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Leon M. Keer Appointed New Technical Editor

of the Journal

Professor L. M. Keer has been appointed Technical Editor
of the Journal of Applied Mechanics for a five-year term
beginning January 1, 1988. Professor Keer succeeds Professor
L. B. Freund, who completes his five-year term of service on
December 31.

Ben Freund is a tough act to follow. His performance in
running Journal operations, finding top candidates as
Associate Editors, and interfacing with ASME’s Publications
Committee has been outstanding. Ben faced the same
challenge five years ago when he succeeded C. S. Hsu, who
served as Technical Editor during 1976-1982. The results of
such leadership are evident in the current health and vitality of
the Journal.

Leon’s appointment is the culmination of a year-long search
process. In accordance with the rules of the Applied
Mechanics Division, the AMD Executive Committee estab-
lished in the summer of 1986 a Search Committee to recom-
mend candidates. The members were Jan Achenbach (Chair-
man), Richard Benson, Ben Freund, C.S. Hsu, Sid Leibovich,
and Jim Rice. The committee forwarded its recommendations
to the Executive Committee in June, and Leon was nominated
and subsequently approved by the ASME Board on Com-
munications. I should mention that the appointment requires
a commitment from the Technical Editor’s home institution;
Northwestern University’s willingness to provide the necessary
office space is much appreciated. I should also mention that,
having served on the previous search committee in 1981-1982,
I can attest to the time-consuming nature of this work; we in
the AMD are indebted to the search committee members for
their fine service.

Leon M. Keer is Professor of Civil Engineering and
Mechanical and Nuclear Engineering, as well as Associate
Dean for Research and Graduate Study at Northwestern
University. He holds B.S. and M.S. degrees from the Califor-
nia Institute of Technology and a Ph.D. from the University

Journal of Applied Mechanics
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of Applied Mechanics

Leon M. Keer

of Minnesota; also, he is a Registered Professional Engineer in
the State of California. Leon has made important research
contributions in the areas of stress analysis, fracture
mechanics, geotechnology, mechanical contact, and tribology.
He is a Fellow of the ASME and the American Academy of
Mechanics.

With this appointment, Leon joins a distinguished group of
key figures in Applied Mechanics. The Journal of Applied
Mechanics is a central activity of the AMD, and enjoys a
prominent position in the mechanics literature. We are
grateful to Ben Freund for his leadership in maintaining that
position and extend to Leon our warm support as he begins his
appointment as Technical Editor.

Thomas L. Geers
for the
AMD Executive Committee
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D. A. Sotiropoulos

Characterization of Cracks From
Ultrasonic Scattering Data

An inverse method for ultrasonic scattering data is proposed, to characterize a
planar crack of general shape contained in an elastic solid. The method is based on

H. Zhu

an integral representation for the scattered field in the frequency domain. For a

given scattered field the inverse problem has been formulated as a nonlinear op-

Department of Civil Engineering,
Northwestern University,
Evanston, IL 60201

Introduction

A crack in the interior of a solid body can often be detected
nondestructively by observation of its effect on an externally
applied ultrasonic field. The influence of a crack on the
overall strength of a component generally depends, however,
on its location, size, shape, and orientation. Hence, a useful
nondestructive test should go beyond crack detection to crack
characterization, with the ultimate aim of an efficient assess-
ment of the crack’s influence on the integrity of the body
under service loads.

In this paper we propose an inverse method for ultrasonic
crack-scattering data to characterize a crack of general shape
in a homogeneous isotropic linearly elastic solid. The method
is based on the well-known integral representation for the scat-
tered field. Even though this representation is simplified for
the far field and for large wavelengths as compared to a cross-
sectional dimension of the crack, it retains validity for points
closer to the crack than similar formulas presented in previous
studies. For a given scattered field the inverse problem is
subsequently formulated as a nonlinear optimization problem.
Its solution gives the location of the crack, the crack’s orienta-
tion, and the components of the crack-opening volume tensor
induced by the probing ultrasonic field. In addition, for a
related problem of quasi-static loading, the Mode I stress in-
tensity factor and the strain energy induced by the presence of
the crack have been computed directly from the results of the
inverse problem.

In recent years numerous results have become available for
fields generated by scattering of ultrasonic waves by cracks.
Solutions for two-dimensional configurations in unbounded
bodies have been discussed by Achenbach et al. (1982), who
also listed earlier references, e.g., Mal (1970). The three-
dimensional case of scattering of a plane wave by a penny-

Contributed by the Applied Mechanics Division for publication in the Jour-
NAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the paper
itself in the JourNAL OF APPLIED MEcHANICS. Manuscript received by ASME
Applied Mechanics Division, December 10, 1986; final revision June 24, 1987,
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timization problem. At low frequencies its solution gives the location of the crack,
the orientation of the crack-plane, and the crack-opening volumes. In addition the
Mode I stress-intensity factor is obtained for a related static stress state correspon-
ding to service loads.

shaped crack has been investigated by Krenk and Schmidt
(1982) and Martin (1982). The more difficult configurations of
a surface-breaking and a subsurface crack has been considered
by Mendelsohn et al. (1980) and Achenbach and Brind (1981),
for the in-plane problem. Three-dimensional scattering by a
surface-breaking crack has been analyzed by Angel and
Achenbach (1984). For the surface breaking crack, com-
parisons between analytical results and experimental data have
been presented by Yew et al. (1984), Dong and Adler (1984),
and Vu and Kinra (1985). Experimental results for reflection
of a surface wave by a subsurface crack oriented normal to the
free surface were obtained by Khuri-Yakub et al. (1984), who
observed very satisfactory agreement with theoretical results.
There are, of course, also numerical studies, principally by the
T-matrix method. Typical of these is the work of Visscher
(1985).

Recent review papers of ultrasonic QNDE which include
substantial discussions of scattering of ultrasonic waves by
cracks are those of Fu (1982) and Thompson (1983). In-
teresting practical applications have been discussed by Coffey
and Chapman (1983).

Whereas a substantial body of literature has become
available for the direct problem of scattering by cracks,
relatively little has been published on the inverse problem. A
method based on inverse time-domain ray tracing, which has
yielded some interesting results, has been discussed by Norris
and Achenbach (1982). Papers by Teitel (1978) and Guber-
natis and Domany (1979) have discussed the determination of
orientation and size for cracks which are elliptical in shape,
and whose location is known a priori. Their method is based
on the quasi-static crack-opening displacements given by
Eshelby (1957). The method of this paper, which is not based
on Eshelby’s result, offers two advantages over previous solu-
tions. One advantage is that the crack may be of general shape
(i.e., it is not assumed elliptical a priori). The other is that the
solution is valid for frequencies higher than the ‘‘quasi-static”’
ones. As mentioned before, another new feature of this study
is that the location of the crack does not have to be known a
priori.
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51 "

Fig. 1 Crack configuration in the x and ¢ coordinate systems. The x
system (not indicated) coincides with the £ system.

Integral Representation for the Scattered Field

The faces of a perfect mathematical crack are smooth and
infinitesimally close, but they do not interact with each other.
From the analytical point of view a perfect mathematical
crack is a surface in space which does not transmit tractions.
The model is acceptable for a real crack, provided that the lat-
ter’s faces are slightly separated and that the length
characterizing crack-face roughness is much smaller than the
dominant wavelengths of an incident pulse of ulstrasonic wave
motion.

Figure 1 shows a flat crack of surface area A. Two coin-
ciding coordinate systems (x;, X,, x3) and (§,, £&,, &;) with
origin at the ‘‘scattering center’’ (defined later) of A are de-
fined. The unit normal, n, to the crack-plane makes an angle ¢
with the x; axis, and the projection of m on the x,x, plane
makes an angle ¢ with the x; axis. The incidence of a pulse of
elastic wave motion produces a scattered field. A representa-
tion for the scattered field can conveniently be obtained in the
frequency domain. The incident pulse may be expressed as a
Fourier superposition of harmonics, next the scattered field
generated by a single incident harmonic can be calculated, and
finally all scattered harmonic fields can be superimposed to
yield the scattered pulse. Hence, the generic problem is one of
scattering of an incident displacement wave of the general
form

u’ (x)exp(— iwt), 1)
where u™ (x) is understood to depend on frequency. The term
exp (— iwf) will be omitted in the sequel. The scattered field is

defined as the difference between the total field and the inci-
dent field, i.e.,

u; (X) =uf" (x) + uf (x) @

The components of the corresponding stress tensors are
related by

T (X) =10 (X) + 75 (%) 3

It is well known that the integral representation for the scat-
tered displacement field may be expressed in the form -

ui (x)= SA CijomDiem (X —E)Au; (£)n;(£)dA (£) @

where

a
Dy (x =B =— ufx—9) S ®

xm

Journal of Applied Mechanics

In these relations ug,(x—£) is the basic singular solution
(Green’s vector), i.e., the displacement at position x in direc-
tion x;, due to a unit time-harmonic force applied in direction
xpat x==£. Then — D, (x— £) is the displacement produced at
x in the x; direction by a double force applied at x=§£, with
forces in the ¢ direction and moment arm in the m direction.
The displacement discontinuities Au; (£) = Aui (£) are related
to the crack opening displacements A#; (£) by

Au; (§)=T;A1;(£) ©®

where the matrix (7] defines the rotation of the £ system
relative to the £ system

— cosficosd sinf cosf sing
[T]= —sinf cos¢p —cosf sind sing @)
COS¢ 0 e} ]0)

and the £ coordinate system is such that £, is normal to the
crack plane. The crack opening displacement Aa(£) is defined
in the usual manner as

Au(g)=u(£ +en) - a(f —en) )

where n is the outward normal to the crack plane as shown in
Fig. 1.
For a homogeneous isotropic material Cyy,, has the form
Cliom = N0 + 1 (8118 + 809 )]

In the x system, the basic singular solution for an isotropic
solid is

pUZyx —£)
_ il [—G(k,R)Y+G(krR)1+G(kR)S 10
= Twox, (ky (kr (krR)éy  (10)
where
exp(ik R)
Gk, R)=————7—, a=L,T 11
ke R)=—3"% * (h
w
kp=—», cj={(N+2p)/p, (12)
cr,
kp=—r, ch=ulp, (13)
Cr
and
R=Ix—¢l 14)
The fields for the corresponding double forces are
% L
Dy (X—E)=p. u/?;e(x“f)= ) k Gk R) Az,
0x,, ci
. 1
+ kG (ksR) [A,ﬂm +Ym <z—m> 6“] s 15)
where
fm =
1 1 3 1
- j — - 1+ ('— )]I‘ 1
YeYiYm (l kaR) kaR [ kaR I kaR kim ( 6)
Tiom =Yibom + ¥eOim + YmOre = 5VYeYm 17
vi=(x;—§)/R (18)

