.0454 

5293.3813 

8977.6406 

13116.4980 

17393.8184 

21501.0898 

-1230.6393 

-1691.7261 

-1130.9962 

911.3301 

4775.0220 

10721.2168 

18962.2012 

S2 branch 
6.000 

7.000 

8.000 

9.000 

10.000 

0.2542 

0.7625 

1.2721 

1.7840 

2.2983 

-1.8734 

-2.1746 

-2.4264 

-2.6448 

-2.8387 

-321.9348 

-1445.1500 

-3231.8972 

-5729.9917 

-8987.1289 

1263.5731 

1955.0776 

2488.4888 

2727.8069 

2553.8904 

P4 branch 
6.000 

7.000 

8.000 

9.000 

10.000 

0.4199 

1.2660 

2.1185 

2.9771 

3.8410 

-4.4230 

-4.9842 

-5.4749 

-5.9140 

-6.3131 

1669.4871 

7091.9971 

15154.9092 

25458.0840 

37521.6367 

-6051.8496 

-8432.7812 

-8953.7119 

-6767.7256 

-1206.1699 

are shown in Fig. 1 for Poisson's ratio = 0.25. As noted in Pao 
and Mow (1973), for positive integer values p = n, there are n 
poles if n is odd and n + 1 if 77 is even. So most of the trajec­
tories must cover a range of p values which is bounded below, 
and it is of interest to know how this bound is attained. In fact 
all but one of the trajectories approach the negative imaginary 
axis as/» diminishes, cross a t p = In —1/2 for some positive in­
teger n, then continue as a mirror image reflected about the 
imaginary axis, with p increasing again. The exception is the 
single trajectory which reaches p = 0; since the expression in 
equation (8) is an even function m.p, the trajectory here meets 
its negative p counterpart at a branch point. 

Thep values on the trajectories are marked wherep is an in­
teger; each is plotted as far as p = \Q. Asymptotically the 
behavior of the various branches is as described by Peck and 
Miklowitz (1969) with x regarded as the independent variable 
instead of p. Most of the poles arise when either Hp (x) or 
Hp(y) enter the transition region for Bessel functions where 
the argument approximately equals the order, and an expan­
sion in Airy functions applies. So if p*=>x, then 

x~p-aj(p/2ynu ,/=l,2 (10) 

where o> = exp( - 27r//3) and aj is the jth zero of the Airy func­
tion Ai. 

The phase velocity approaches that for P waves, and the tra­
jectories are labelled P I , PI 

Similary there are trajectories for which 

y~p-aj(p/2)i/3w y = l , 2 (11) 

These have a phase velocity approaching that for 5 waves and 
are labelled SI, S2, . . . 

Finally there is one pole which is obtained from the Debye 
expansion forH(x) where \x\, \y\ < \p\. This is theRayleigh 
wave pole, with 

A:= (cR/cD)p + constant (12) 

Here cR and cD are the phase velocities for Rayleigh and P 
waves (dilational waves), respectively. That trajectory is 
labelled R. 

It is interesting, but perhaps not surprising, that it is the Pl 

trajectory which penetrates p = 0. In the Fourier-Bessel series 
the p = 0 term determines the radially symmetric radiation 
component in the far-field. The two trajectories which turn 
about at p = 1.5 are P2 and R, at p = 3.5 they are P3 and S,, 
and at p = 5.5 they are P4 and S2. 

In Table 2 the zeros for integer/) are given, together with the 
derivatives of Dp with respect to x. These are needed in order 
to calculate the residues, if the integral arising from the use of 
a Fourier-Bessel series as a transfer function is to be evaluated 
by residue calculus. 

4 Conclusion 

Essentially the same denominator function, with the same 
zeros, occurs in the small time "wave sum" method of 
Miklowitz (1978), and the long-time Fourier-Bessel method 
described by Pao and Mow (1973). The continued fraction (9) 
gives an improved method of calculation of the zeros. Regar­
ding the denominator as a function of two complex variables, 
determining either as an analytic multi-valued function of the 
other, enables physical interpretation of the zeros, or bran­
ches, according to their asymptotic behavior. 
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Acoustic and Electromagnetic Waves, by D. S. Jones. Oxford 
University Press, New York, 1986. 745 pages. Price: $145.00. 