It is instructive to write the details of the scattered field in the
x system, for which the ¥, axis is along the normal to the crack
plane. Then j=3 and equation (4) can be split into contribu-
tions from three basic sets of double forces, which are related
to crack-opening displacements in the X, X,, and X; direc-
tions, respectively:

DECEMBER 1987, Vol. 541755
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7,

Fig. 2 Double forces for scattered fields

3
B (R =), UP (%) (19)
i=1
where
U (R) = pUL1DR) + p UL (%) (20)
UPR) = pURD(R) + pURD (X) @1
UP(R) = NUPD(R) + AU (%) + N+ 20) UP (%) 22)
In equations (19)-(22)
. g - o
g (0= | ag&han BaE e @)

m

Even though the results of this section have cast scattering
theory in an elegant form, the actual direct scattering problem
is far from solved, since the crack-opening displacements are
not known a priori. To obtain a set of equations for A#;, we
must return to the representation given by equation (19). The
stresses corresponding to equation (19) can be obtained by
substitution into Hooke’s law. Then by letting X approach A4,
the stresses should satisfy 7% (X) = — ## (X). The resulting
equations are integral equations for A#; (£). These equations
require careful handling, because the integrands contain
singularities. The general system of equations has been
presented by Budiansky and Rice (1979).

The complexity of the exact method of solution has
stimulated the development of approximate approaches. In
two well-known approximate theories, which are valid at low
and high frequencies, respectively, a form of AwW(§) is
postulated and 0¥ (X) is subsequently computed by equation
(19). At low frequencies the static crack-opening displacement
can be substituted in the integral, to give the so-called quasi-
static scattering theory. At very high frequencies the
geometrical elastodynamic field on the illuminated crack-face
can be used as the crack-opening displacement. Subsequent
evaluation of equation (19) produces the ‘‘physical
elastodynamics®’ or Kirchhoff approximation to the scattered
field.

In many practical applications the distance from the obser-

vation point to the center of the crack is much larger than a
characteristic dimension, a, of the crack. At point x outside
the crack we may write

Eex 1

2 %2
R=lx-—£|=r[1__r_+ 12 (£:%)

2 R 2r?

where

756/ Vol. 54, DECEMBER 1987

+.. ] (24)

r=(xx;)", and X, =x;/r (25,26)

Since r>>q, and 1E] = (87 + £ + £3)" < a, equation (24)
becomes

R=r 27)
Furthermore, the assumption
(k. a) %«1, a=L,T, (28)
together with equation (24) gives
ke _ kar = ikatek 29)

Equations (27) and (29), substituted in equations (10) and
(4), will give rise to integrals of the general form

r= e auom©)a4 @) (0)
In deriving equation (30) the assumptions r>> a and (28) were
made. These assumptions include the case

ka<l and r>a

which is under consideration in this study.

To determine the solution of the inverse problem, it is con-
venient to further reduce the integrals of equation (30). Use of
the first mean value theorem in equation (30) gives

(31,32)

—ik £ ok

I =e

24

Vi (33)
where

V= SA Au; (£)n; (E)dA(£) (34)
In equation (33), £* is a point on the crack plane. We call this
point the scattering center. If k,a << 1 (quasistatic case), then
I, = V;, provided that the origin of the coordinate systems
(x, £) is any point on the crack plane. In this case, the scattered
field given by equation (35) below, would be ‘‘independent”’
of the choice of the origin. In our study, we do not make the
strict quasistatic assumption. The origin is chosen to coincide
with the scattering center £*. It should be mentioned that dif-
ferent observation points x would define different £*.
However, if the observation points are not very far from each
other, it is expected that £* would be approximately the same,
and

L=V 35)

Use of equation (35), reduces the scattered field given by equa-
tion (4) to

uy x)= Cij(’mD kom (x) Vij

where Dy, (x) follows from equation (15).

In the X coordinates V; = V0, are the crack-opening

volumes corresponding to the crack-opening displacements
defined by equation (8)

(36)

Va=| au,(5aad G7)
The scattered field is now given by equation (19), where in-
stead of equation (23) we have

Uﬁi,t’m) (i) ZDkl’m I-/1'3 (38)

The scattered field consists of fields generated by sets of dou-
ble forces located at the scattering center of the crack, and
whose configuration is summarized in Fig. 2.

A general theory for body-force equivalents of displacement
discontinuities was first developed by Burridge and Knopoff
(1964). It is not surprising that the scattering problem has been
reduced to the same kind of source theory, which is well
known from seismology and the theory of acoustic emission.

Transactions of the ASME
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Inverse Problem

In terms of the known coordinate system, x,x,x;, whose
orientation is known but not the location of its origin, the
scattered displacement field, equation (36), may be written in
vector-matix form as

{0 () ex1 =L (HNox 12 {B} 1251 (39

where the scattered displacement vector {u*} has 6 com-
ponents considering its real and imaginary parts. Similarly
{B} has 12 components. The ith equation of equation (39) in
complex form is:

ui* (X) = [Li Lia L Ly LipsLiz31{ B) (40)
where

Ly =M +2u)Dy + N(Dpp + D)

Ly =2p(Dyy +Dpyy)

L3 =2u(Djy3+Dyy) 41)

Ly = +2p)Dpy + NMDyy + Di3)

L3 =2u(Dp3 + D)

Lizs= (A +2p)Dyy + N Djyy + Dipp)
and

{B}TZ ViViuVisVnVs V33]T 42)

The terms Dy, are given by equation (15). Let us suppose that
the left-hand side of equation (39) is known. The equation
then defines a set of 6 nonlinear equations for 15 unknowns (3
components of x, and 12 components of B). This is an
underdetermined system of nonlinear equations. To obtain a
unique solution the system has to be overdetermined. Thus,
the data u is needed in 3 observation points (x', x*, x*), since
the components of vector B are independent of x. This way,
there are 18 equations and 15 unknowns. To reduce the
number of unknowns we first eliminate the unknown B and
subsequently we solve for x. However, an inspection of equa-
tion (39) reveals that the left inverse of [L (x)] does not exist
(more rows than columns). Thus to solve for B one needs to
consider the data in 2 observation points simultaneously. This

gives
use (Xl)
=P(xY 2 {Bliaxis

43)
we(x2) | 1251

where it has been taken into account that x! = x?* + X,,,
where X, is known. Equation (43) yields
use (Xl) }

use (XZ)

{By=[P(x")"' { (44

Substitution of equation (44) into equation (39) for the 3rd
observation point, x°, gives

usc( 1)
(e (x?)} = [L(x)]P(x)] ! { ! } (45)

use (Xz)

The solution of the inverse problem has, therefore, been
reduced to the solution of equation (45). This is a system of 6
nonlinear equations for 3 unknowns (x!, x}, x1), since the rela-
tionship between x!, x?. x?, is known from the relative posi-
tion of the instrument that measures the scattered data. To
solve the nonlinear optimization problem defined by equation
(45), the following six residuals, g, (x), are defined:

usc(xl)

(g(x1)) = (1 (x%)] — [L ()P (x)] ! { . } (46)
uSC(XZ)

Journal of Applied Mechanics

The residuals, g;(x!), are now minimized in the least squares
sense with respect to x!, i.e., we seek

Min 2611 go)]

Equations (46) and (47) define a nonlinear least squares pro-
blem. Its solution is obtained through use of a modification of
the Levenberg-Marquardt algorithm as outlined in the User-
Guide for MinPack-1 (1980). The solution so obtained is the
unknown x! = (xi, x}, x}). Substitution of x! in equation (44)
gives the crack-opening volume tensor, Vj, in the global x
system.

Once V,; has been obtained, the crack opening volumes in
the X system may be obtained by the rule of transformation of
a second order tensor

7

[V1=[T1-'[VIITY, (48)
where both I-/,j and V; are symmetric,
- . -
0 0 = Vo
_ 1 -
M= 10 0 = (49)
| B 1 _ _
- Va - V= Vi |

and [7] is defined by equation (7). From the invariants of the
two tensors we obtain

Vis=Vi+Vy+ Vi (50)
as well as the relation
1 _ _
e (VH+VH) ==V Vau+VuVa+V V)
TV Hh+VL+VE) 51

From the zero terms of I—/ij, equation (48) yields three
nonlinear equations for the unknown angles 6 and ¢. The solu-
tion to this overdetermined system of equations is obtained in
the same manner as the solution to equation (45). Subsequent-
ly I7,j follow from the remaining equations of (48). Equations
(50) and (51) can be used as a check on the results.

The results of the inverse problem, namely, the crack’s loca-
tion, the orientation of the crack plane, and the crack-opening
volumes, V;, do not completely characterize the crack. In the
next Section we will show that these results do, however, make
it possible to estimate the maximum value of a stress-intensity
factor under a service loading condition without further
assumptions on the crack shape. As shown in the remainder of
this Section, it is also possible to fully characterize the crack,
provided that it may be assumed that the crack is elliptical in
shape.

Suppose that the axes of the ellipse are defined by a system
of coordinates 7,, 1, where the major axis, 7,, makes an angle
x with the £,, axis, and where the ellipse would be defined by
(n,/a)* + (,/b)* = 1, @ > b. As shown in this Section it is
then possible to obtain a, b, and x from the computed low fre-
quency values of the crack-governing volumes 17,j If the crack
would, in fact, not be elliptic in shape, then the computation
will produce a, b, and x for an equivalent crack of elliptical
shape.