REVIEWED BY J. D. ACHENBACH1 

Acoustic and electromagnetic wave motions are governed 
by essentially the same equations, and the same mathematical 
techniques are used to solve wave propagation problems in the 
two fields. This book discusses the common features of 
methods to analyze the two kinds of wave motion. Where 
necessary it draws attention to differences, which may be due 
to different boundary conditions or due to polarization effects 
of electromagnetic waves. 

This is a book for the advanced reader, who has had ex­
posure to the basic material. The book is some 700 pages long, 
but it seems to contain the information of a volume twice that 
length. The material is presented in a very concise form, little 
detail is offered. Typically the author states a problem and a 
few steps in the solution process, then he gives the expression 
for the solution and concludes with a brief discussion. This 
reviewer would have liked to see a larger list of selected 
referneces for the details of the mathematical developments 
and for related work. The number of relevant publications in 
the areas covered by this book makes anything resembling 
complete referencing totally impossible, but the author has 
gone to the other extreme of including a very short list. 

The first two Chapters are general in nature. Chapter 1 
deals with the general properties of solutions of the equations 
governing acoustics and electromagnetism in matter which has 
certain macroscopic properties. Chapter 2 deals with 
relativistic effects. The remainder of the book is primarily 
concerned with solutions to specific problems. Chapter 3 deals 
with radiation, and Chapter 4 with resonators. The theory of 
waveguides is discussed in Chapter 5, while Chapter 6 
discusses refraction. Surface waves are the topic of Chapter 7. 
The next two chapters deal with scattering by smooth objects 
(Chapter 8) and diffraction by edges (Chapter 9). The last 
Chapter is concerned with transient waves. Seven appendices 
give details of a variety of mathematical techniques and 
special functions. Each chapter concludes with a set of 
exercises. 

The book presents a wealth of interesting and valuable 
material. It is an excellent contribution to the literature on 
wave phenomena. The sophisticated reader will find most he 
or she may ever want (or need) to know about analytical 
methods to solve linear acoustic and electromagnetic wave 
problems. 

'Professor, Department of Civil Engineering, Northwestern University, 
Evanston, IL 60208. 

Control of Structures, by H. H. E: Leipholz and M. Abdel-
Rohman. Martinus Nijhoff Publishers, The Netherlands, 
1986. 413 pages. Price: $105.50. 

REVIEWED BY W. L. HALLAUER, JR.2 

Many conference proceedings and doctoral dissertations 
have beeen devoted to structural control in recent years, but 
this is apparently the first published monograph on the sub­
ject. The authors intend it to serve as a reference for re­
searchers, practicing engineers, and students in advanced 
courses on structural dynamics and control. The book consists 
primarily of short summaries of theory, extensive numerical 
simulations of control for simple beam structures, and discus­
sion of the simulation results. Much of the material is drawn 
from the authors' previous publications. There is very little 
reference to experiments and in-service implementations, and 
no measured results are presented. 

Although this book includes much general material on con­
trol theory, its title suggests a substantially broader subject 
area than is considered. A title such as "Active Control of the 
Dynamic Response of Civil Structures" would more accurate­
ly describe the actual contents. Most of the book is not directly 
relevant to applications outside of civil engineering, such as 
control of acoustically excited structural response and control 
of static and dynamic deformation of flexible aircraft and 
spacecraft structures. 

Chapter 1—Introduction to Structural Control (35 
pages)—defines and illustrates the major classes of structural 
control (active, passive, open-loop and feedback), discusses 
active feedback control of a one-degree-of-freedom oscillator, 
and conceptually describes some control devices. The appen­
dix summarizes the principal concepts and definitions of 
classical control theory. 

Chapter 2—Morphology of Structural Control (29 
pages)—considers several issues with the use of partial dif­
ferential operators, functional analysis, and examples involv­
ing strings and beams. The authors' main point is that concep­
tual design of structural control generally allows a wide variety 
of options for control operators and optimization objectives, 
so that the design for a particular situation is not simply a well 
defined mathematical process, but rather an art based on ex­
perience. Also, discretization by modal analysis is introduced, 
and the authors discuss the problems of high order and 
spillover instability associated with a large number of modes. 

Chapter 3—Automatic Active Control of Simple Span 
Bridges (160 pages)—considers: classical control; modern con­
trol by pole assignment, optimal regulation, and optimal 
tracking; and state estimation by pole assignment. A bridge is 
idealized as a uniform simply-supported beam, and the distur-

Professor of Aerospace Engineering, Virginia Polytechnic Institute and 
State University, Blacksburg, VA 24061. 
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