Let us define as 7;; the stress components on the crack plane
at the centroid of the crack in the X coordinates. The com-
ponents 7;; can be computed from the incident wave and the
results of the inverse problem for crack location and orienta-
tion of the crack plane. Next we define 7%, where
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7_':)'<3 = ﬁij’sz» (52)
cosy siny O

B=1{ —sinxy cosxy O (53)
0o 0 1

At low frequencies the tractions may be taken as uniform (and
equal to 75%) over the crack plane. The corresponding crack
opening displacements then follow from Eshelby’s results
(1957) as

2 2\
_ . N1 72
[Auf]=C(I)T;‘3 (1—7— b2 > s (54)
where
2b 1—» 2a 2b
k) , D= , C=—eun (55a,b,c)
E{a) n pl'y pl'y
In these expressions
v B2
I'=E(a)+—— —5 [K(a) —E(»)] (56)
1-v «
E(a) v 1
r=—— . 2K
2 5 = 5 & [E(a) —B°K ()] (57
a=(1-b*/a?)", B=b/a (58a,b)

Here » is Poisson’s ratio, and p is the shear modulus, while
E(a) and K(x) are complete elliptic integrals of the second and
first kinds, respectively, with modulus «.
Integration of equation (54) over A yields the crack-opening
volumes
_ . 2
V= S [AagX]dA =CV 7% —— mab 59)
Ap 3
These crack opening volumes are related to the crack opening
volumes computed from the inverse problem by

VE=B8,V;s (60)
where B; is defined by equation (53). Since V,; are known,
equation (60) gives 3 nonlinear equations for the 3 unknowns,

a, b, and x. The complicated forms of C as given by equa-
tions (55a, b, ¢) may make these equations difficult to solve.

Numerical Tests

Several numerical tests were carried out to check the validity
of the solution of the inverse problem. The results of one of

the tests are given here. The crack considered is elliptical, with
semi-axes defined by b/a = 0.8. The orientation of the crack
is specified by =1, ¢ =1 (see Fig. 1). The crack is contained
in an infinite elastic isotropic solid characterized by Poisson’s
ratio » = 0.3 and ¢, = 6,000 m/s. The incident displacement
field is a longitudinally polarized plane wave incident along
the — x5 direction, with amplitude 4° and wavenumber k; .

To obtain the position of the crack and the crack-opening
volumes ¥, the scattered displacement field is needed at 3
observation points. This data is synthesized by first solving the
direct problem as defined by equation (36). For small &, a, the
crack-opening volumes are assumed to be given by equation
(59). The real parts are zero. In general, this would not be
true. Subsequent use of equation (36) gives the scattered
displacement field. The three observation points chosen ar-
bitrarily are x!/a = (6, 7, 10), x*/a = (10, 8.5, 10), x*/a =
(14, 10, 10). The scattered displacement was calculated at
these 3 points, for k@ = 0.325, 0.35, 0.375, 0.4. The scat-
tered particle velocity components are listed in Table I in the
global system, for k;a = 0.4. Here (u*°)y =
W (N+2p)/10% 1. Note that 0% = —jk;c,u* and ¢}l =
N+2u) k,u,.

The synthesized scattered data was used to solve the inverse
problem. The position of one of the observation points was
obtained as well as the crack-opening volumes, and the crack
orientation. In Table 2, the actual parameters used in the solu-
tion of the direct problem (Actual) are compared with the
solution of the inverse problem (Inverse 1) for all k£, a con-
sidered. The match is excellent. The real parts are not shown
even though the match is also excellent. Numerical tests were

Table 1 Real and imaginary parts of normalized velocity
components for the scattered field at three positions: X 1/a =
6,7,10),X%*/a = (10, 8.5, 10), and X3/a = (14, 10, 10). All
components are in m/s.

k;a=0.4 %1/a X%/a X3/a
@hN 3.60 m/s —0.06 m/s 2.76 m/s
@y ~3.42 4.68 -17.80
@)y ~4.08 —-0.18 9.18
@) N 0.60 -9.36 3.90
T 0.42 —~0.24 12.90
@y -~2.58 ~13.56 8.76

Table 2 Comparison of actual parameters with results of the inverse problem, for
use of data based on the actual parameters (Inverse 1) and use of modified data

(Inverse 2), for four values of k,; a

X X A iV iVyy Vs,

T o o 'Y e Twa Twa

Actual 6 7 10 1. 1. 0.18 0 0.36
k;a=0.325 Inversel 6 10 1. 1. 0.18 0 0.36
Inverse 2 6.48 7.35 10.80 0.83 0.98 0.17 -0.06 0.37
Actual 6 10 1 1. 0.20 0 0.39
k;a=035 Inversel 6 7 10 . 1. 0.20 0 0.39
Inverse 2 6.63 6.93 10.84 0.85 1.00 0.19 -0.07 0.39
Actual 6 7 10 1. 1 0.22 0 0.42
k;a=0.375 Inversel 6 7 10 1. 1. 0.22 0 0.42
Inverse 2 6.61 7.69 1038 0.87 098 020  —0.08 042
~Actual 6 7 10 1 1. 0.24 0 0.45
kra=0.4 Inverse 1 6 7 10 1. 1. 0.24 0 0.45
Inverse2 6.2 7.04 1041 0.87 099 0.21 -0.08 0.44
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also performed on modified data to test the stability of the
solution. In Table 2, the results of one of the tests are shown
(Inverse 2). For the modified data, the x, component of the
scattered displacement field at x! was taken as 0.92 times the
exact displacement: The x, component of u* at x2 was 0.98
times the exact displacement, and the x; component of u® at x>
was 1.06 times the exact displacement. For all the other com-
ponents of the scattered displacement the exact synthesized
scattered data were used. The test displacement function used,
in this particular example, has a frequency spectrum for each
component that slightly deviates from that of the exact
displacement. The results are satisfactory and it is concluded
that errors in the scattered data cause errors of the same order
in the crack location and orientation, and crack-opening
volumes.

The success of the proposed inverse method in practical ap-
plications depends on the availability of suitable low frequen-
cy scattering data. Appropriate signal processing of ex-
perimental time-domain measurements will give frequency do-
main data. In the low-frequency range it may, however, be
necessary to fit the displacement data on a curve of the general
form constant X k%, to improve the accuracy. It is noted from
Table 1 that an incident plane wave produced by a regular
transducer will generate a very small scattered field. This is
primarily due to the geometrical attenuation caused by the
term a/r. The displacements tend to be particularly small in
the plane perpendicular to the ray connecting the point of
observation and the centroid of the inhomogeneity. The scat-
tered displacement magnitude can, however, be amplified con-
siderably by the use of a focused transducer. But even then on-
ly the radial displacement component may be useful. In that
case the number of observation points would have to be
tripled to make up for the lack of transverse displacement
data. This would have to be done in any event if a water-bath
configuration would be used.

Strength Considerations

The ultimate goal of quantitative nondestructive evaluation
is to obtain information on the residual strength of materials
and components. Information on the location, size, shape and
orientation of cracks makes it possible to calculate critical
strength parameters such as stress intensity factors. As pointed
out by Budiansky and Rice (1978), it is, however, also feasible
to compute stress intensity factors directly from low-
frequency ultrasonic scattering data.

In this Section we show that the zero-frequency limits of the
crack-opening volumes computed from the ultrasonic data,
yield direct estimates of the stress intensity factors for a
related service loading condition. For this purpose the incident
ultrasonic wave is redefined as

o
L explik,x;)
.a
in order that the zero-frequency limit will correspond to a
nonzero stress of the form

uj(x)= (61)

uO
72 =Cinq — .
ij 33 a

62)

The corresponding crack-opening volumes follow from the
computed V;; as
_ v,
Vo =lim —2
k—0 tkpa
It is known (see, e.g., Budiansky and O’Connell, 1976) that
a crack opening volume is related to a corresponding stress-
intensity factor by

(63)

11—y
=
3

7| ockias, (64)
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where S is the edge of the crack, p, is a length, and 74, is the
stress component normal to the crack. Furthermore, k; =
K,/7%; is the reduced Mode I stress-intensity factor. According
to Budiansky and Rice (1978) the right-hand-side of equation
(66) can be approximated by an expression in terms of the
maximum value of k;. This results in

Y
24y
Equation (65) gives (k[);5ax» the maximum value of the reduced

stress intensity factor, in terms of the results of the inverse
problem:

I_/‘3)3 = 7-‘373 [(kl)m::lx]6 (65)

240 Ve

P I Y »

( I)max (1 _ V)7T3 7._(3)3 ( )

Now suppose the body is subjected to a service load which

gives rise to a static stress field 7" §;. Let

T4 =«§ 67)

It then immediately follows that the maximum Mode I stress
intensity factor corresponding to the service load is

(Kf)max = ng} (k?)max (68)
Analogous calculations can be carried out for combined Mode
I1 and Mode 111 stress intensity factors.

Another quantity that can be computed from the ultrasonic
test results is the total potential energy change AW of the solid
body due to the presence of the crack. In the limit of zero fre-
quency we obtain from the ultrasonic test results

1 _
AW = - TV (69)
The corresponding results for the static load immediately
follows as

AWS = 2AW°,

where equation (67) has been used.

(70)
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Introduction

Problems of elastic wave scattering by surface-breaking and
near-surface cracks are of considerable current interest for
ultrasonic nondestructive evaluation. Ultrasonic scattering by
planar cracks near or at the free surface of a semi-infinite
elastic homogeneous medium has been studied theoretically by
many authors. References to recent papers on this subject can
be found in Shah et al. (1985), Achenbach et al. (1984), and
Van der Hijden and Neerhoff (1984). Some experimental
works on surface-breaking normal planar cracks have also
been reported by Hirao et al. (1982), Yew et al. (1984), and
Dong and Adler (1984).

Ultrasonic scattering by surface-breaking planar and
branched cracks of arbitrary orientation is the subject of this
investigation. To our knowledge this problem has not received
much attention in the literature. An approximate solution that
is valid at low frequencies was presented by Datta (1979) for
SH wave diffraction by a canted surface-breaking planar
crack. Subsequently, a hybrid finite element and eigenfunc-
tion technique was used by Datta et al. (1982) to study SH
wave diffraction by a planar surface-breaking canted crack.

In this paper we use the same hybrid technique as in Datta et
al. (1982) to study the scattering of in-plane body and surface
waves by canted planar and normal surface-breaking branch-
ed cracks. We focus our attention to the near-field. Numerical
results are presented for the vertical surface displacement
amplitudes near the base of the crack and crack-tip(s) stress-
intensity factors.

Formulation and Solution

Consider a homogeneous, isotropic, and linearly elastic
medium with a surface-breaking crack of arbitrary orientation
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cracks has been studied in this paper. Attention has been focused on the near-field
surface displacements and the crack-tip(s) stress-intensity factors. For planar nor-
mal cracks the stress-intensity factors are shown to agree with earlier results.
Numerical results showing normalized vertical surface displacements are presented
Jor incident body and surface waves. It is shown that the results for planar and
branched cracks can be significantly different in some instances.

and shape as shown in Figs. 1{(@) and 1(5). It is assumed that
the displacement is independent of the z coordinate and its z
component is zero. It is further assumed that the displacement
u{x, y, t) at a point P to be time-harmonic of the form u(x,
y)e ! where w is the circular frequency. Then u satisfies the
equation of motion in y > 0 (at points not on the crack)

pV2u+ (A+p) vV Veou= —pwu (1)
where N\, p are Lamé constants, p the mass density, and the
factor e~ has been dropped.

The solution of equation (1) can be expressed in terms of
longitudinal and shear wave potentials, ¢ and ¢, in the form

u=vVeo+ VX (ye,) 2)

Furthermore, in a homogeneous half-space, ¢ and y can be ex-
pressed in an infinite series of multipolar potentials as (Datta
and El-Akily, 1978)

oo

Y (asf+ b,,éﬁ)

n=—oo

b=
(3

oo

Y (awt+b.05)

n=—oo

Y=

where expressions for ¢Z, y2, ¢35, and 3, can be found in
Datta and El-Akily (1978). The coefficients a,, b, are found
by satisfying the appropriate boundary conditions. The series
expansion is in terms of multipolar sources located at 0’ (Figs.
1{@) and 1(b)) and is valid outside of a circle of radius large
enough to enclose the crack inside (see Datta and El-Akily,
1978).

The representation (3) is not useful for satisfying the
boundary conditions on the crack surface. For this reason, a
different representation is needed in this near-field region. In
this paper, the region inside the fictitious boundary B (Figs.
1(a) and 1(b)) is divided into finite elements having N, number
of interior nodes and Ny number of boundary nodes. In the
following the region inside B is denoted by Region II.
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Fig. 1 (a)-Geometry of a planar canted crack; (b) geometry of a branch-
ed Y crack

For the finite element representation in Region II, the
energy functional is taken to be

1

ot o)
) Hae pwiuen* }dxdy

@
1
‘TSB (PB-u,’; +P§-u3)ds

where ‘“*”’ indicates complex conjugate and ¢ and e are col-
umn vectors defined as

og={o}= <axx,ayy,oxy) i (5)

e={e}= (exx,eyy,exy) ! ©)

Superscript T denotes transpose. The P and Uy, represent the
traction and displacement on B, respectively.

762/ Vol. 54, DECEMBER 1987

It is assumed that the displacement field within the jth ele-
ment is represented in terms of the shape functions L;(x, »)
and elemental nodal displacements {qf} as

N, «
w= ) Laf : ™)
j=1

where each qf has two components, u,,;-and u,,;, along the x
and y directions, respectively. The number of nodes in each
element is given by N,.

The of; and ¢§; are computed by substituting equation (7) in-
to strain-displacement relations and these, in turn, into the
stress-strain relations. Using these in equation (4), we get

F=q}7S;9;+ 41" S1pq5 + 437 Ss4,
+q57Sppa5 —q* TPYP — P30,

in which q; = q?, g5 = ¢, P} = PP and the elemental im-
pedance matrices S;; are defined as

®

[Se]=SSR ([Be]T[D][B"]—pewZ[L]T[L]>dxdy. ©)
In equation (9),
-, 0 i
ax
] Ll 0 L2 ..
e = IMLLI.
Y 0 L, O..
9
| oy x|

Note that [L] is a 2 X 2N, matrix.
For an isotropic material [D] is given by

Ne +2p, A, 0
[D]= Ae Ne+2p, O
0 0 He

where A\, and p, are the Lamé’s constants.

In representing the inner region into finite elements it has
been assumed that the crack faces do not come into contact.
Also, in order to model the crack-tip singularity, quarter-point
singularity elements have been used. The details of the
singularity elements have been discussed by Barsoum (1977)
and the extraction of stress intensity factors from the crack
opening displacements (COD) has been discussed by Datta
and Shah (1982) and Shah et al. (1986).

To find the constants a,, b, appearing in equation (3) and
the nodal displacements in Region II, it is necessary to use the
continuity of displacement and traction on B. This is discussed
in the following.

The incident displacement fields will be assumed to arise
from the incident plane P and SV waves, and their reflections
from the free surface y = 0. The case of incident Rayleigh
waves will also be considered.

Let us suppose that in the absence of the crack the free field
is the sum of the incident and reflected fields, that is

u@=uf +ufn  (j=1,2).
For the Rayleigh wave (% is the associated displacement.
The total field outside B then is
w=uf +ul® (j=1,2)
where u{*) is given by equations (2) and (3).
Using equations (2) and (3), the displacements at the nodes
on B can be written as

{af} =1Gl{a}

(10)

1n

(12)
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Fig. 2 Comparison of stress-intensity factors caiculated by the
present method and those given in Achenbach et al. (1980). Incident
wave is a Rayleigh wave propagating in the x direction.

where [G] is a 2N X 2Ny matrix formulated in Appendix A
and vector {a} is
T
{a]z I:al, P ,aNB,bl, e ,bNB]
Similarly, using equations (2) and (3) in the stress-strain

relation, the traction at the nodes on B can be expressed in the
form

{of}=1F]{a) (13)

where [F] is also a 2Nz X 2Ny matrix defined in Appendix A.

To express {of” } in terms of {qf’ }, we use the expression
for the virtual work done on the boundary B, which is

br=| 18a5)7 o )ar (14)

where superscript (1) denotes the total field in Region I (out-
side B).

Because of the continuity of displacements and traction on
B, we have

qg) = qg) = qg]) 4 qés)
o =0 =0l + ¢

where superscript (2) denotes the total field in Region II.

Substituting equations (12), (13), (15), and (16) in equation
(14), and noting that 6q%> = 8q§’, we obtain from equation
(14)

(15)
(16)

ém={6a*}T(PY) aan
where P{) is given by
(PP} =[R]{a) + (P} (18)
Here
[R]= SB [G*1T[FldT (19)
and
()= (GIT(o)ar. 20)
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Fig.3 Stress-intensity factors for various crack geometries due to inci-
dent P wave

Equations (19) and (20) are approximated by

[R1=[G*]"[FIR a0 @n

and
{(P@Y=[G*IT{e) }R AD (22)

where R Af is the arc length between two adjacent boundary
nodes on contour B. Note that the first two rows and last two
rows of equations (21) and (22) are multiplied by R A6/2 in-
stead of R A8, because they correspond to the first and last
boundary nodes, respectively.

Substituting equation (12) in equation (8) and taking the
variation, we obtain a set of simultaneous equations which

may be written in matrix form as
SH S]BG _Squg))
G*TSh ~G*TSppq) +PY

q; J
G*7SppG a

(23)
The first equation of equation (23) can be written as:
4=~ [SGa+ Sia? |- (24)
The second equation can be written as
G*TSLq, + G*TSpG a= —G*TSppq® + PY. (25)

Substituting equations (18) and (24) into equation (25), we
obtain
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Fig. 4 Stress-intensity factor for various crack geometries due to inci-

dent SV wave

[G*T(SBB —S};BS,‘IISIB)G—R] {a} =
26)
~G*T Sy~ SSii' S ) af + P

In equation (26), the generalized coordiantes {a} are the on-
ly unknowns. Therefore, {a} can be evaluated. Once {a) are
known, the near and far displacement and stress fields can be
determined.

Numerical Results and Discussion

In this paper, the boundary B enclosing the interior region is
not a complete circle, and so the potentials ¢, ¥%, and ¢3, ¢3
cannot be expanded in cylindrical wave functions as was done
by Shah et al. (1985). Instead the integrals giving these poten-
tials and their derivatives were evaluated numerically for every
node on B. These integrals are of the same forms as the coeffi-
cients (P,,,, Q...» €tc.) that appear in the wave function expan-
sion used by Shah et al. (1985). Thus they are evaluated by us-

ing the same deformed path (El-Akily and Datta, 1981) that

was used to calculate those coefficients. For more details the
reader is referred to Datta and Sabina (1986) and Chin (1985).
It was found that 24 terms were needed in the series expan-
sions (3) for the range of frequencies (0 < k, D < 5.5) con-
sidered here. .

The hybrid method is employed to study scattering by P,

SV, and Rayleigh waves by three types of surface breaking
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Fig. 5 Stress-intensity factor for various crack geometries due to inci-
dent Rayleigh wave propagating in the x direction

cracks: a vertical crack (Fig. 1(a) with o = 90 deg), a 45 deg
inclined crack (Fig. 1(a), with o« = 45 deg), and a vertical
branched (Y) crack (Fig. 1(b)). The Poisson’s ratio of the
material is taken to be 1/3. The method used here is applicable
to a surface-breaking crack of arbitrary geometry. It can be
used for a planar or a Y crack of arbitrary orientation as well
as for a Y crack of arbitrary branch lengths and opening
angles. Of course, if the branches are too close, then very fine
meshes would be required. The examples chosen here are only
for illustrative purposes.

Stress intensity factors at the tips of the cracks were
calculated and for the particular case of a planar surface-
breaking normal crack they were found to agree well with the
results of Achenbach et al. (1980). These are shown in Fig. 2.

Next, normalized stress-intensity factors are shown in Figs.
3-5 for incident P, SV, and Rayleigh waves. It is seen that for
P and Rayleigh waves the stress-intensity factors at the crack-
tips of the three types of cracks are quite different, particular-
ly at high frequencies. This is particularly significant for the
branched crack, even though the branches are quite small.

The surface displacements at y = 0 are calculated by using
equations (3) in (2) after {a} are calculated. Normalized
values of u{*) are presented in Figs. 6-10. For each type of
crack mentioned above, five cases of incident waves were con-
sidered: plane P wave incident at 0 deg and 45 deg, plane SV
wave incident at 0 deg and 45 deg, and finally the Rayleigh
wave. Some representative results are shown here. In these
figures NF represents the normalization factor.
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Fig. 6 Normalized scattered vertical surface displacement amplitude
due to Rayleigh wave incident on a normal surface-breaking planar
crack
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Fig. 7 Normalized scattered vertical surface displacement amplitude
due to Rayleigh wave incident on a normal surface-breaking branched
crack

Figures 6 and 7 show the scattered vertical surface displace-
ment amplitudes for a Rayleigh wave incident from the left on
a normal planar and branched crack. It is seen that there are
large differences in the forward direction between the two
cases as the frequency becomes large. In the backward direc-
tion, however, the differences are not very-significant. Figures
8 and 9 show the results for an incident SV wave moving ver-
tically as well as at 45 deg to the vertical. Large differences are
found for vertical incidence, but not in the other case. Finally,
Fig. 10 shows the case of a Rayleigh wave incident on a canted
crack. This figure is to be contrasted with Fig. 6. The large dif-
ferences shown clearly distinguish a canted crack from a nor-
mal crack.

Conclusion

Model calculations of elastic wave scattering by surface-
breaking planar and nonplanar cracks have been presented.
These calculations show that near-field surface displacements
due to scattering by planar and branched cracks are quite dif-
ferent even when the branches are small. Also, it is found that
signatures of normal and canted cracks are very dissimilar.
These characteristic differences can be used to discriminate
between the various cases.

In this paper we have confined our attention to near-field
results. However, once the {a} are known they can be used to
compute displacements at any point outside the circular arc B.

Journal of Applied Mechanics
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Fig. 8 Normalized scattered vertical surface displacement amplitude
due to SV wave incident on a normal surface-breaking planar crack
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Fig. 9 Normalized scattered vertical surface displacement amplitude
due to SV wave incident on a normal surface-breaking branched crack
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Fig. 10 Normalized scattered vertical surface displacement amplitude
due to Rayleigh wave incident on a normal surface-breaking canted
crack

Although the results presented here are for homogeneous
medium, the technique can be generalized to study cracks in a
composite medium. These are presently under investigation
and will be reported later.
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APPENDIX A

Formulation of Matrices [G] and [F]

As mentioned before, the scattered nodal displacement vec-
tor, (qf?}, was formed by evaluating #{" and u{) at N,
number of points on contour B. Thus, we have:

{qf’ ) =[G)(a) (A-1)
where
{qﬁ}s) } = [uxBl’ LA ’uXBNB’ yBy> ’u)'BNB ]T (A-2)
{a}-——{al,...,aNB,bl,...,bNB}T (A4-3)
If [G] is partitioned as,
GXA | GXB
e (A-4)
GYA | GYB |[2Nyx2Ny

then each of the Ny X Njp submatrices can be evaluated from
equations (2) and (3) at (x;, y;) on B as

(GxA),, = (88405,
(GXB), = (65, +¥4,)
(GYA), = (8, ~VEx)
(GYB), = (65, ~¥5), i=1to N,

(A4-5)

The parameter # in the summation series of equation (3) is
taken from —(Nz/2 — 1) to Ngz/2 for numerical purposes.
Hence, n in the first column to the last column of each sub-
matrix corresponds to — (Nz/2 — 1) to Np/2, respectively.

To formulate the matrix [£], the components T, and T, of
the traction vector T were calculated at each nodal point on B.
If the radius vector of that point makes an angle § with the x
axes, then

T = .
¥ = 05, COS0 + 0, 5inf (4-6)
T, =0,,c050 +g,,s8ind.

Evaluating ¢, {3, and of at N number of points on
contour B and substituting in equation (4-6), we have the scat-
tered nodal stress vector, {¢§ }, as in equation (13),

{af)}=[F]{a]} (A-7)
where
{UF)]={TxBl’ . ’TxBNB’ Ce ,TyBBl, R

Ty, ) (A4-8)

N,

and {a} is defined in equation (A4-3)
[F] is partitioned as

FXA | FXB
1

]
FYA ! FYB | 2Ny x2N,

Each of the Ny X Nj submatrices can be evaluated at (x;, ;)

‘on B as, .
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(FXA)in — l:()\+2#) (¢5,x,\'+\[/5,xy) +)\(¢£”’yy_ 5,xy)]C050 + [(>\+2#) (¢ﬁ,y_y_ S,xy) +)\(¢£xx+1//5,xy)]51n0

26F . P _ P H
+ M( qsn,)«y + ¢n,yy n,xx)51n0 (FYB),,, =#«(2¢;°;,xy + ¢§,yy —_ ﬁ,xx)coso

(FXB)M: |:()\+2#) (¢§,xx+¢§,xy) +>\(¢§,yy— f,xy):ICOSG + [()\+2M)(¢§yy_ ﬁxy)+)\(¢§xx+¢§xy)]5in0

+u205 o + V5, — ¥ . )sind
‘ Parameter n ranges from —(Npz/2 — 1) to Np/2 as discussed
(FYA)jy = pQf o +¥E,, — 48 Ycosh before, and / = 1 to Ny.
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Nonstandard Elastic Problems

Variational principles are derived for some nonstandard problems involving elastic
bodies in smooth contact. For these problems, the portions of the surfaces where
one boundary condition holds rather than another must be determined as part of the

solution to the problem. Cases considered include a body containing a crack or
delamination, indentation by a rigid punch, and contact with an elastic foundation.

Introduction

The principles of minimum potential energy and minimum
complementary energy for infinitesimal elastic deformations
are well known for problems in which the tractions or the
displacements are specified at each point of the surface of an
elastic body (see Sokolikoff, 1956, for example). The prin-
ciples can lead to bounds on quantities of physical interest and
can be used to obtain approximate analytical and numerical
solutions. For some problems, the portions of the surface
where one boundary condition holds rather than another must
be determined as part of the solution to the problem. For ex-
ample, in problems involving contact between elastic bodies,
the shape of the contact area can vary with the loading (for
references see Gladwell, 1980). Uniqueness of solution for
typical problems of this type was considered by Shield (1982)
for problems involving smooth contact between surfaces of
elastic bodies. Here we again consider elastic problems involv-
ing smooth contact and develop variational principles for
some typical situations: loading of a body containing a crack
across which there is no cohesion, bodies in smooth contact,
indentation by a smooth rigid punch, and contact with a
smooth elastic foundation. The examples can be combined to
treat more complex problems, such as the indentation of an
elastic body containing a crack.

The principles rest on the positive-definiteness of the strain
energy and they show that the potential and complementary
energies attain absolute minimum values only when the trial
functions generate the strains or stresses of the actual solution.
Weaker stationary principles apply without the assumption of
positive-definiteness of the strain energy. It is assumed that
the integrals involved are convergent if they are improper and
this requires the states considered to have finite total strain
energy or total complementary energy. The elastic material
can be inhomogeneous. At an interface between two materials
in a composite, the displacements and traction are assumed to
be continuous across the interface but delaminations can be
included if they are modeled as cracks across which there is no
cohesion. ’
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Elastic Body With a Crack

We assume that the strain-energy density W of the body is
positive-definite and we write

2W(e) =cypeien (Cij= Cij = Cjir}>
where e; are the infinitesimal strains referred to rectangular

Cartesian axes x;. The stresses ¢; are related to the strains
through

by =Cymlrs €5 =Cyitars

where Cj, have the same symmetries as cy,. The strain-
energy is also a positive-definite function W of the stresses,

ZWC(t) = Cijk/tijtkl'

In the unstressed reference state, the body occupies a region
V with surface S and we suppose that it contains a crack across
which the material has no cohesion. The crack is defined by a
surface Cin V, and we use n to denote the unit normal to one
side of the surface C. We use = signs to indicate values of
quantities on the two sides of C, with the + sign referring to
the side of C with exterior normal n. We shall also use square
brackets to indicate the difference in the values of a quantity
across C, so that for the displacement field u, for example,

[uj=a* ~u-.

Under loading of the body, we assume that at points of the
crack surface C either (/) the crack opens with no traction
transmitted across C or (ii) the two sides remain in smooth
contact. Then at points of C we have

(ut* —u")en=[ulen=< 0, )
and we require on C

either (i) T*=—~T- =0 when [u]len < 0
} )

or (ii)y T*=—-T*=—~pn when [u] = 0,

where T is the surface traction and p(x) is the (nonnegative)
pressure transmitted across C. We set p=0 at points of C
where (i) holds.

The loading of the body is assumed to be caused by a body
force F, prescribed surface tractions T on a portion Sy of §
and prescribed displacements u® on the remainder S, of S.
The displacement field u is unique except possibly for a rigid
displacement, depending on the conditions on S, (Shield,
1982).

We define the potential energy P as the functional
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Plu'}y= SVW(e')dV— SSTTG-u/a’S— SVF-u’dV €)]

for fields u’ such that
u'=uonsS,, [ulem=<O0oncC 4
We set
u’ =u+Au.
Then Au is zero on S;; and we have
Wi(e')= W(e) +t;Ae; + W(Ae). %)

The stresses ¢; satisfy equilibrium with body force F and with
the divergence theorem and boundary conditions we get

Plu'})—-Plu}= SV W(Ae)dV + Sc T [AuldS,

where contributions from both sides of C have been included
in the integral over C. For the actual solution T « [u] is zero on
Cin view of equations (2) and the integral over C has the value

SC Te[u'ldS=— Scpn-[u’]dS.

From equation (4) this is seen to be greater than or equal to
zero and with W positive-definite, we have

P{u’) = P{u)

with equality if and only if u and u’ have the same strains and
n « [u’] is zero where p is nonzero.

Thus we have: For displacements which satisfy the displace-
ment boundary conditions and have no interpenetration of
material across the crack, the potential energy P is least for the
displacements of the actual solution.

The complementary energy Q is defined as

Q{tf}=SV We(t)ydv— SSUT'-quS ©)

for stresses ¢;; in equilibrium with F and such that
tyn;=T¢ on S;, T'"*=—-T'~=~p’'nonC,
where p’ = 0. Weset
1 =t;+Aty,

so that the stresses At;; satisfy equilibrium with no body force
and have zero traction on S;. We have

We(t')y=We(f) + Ate; + W(AD, @)
and with the divergence theorem we obtain

ot} —-0ft} = SV We (AH)dV+ SC ATs[uldS.
As before T » [u] is zero on C and the integral over C becomes
S T’ e[uldS= — S p’'nefuldS = 0.
c c

It follows that
Qft’') = Ofr}

with equality if and only if #; = ¢; in V, and we have: For
stress fields with the given surface tractions and in equilibrium
with the given body force and which transmit at most pressure
across the crack, the complementary energy Q is least for the
stresses of the actual solution.

For the actual solution we have

Plu} +0{t} =2jy wdv — gs TeudS— SVF-udV:O, 8)

Journal of Applied Mechanics

using the divergence theorem and T - [u] = 0 on the crack
(Clapeyron’s theorem). We then have

Plu’} = Plu} = —Qf1t'}], ®

and the principles provide upper and lower bounds for the
potential energy.

Smooth Contact Between Elastic Bodies

For simplicity we consider contact between two elastic
bodies occurring over parts of the surfaces of the bodies which
are nearly plane, but the approach is easily generalized. In the
reference configuration the bodies touch at the origin 0 of
coordinates and the plane x; = 0 is tangent to both bodies at
0. The bodies occupy regions V; and V, with the x, axis
pointing into V,. Under loading, contact may occur over sur-
faces C, and C, of the bodies, defined as the nearly plane sur-
faces

Cy: x3=f(x, X3),

where x,, x, lie in a region C of the x, — x, plane enclosing the
origin and

Cy: x3=g(xy, X3),

f(xl’ x2) = g(xl) x2)‘
The contact is smooth and we denote the pressure between

the two bodies by the nonnegative function p(x,, x,), defined
over C. Then

5=~ Ti=p(x;, x,) on C, (10)

where the superscripts indicate values for the two bodies. The
bodies do not penetrate each so that the displacement compo-
nent u4 satisfies

(1n

ul-ul = f—gonC.
At each point of C we require
p=0when v} —ul > f—g, i —ul=f—g when p > 0. (12)
On the remaining portions S; and S, of the surfaces of the two
bodies, we suppose that tractions TC are specified on parts
S\7» S,7 and displacements u¢ are specified on parts S,,, S,y
of S, §,, respectively. We use S and Sy, to denote S;7 + S,r
and Sy + S,y. The body force F is assumed known in
V=V, + V,. The solution is unique except possibly for a rigid
body displacement (Shield, 1982).

The potential energy P is again defined by equation (3) for
displacements which satisfy the boundary conditions on Sy
and which satisfy (11) on C. As in the previous section, we
look at the difference between P{u’} and P{u}, use equation
(5) and the divergence theorem, and find that the difference
involves the integral

S Te(u’ —u)ds.
C1+Cy

In view of equations (10) and (12), the integral becomes
| plug-u - s-e)as,

and this is nonnegative because u4 satisfies (11). Thus we can

show that: For displacements which satisfy the displacement

boundary conditions and which satisfy (11) on C, the poten-

tial energy is least for the displacements of the actual solution.
The complementary energy Q is defined by

o'} = SV We(t')dV— Ssu T’ «ubdS— Scp’ (f—g)ds (13)

for stresses £;; in equilibrium with the given body force and
given tractions and which involve at most a pressure p’ be-
tween the bodies across C. The difference between Qf{¢’} and
Qft} is transformed as in the previous section and we are led
to consider the sign of
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S (T’ -T)-udS—S (p' —p)(F—g)ds.
Ci+Cy c

This can be written as
[, @' - ta-u-u-p)as.

and with equations (11) and (12) we see that the integral is
nonnegative. Thus we can show that: For stress fields in
equilibrium with the given body force and given tractions and
which involve at most a pressure between the bodies across C,
the complementary energy is least for the stresses of the actual
solution.

For the actual solution we again have P{u} = — Q{¢} and
the principles lead to upper and lower bounds on P{u]}.

Indentation by a Smooth Rigid Punch

In order to illustrate problems in which an elastic body can
come into contact with a rigid body of known shape, we con-
sider indentation by a smooth rigid punch when the possible
area of contact is a region C of the x,-x, plane enclosing the
origin 0. The exterior normal to the body at 0 is along the x;
axis, and the remainder of the surface of the body is denoted
by S.

When the movement of the punch is known, we will have

(14
where g is a known function, and we require at each point of C
15)

where p is the contact pressure. Tractions are prescribed on a
part S, of S and displacements on the remainder S, of S, with
a known body force in the region ¥ occupied by the body.

The problem can be considered as a limiting case of contact
between two elastic bodies. The potential energy is defined to
be the functional (3) for displacements which satisfy the condi-
tions on S, and (14) on C. We can then proceed as in the
previous section to show that: The potential energy is least for
the displacements of the actual solution.

The complementary energy Q is defined to be

u; < g(x;, x;) on C,

p=0when u; < g, u;=g when p > 0,

oft'} = SV Wo(t')dV— SSUT’-quS+ Scp’gdS

for stresses in equilibrium with the given body force and sur-
face tractions and which involve a pressure p’ in the contact
area C. Then: Q will be an absolute minimum for the stresses
of the actual solution.

Instead of prescribing the movement of the punch, we may
prescribe the downward force L on'the punch and the
moments M,, M, of the force about the x,, x, axes, with
prescribed loading on S as before. The contact pressure p must
then satisfy

L= ScpdS, M, =- ScpxzdS, M, = ScpxldS. (16)

For a known punch shape g (x,, x,) the solution will satisfy

Uy < g(xy, x)—d+ax,—bx, on C, a7

with equality where p is nonzero. The constants d, a, b are ’

determined as part of the solution, which will be unique except
possibly for a rigid body displacement (Shield, 1982). (Other
problems may be treated; for example, we may require the
punch to indent without tilting and then a, b are zero and M,
M, are not prescribed.)

The potential energy is defined as
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TCeu’dS

Plu'}= SV W(e')dV - SST

—SVF-u’dV—Ld’—Mla’—MZb' (18)
for fields u’ which satisfy the displacement conditions on S,
and which are such that ‘

u'; < g(x, x,)—d' +a’'x,—b’'x, on C, 19

whered’, a’, b’ are constants. After transformation, we find
that

P{u’}—P(u) = SV W (Ae)dV

- Scp(ug —uy)dS—L{d'—d)—M(a’ —a) —M,(b’ —b).

If we set
v=us+d—ax,+bx;, v =u;+d —a'x,+b’'x,

and use equations (16), then apart from the strain-energy term
the right-hand side becomes

- Scp(v’ —v)dS.

Now where p > 0, equality holds in (17) and v = g. Because
v’ =< g from (19), we then see that the integrand is non-
positive, Thus: The potential energy is least for the
displacements of the actual solution.

The complementary energy is defined to be

Q[t'}=S Wc(t’)dV—S T'-quS+S p’gdS
v Sy c

for stresses in equilibrium with the given body force and sur-
face tractions and which involve a pressure p’ in the contact
area C satisfying the loading conditions (16). We can then
show that

otry-otn = wewnav-|_w'-p w-gas.

Because p’ and p apply the same resultant force and moment
over C, the integral over C can be written as

SC (p' —p)(us—g+d—ax, +bx,)dS.

Equality holds in (17) where p > 0 so that there is no contribu-
tion to the integral from p, and the contribution from p’ is
nonpositive in view of (17). It follows that: The complemen-
tary energy is least for the stresses of the actual solution.

For the actual solution we have P{u} = —Qf{t} for both
punch problems of this section.

Smooth Contact With an Elastic Foundation

Variational principles also hold for elastic bodies which can
receive support from a foundation of the Winkler type. For
simplicity we assume here that the foundation has a plane sur-
face and lies below the plane x;, = 0. The portion of the sur-
face of an elastic body that can come into contact with the
foundation is the nearly plane surface

X3 =f(x1) x2)

touching the plane x; = 0 but lying entirely -above it, where
X, X, lie in a region C of the x,-x, plane. The reactive
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pressure p of the foundation is proportional to the downward
displacement of the surface, so that on C we require

—fip=—K(u;+f) when u, < —f, (20)

where K = 0 is the stiffness of the foundation (K may vary
with x;, x,). If we define g (u;) by

~f,q(u3)=1 when uy < —f;

p=0when u; =

q(u;)=0 when u; =
then we can write
Ty=p=—K(u;+f) q(y3) on C, 2n

while the tangential tractions are zero on C. Boundary condi-
tions on the remaining surface S of the body and a body force
field are prescribed as before.

The potential energy is defined to be

pluy=| wieav- SSTTG-u'dS

1
_ on’ 7 247
SVF u dV+—-2 SCK(u3+j) q’'ds,

where ¢’ = g (u3), for displacement fields u; which satisfy the
displacement boundary conditions on S;,. Using equation (5)
and the divergence theorem, we find that

P{u'}—Plu} = SV W(Ae)dV

1
+T SCK(U’Zq’+vzq—2qu’)dS 22)
in which
v=uy+f, v =us+f.

By considering the various possibilities for the signs of v and
v’ together with the corresponding values for the step func-
tions g and ¢g’, we find that the integrand of the integral over
C in equation (22) is nonnegative. Thus we again have: The
potential energy is an absolute minimum for the displacements
of the actual solution.

Journal of Applied Mechanics

For the complementary energy we take

Q)= SV We(t')dV - Ss(, T’ euSds

+ Sc (p'*/2K+p'f)dS

for stresses in equilibrium with the given body force and sur-
face tractions and which involve a pressure p’ on the founda-
tion interface C. Using equation (7) and the divergence
theorem, we can show that

otr1-0t={ weanav

| (@22 07 —p) (1) VS,

From equations (20), the integrand of the integral over C is
found to be nonnegative and we see that: The complementary
energy is an absolute minimum for the stresses of the actual
solution.

We can also show that P{u} = — Q{t}, so that the prin-
ciples can be used to bound P{u]}.
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Sufficient Symmetry Conditions for
Isotropy of the Elastic Moduli

Tensor

R. M. Christensen

Symmetry conditions are found that assure isotropy of the fourth rank tensor of

elastic moduli. Crystallography provides the answer to this problem in the two-

Lawrence Livermore National Laboratory,
Livermore, CA 94550
Fellow ASME

dimensional context, namely one axis of three-fold symmetry assures the isotropy of
properties in the plane normal fo the axis. The present work provides the answer in
the three-dimensional problem: 6 axes of five-fold symmetry are sufficient to give

isotropy of the elastic moduli. An important restriction must accompany the present
result. The derivation is given in the special form appropriate to low density
materials which have a microstructure that transmits load according to the axial
deformation of a space network of material distributed into micro-struts. The cor-
responding fiber composite idealization is that of a fiber dominated system, it
therefore follows that if the fibers take the 6 specific orientations in three-space then

isotropy is obtained.

Introduction

One of the basic questions in materials science concerns the
determination of the symmetry conditions that assure
isotropy. Of course isotropy has meaning only when specified
relative to some particular property. For example, thermal
conductivity is isotropic for the case of cubic symmetry.
However, elastic moduli are not isotropic for cubic symmetry.
The crucial distinction in this particular example is that heat
conduction is characterized by a second rank tensor while
elastic moduli are of a fourth rank tensor. In general, the
number of independent constants associated with a particular
property are directly determined by and known for the various
types of symmetry encountered in the field of crystallography.
However, none of the 32 crystal classes has symmetry suffi-
cient to assure isotropy of the tensor of elastic moduli. This
important property is the subject of the present work and suf-
ficient conditions on material symmetry will be determined in
order to assure isotropy of elastic moduli.

The simplest of the crystal classes is that involving cubic
symmetry, This type of symmetry involves 4 axes of three-fold
symmetry and it is sufficient to give isotropy of any second
rank property tensor, thus involving only a single property
(see for example Nye, 1957). The fourth rank elasticity tensor
for cubic symmetry involves three independent constants, one
more than is necessary for isotropy. Thus the symmetry type
to give isotropy of the elastic moduli or compliances must be
of. higher order than that of cubic symmetry. In
crystollography treatments, isotropy of moduli is introduced
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by merely stating it without defining a minimum symmetry
class. From a group theory point of view this corresponds to
saying that the symmetry class has an infinite number of
elements. It is conceivable that this is the only possible solu-
tion to the problem of associating symmetry conditions with
isotropy of moduli, however, this can easily be reasoned to not
be likely in the following sense. Since 4 axes of three-fold sym-
metry assures isotropy of second rank tensors, it is likely that
there is some higher order symmetry type, but with a finite
number of elements, that assures isotropy of fourth rank
property tensors. This will be found to be the case.

Another piece of evidence supports the contention that a
rather simple symmetry class should assure isotropy of
moduli. First, some terminology must be standardized.
Henceforth the term isotropy will be taken to mean isotropy
with respect to the tensor of elastic properties. Also the term
isotropy means isotropy with respect to three-dimensional
Euclidean space. The latter terminology immediately raises the
question of corresponding behavior in two-space. That is,
what are the conditions that give isotropy in two-space? The
answer to this question has been known for many years and
was first determined in the context of crystallography.
Specifically, close-packed hexagonal symmetry implies elastic
properties characterization through the 5 constants of
transverse isotropy. In the plane of the hexagonal symmetry,
the material is isotropic. Thus, in a planar, two-dimensional
context isotropy is assured by close pack hexagonal symmetry
which is mathematically characterized by 1 axis of six-fold
symmetry. So then 1 axis of six-fold symmetry gives isotropy
in two-space; although it is not obvious, so too does three-fold
symmetry. It is reasonable to expect that some rather simple
symmetry form would also give isotropy in three-space. In-
cidentally, the planar use of six-fold symmetry to give isotropy
in two dimensions is widely employed in composite material
laminate construction whereby lamina stacked at 60 deg angles
with respect to each other assure ‘‘quasi-isotropy,’’ meaning
isotropy in the plane.
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The present work will prove that 6 axes of five-fold sym-
metry are sufficient to provide isotropy. However, some
qualifications must be placed upon the derivation. The present
interest in isotropy arose from project work upon very low
density materials (See Gibson and Ashby, 1982, for a discus-
sion of the many features of low density material microstruc-
ture). In some low density materials with appropriate
microstructure, load can be transferred through a network of
uniaxially load-bearing struts in the case of an open celled
material. The material micro-structure involves various orien-
tations of these struts. Previous theoretical work (Christensen,
1986) on these types of materials involved the assumption of
conditions of isotropy through the device of letting the micro-
material load-bearing members assume a random orientation
in three-space. This then avoided the question of determining
the minimum number of spatial orientations needed for
isotropy of these types of materials. In the following work the
manner of proving that 6 axes of five-fold symmetry gives
isotropy is restricted to the low density material type involving
load transfer through uniaxial deformation of micro-material
members.! This restriction corresponds to other common
idealizations. For example, the present results would also ap-
ply to fiber composite materials with the fibers oriented in
three-space with the corresponding restriction being that the
fiber-matrix system is fiber dominated. The present results
also apply to a material whose stiffness is modeled by atomic
interaction, but subject to the proviso that these interactions
are only of the central force type. Primarily though, the pre-
sent proof is effected through use of rigorous results from the
analysis of low density material mechanical behavior. It is
probable, but not proved here, that the solution to the stated
isotropy problem, involving 6 axes of five-fold symmetry, ap-
plies to more general material types as well.

Finally one last clarification should be mentioned. These
symmetry characterizations should not be confused with
features of cell architecture in low density materials. Cell
structure and type is a completely different area from ques-
tions of material symmetry, even though such cell structures
do admit symmetry characterizations. To say this another
way, symmetry types can be specified with no restriction or
implication to the cell geometry. In fact, a cell type
microstructure need not even exist.

Conceptually, the manner of proving that 6 axes of five-fold
symmetry gives isotropy involves showing that for this type of
symmetry the effective modulus of deformation with respect
to a particular direction of uniaxial strain is in fact independ-
ent of direction. Before getting to this proof, it is necessary to
obtain some preliminary results by examining the vastly
simpler two-dimensional problem, and then by examining
cubic symmetry in the three-dimensional case. The starting
point for the present work is to recall some results from the
analysis of isotropic, very low density materials since the
proof relies upon special forms of tensor transformations with
respect to these types of materials.

Low Density, Open Cell Material Isotropic Properties

The stress-strain relations for linear, isotropic elasticity
have the common form

a,-j=)\6,-j6kk+2ueij )

where \ and p are the Lamé constants and the Cartesian tensor
notation is used. In terms of the alternate two mechanical
properties involving the bulk modulus, k&, and p, then equa-
tion (1) has the alternate form

8¢
0y = kdjjep + 20 (ej —-gi) 2

1Budiansky and Kimmel (1986) have demonstrated isotropy for this type of
symmetry in the context of modeling biological materials. See also the
acknowledgment.
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In the context of low density materials, the problem is to
determine the two effective isotropic properties, u and £, in
terms of the amount of material in the space network of struts
and the elastic modulus, E,,, of the strut material itself. This
problem was first solved by Gent and Thomas (1963) in the
context of cellular materials and by Christensen and Waals
(1976) in the context of fiber reinforced materials having ran-
domly oriented fibers. The final results are

_ cE,
=5
and (3)
k — CEIII
9

where c is the volume fraction of material, of modulus E,,.
These are completely rigorous results from elasticity theory
subject only to the idealization of load transfer by uniaxial
deformation of the micro-structure. (See Christensen, 1986,
for elaboration upon this condition.) The other isotropic
properties corresponding to equations (3) are given by

cE

A=—L
15
CEI"
B2 @
1
y=—
4

The value of Poisson’s ratio of 1/4 corresponds to the original
one constant elasticity theory of Poisson and Cauchy whereby
atoms were viewed as material points subject to central force
attraction or repulsion. Obviously this corresponds to a
macroscopic idealization of load transfer through a network
of struts.

It will be of value to have the proper form of the stress
strain relation (1) for uniaxial strain, as specialized to low den-
sity, open cell materials. Combining equations (1), (3), and (4)
gives

O =€ )
where
cE,,

5 (6)
with ¢, being the only nonzero component of strain. The sym-
bol » will be used throughout as the modulus of one-
dimensional applied strain, i.e., uniaxial strain.

It also will be useful to have forms corresponding to those
just given but specified for two-dimensional conditions of
plane stress. The appropriate stress-strain forms are

n=A+2u=

E
ME=ET,7 (€1 +vex)
—p

Op= (€2 + veyy) )]

1—2
013 =2p€)y

where from Christensen and Waals (1976) the appropriate
properties are given by

E=SEn
3
: 3)
V:_
3
and
_CcE,
=73
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{a) Close packed hexagonal, 6-fold symmetry
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{b} 4-fold symmetry and modulus

Fig. 1 Two-dimensional forms

For one-dimensional strain, in the context of plane stress, rela-
tions (7) and (8) give

3
UIIZ?CEmEII ®
where €,, =¢;, =0.

The factors 3/8 in equation (9) and 1/5 in equation (6)
represent the geometric effect of having the load bearing
micro-structure members be randomly oriented in two-space
and in three-space, respectively. These results will be applied
in the next sections to determine conditions on symmetry to
give isotropy.

Two-Dimensional Symmetry Requirements

It will be instructive to have displayed the relationship be-
tween isotropy and symmetry in the two-dimensional case
before proceeding.to the three-dimensional situation. As has
already been mentioned, the two-dimensional case is fully
understood. Following standard crystallography forms, as in
Nye (1957), close packed, hexagonal symmetry implies
transversely isotropic properties, which in the plane of the
hexagonal symmetry are isotropic. Relative to an axis normal
to this plane, the symmetry type is specified as one of six-fold
symmetry.

Figure 1(a) shows the six-fold symmetry form with 3 axes at
120 deg angular intervals. Now stiffness is a fourth rank ten-
sor with the tensor transformation

(10)
where {,,; are the direction cosines. For the present interest in
one-dimensional load carrying members, as the struts in the

micro-scale view of low density materials, only one term in
Gx; is nonzero, thus

G'""Pq = Gijkt’emignjepkeqi’

0y =Gt (11
where
Gjw=E,A for i, jk =1
(12)
=0 otherwise

with axis 1 taken in the direction of the member, and A the

cross-sectional area of the member. With this restriction of
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G the tensor transformation assures an especially simple
form involving trigonometric functions to the fourth power.

With respect to a one-dimensional strain state, as in the
preceding section, the appropriate characterization of stiffness
in the direction 6 in Fig. 1(a) is given by

o o () ot (229
Kl 3cosf)+3cos 3 0+3cos 3 0
where each of the three terms is the appropriately tensor
transformed value for the three material load bearing direc-
tions in Fig. 1(a), and the coefficients of 1/3 are normalizing
terms such that if the three directions were coincident the coef-
ficient would be unity, with » non-dimensionalized. Expand-
ing the last two terms in equation (13) and using trigono-
metric identities reduces (13) to a form independent of 6, prov-
ing isotropy, and giving simply

(13)

n=-o (14)

8

Comparing the result (14) with the known isotropic result
from the previous section, namely equation (9), shows coin-
cidence, as it must. Note that in equations (13) and (14) the
term cE,, appearing in equation (9) has been absorbed into 7.
The simple proof of two-dimensional isotropy just given ap-
peals to the especially simple case of uniaxial load transfer
specified by equation (12). However, this latter restriction is
not necessary, because in crystallography it is well known that
three-fold or six-fold symmetry gives two-dimensional
isotropy, with no further restriction.

Next, the two-dimensionally anisotropic case of Fig. 1(b) is
treated, since it will reveal some features which reappear in the
three-dimensional case. For two orthogonal material direction
axes the symmetry is four-fold and the one-dimensional strain
modulus is given by

n= %cos“ﬁ + %cos4(90 +6) (15)
where again the coefficients of 1/2 are normalizing terms. Ex-
panding the last term in equation (15) gives

_ 4 L
il 2 cos*d+ 3 sin*4 (16)
The dependence upon angle 6 precludes isotropy. It is obvious
that the maximum and minimum values of # are given by

1
NMmax = Mg=0~"7"
2 7

1
Nmin =779=%=T

These maximum and minimum values of modulus under
uniaxial strain conditions bracket the isotropic value of 3/8, as
shown in Fig. 1(b). The maximum modulus direction is seen to
be coincident with one of the material axes while the minimum
modulus direction is, in an angular sense, equidistant from the
two directions of material structure. These two-dimensional
results are almost trivial, nevertheless they will provide
guidance in the three-dimensional case where the manner for
proceeding is far from trivial.

Three-Dimensional Symmetry Requirements

Two cases of three-dimensional symmetry will be studied, 4
axes of three-fold symmetry and 6 axes of five-fold symmetry.
The latter case is the one to be proven to provide isotropy. The
former case, that of cubic symmetry, is studied first since it is
much simpler and it will be helpful to see its features of
anisotropy.

4 Axes of Three-Fold Symmetry. The arrangement of 4
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109.47°

{a) Tetragonal axes arrangement

(b) Properties directions

Fig. 2 Cubic symmetry

axes of three-fold symmetry is obtained from the standard
geometric construction of a tetrahedron or cube. The system
of cubic symmetry is as shown in Fig. 2 where each axis makes
an angle of 109.47 deg with each other axis. In this arrange-
ment the material is distributed into four load bearing direc-
tions, having the stated symmetry.

The modulus due to one-dimensional strain in the direction
of any one axis, as in Fig. 2(a), is given by the nondimensional
form

1 1
7 =T(1)+—i—(3)cos4109.47deg (18)
where the 1/4 factors refer to a normalizing coefficient for
four directions of symmetry, and each of the four directions
transforms according to the special uniaxial forms in equa-
tions (11) and (12). Equation (18) becomes

7, =0.259 19

In Fig. 2(b) the plane is taken such that it makes equal angles
with all four axes. Axis 2 is normal to the plane and also
makes the same angle with all four axes. In direction 2 the one-
dimensional strain modulus is given by
4

1, =%cos“54.735deg 20)
where there are 4 directions with the 1/4 normalizing coeffi-
cient. Equation (20) becomes

7,=0.111 @21
A third direction, labeled 3 in Fig. 2(b), gives the corre-
sponding modulus as

2 .
;= %005435.265deg (22)

becoming
73 =0.222 (23)

The following characteristics emerge from this exercise. It is
no surprise that the modulus is direction dependent since the
symmetry is cubic with three independent constants. As
discussed by Love (1944) and Nye (1957), Neumann’s Princi-
ple asserts that the property under consideration, in this case
the one-dimensional strain modulus, 7, must have the same or

Journal of Applied Mechanics

Fig. 3 Pentagonal dodecahedron

a higher degree of symmetry as that of the basic geometry.
This then guarantees that the directional dependence of » will
have 4 axes of three-fold symmetry and 3 axes of four-fold
symmetry. That is, the shape of the surface for  as a function
of direction will appear cubical in nature, having the form of a
distorted cube. This then is sufficient to establish the ex-
tremum character for % in the directions of the material
members and in the directions that make equal angles with
them, that is in the directions of the diagonals of the cube and
in the directions of the cubical axes, respectively. These ex-
trema could either be maxima or minima. The results (19) and
(21), however, show that

ey =11 =0.259

and (24)

Nmin = M2 =0.110

Thus this type of symmetry is quite anisotropic with the ratio
of maximum to minimum one-dimensional strain modulus be-
ing a little over a factor of 2, (actually 7/3), and bracketing the
isotropic value of 1/5. Furthermore, it is seen that the direc-
tion of maximum modulus is coincident with one of the
material direction axes while the direction of minimum
modulus makes equal angles with all four axes. This behavior
is the same as was found in the preceding two-dimensional
cases, and this characteristic is of importance in the next
section.

6 Axes of 5-Fold Symmetry. With the background pro-
vided in the previous sections there is now enough information
to proceed to the main case, the symmetry condition that
assures isotropy in three-space. As already examined, cubic
symmetry involves 4 axes of three-fold symmetry. Perhaps the
next case to consider would be 5 axes of four-fold symmetry,
however such a condition does not exist. Proceeding further
suggests 6 axes of five-fold symmetry. This is a standard form
and it is associated with two types of regular solids. These are
the pentagonal dodecahedron and the icosahedron. The
former involves twelve faces of pentagonal form while the
later is made up of 20 faces of equilateral triangles. The pen-
tagonal dodecahedron has 20 vertices while the icosahedron
has 12 vertices. In the case of the pentagonal dodecahedron, 6
axes of five-fold symmetry are established by erecting normals
to the faces at their centers, while in the case of the
icosahedron the geometric center of the solid is connected to
the vertices. In the following work the geometric features of 6
axes of five-fold symmetry will be taken from the corre-
sponding geometric characteristics of a pentagonal
dodecahedron.

In the preceding case of cubic symmetry, it was sufficient to
use characteristic angles with a specified number of significant
figures and perform the moduli calculations at that level of ac-

DECEMBER 1987, Vol. 541775

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Direction of modulus
measure

Face

Vertex

Vertex

Mid ed
Face fd edge

Fig. 4 Directions relative to a vertex of a pentagonal dodecahedron

curacy to demonstrate anisotropy. In the present case to prove
isotropy it is not permissible to do numerical calculations to
some specified degree of accuracy. Rather, only closed-form
analytical expressions can be used to obtain the proof. The ob-
vious way to attempt the proof would be to express the prop-
erty of interest as a function of angular orientation in a
spherical coordinate system. With the effects of all six axes
combined, an independence of angular orientation for the
property would prove isotropy. While this simple procedure
was followed in the two-dimensional case given earlier, it
would be extremely complicated to do so here in the three-
dimensional case. Fortunately there is a much more direct
path to the proof of isotropy, to be described next.

A pentagonal dodecahedron is shown schematically in Fig.
3. As already mentioned the 6 axes of five-fold symmetry are
established by the normals to each face at their centers. Thus
in the present problem the one-dimensional material members
are distributed into these six directions. In terms of angular
orientation, it is seen that the direction’coincident with one
axis is an extremum orientation insofar as modulus is con-
cerned. This follows from Neumann’s principle which was just
discussed in connection with the cubic symmetry case. It is not
clear whether it is a maximum or a minimum. Likewise a
direction taken through a vertex is an extremum orientation
because of the following symmetry pattern. Relative to a
direction through a vertex, three of the symmetry axes have an
equal angle with it, while the other three axes also have an
equal (greater or lesser) angle with it. There is sufficient sym-
metry in this to assure an extremum characteristic. Again it is
not known whether it would constitute a maximum or a
minimum. Therefore, what can be said is that the direction
coincident with one material axis and the direction that makes
equal angles with the material axes constitute extremum orien-
tations with respect to modulus, one being a maximum, the
other a minimum. The preceding work on cubic symmetry and
two-dimensional orthotropy suggests that the direction coinci-
dent with one axis provides the maximum modulus while the
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other direction provides the minimum modulus. The proof of
isotropy, to be given next, involves showing that the one-
dimensional strain moduli in these two directions are identical-
ly the same, and coincide with the known isotropic value, and
since these are extremum orientations, the fourth-rank tensor
of moduli must be isotropic.

Begin by considering the stiffness in the direction of a vertex
in the dodecahedron of Fig. 3. The appropriate geometry
needed to determine the direction cosines for all six axes are as
shown in Fig. 4. The appropriate nondimensional modulus for
uniaxial strain is given by

1
7=3 (?) cos0+3 <—é—) cos*f8

where the three nearest material directions are of angle 6 from
the vertex while the three furthest are of angle 8. The factor
1/6 in equation (25) accounts for the presence of 6 axes of
symmetry, and the load bearing element of each direction has
stiffness characteristics given by equations (11) and (12).

The basic geometry of the pentagonal dodecahedron is
taken from the International Tables of X-ray Crystallography
(1959). From this source

@25

6

-
9=—— 26
cos 5 (26)
where
1
r=—(1+3) @7

Angle 8 in equation (25) and Fig. 4, obtained by passing a
plane through the pentagonal dodecahedron, can be written as

B=0+2a (28)
but
r
cosa = 75
and (29)
7372
cosf = _\/W
Combining equations (28) and (29) gives
273 732 2 7
cosB= (—3—— I)W_T(l —ﬁ) (30)

Using 7 from equation (27) after some manipulation then gives
the intermediate form

Vv5—-1

where the identity 1/7=7— 1 has been used. Using 7 again and
raising to the fourth power gives equation (31) as

cosB= (31)

7-3V5
0848 = ———ou—" 32
s =G ©2)
Now, using equation (27) in (26) gives that term as
1
cos46=TS—(9+4\f§) (33)

Combining equations (32) and (33) in (25) gives the final result
for the modulus due to uniaxial strain in the direction of a

‘vertex as

1

Vertex 5
Direction

Next the modulus due to uniaxial strain in the direction of

(34

_an axis of symmetry is determined. The appropriate expres-

sion for the non-dimensional modulus is

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



! +5<1) §42; 35)
=— —}co

7 6 6 Y

where 2+v is the angle between any two axes of symmetry.
Using the pentagonal dodecahedron, the direction cosine
between the normal to the center of a face, and the direction
from the center of the dodecahedron to the adjacent mid edge

location, is given by

Jr
COSsy = T_:))T (36)
Using equation (36) in (35) then gives
1
=— @37
symm 5

axis
From equations (34) and (37) the two extremum values for the
modulus coincide. Furthermore, they are coincident with the
known isotropic value from equation (6) thus the present case
has been established as being isotropic. To state this explicitly,
the condition of 6 axes of five-fold symmetry is sufficient to
provide isotropy of the modulus tensor.

This proof of isotropy is related to material directions in
low density materials microstructure. Similar considerations
apply to fiber reinforced composite materials under the pro-
viso that the material is fiber dominated, meaning that the
matrix contribution to the stiffness is negligible compared
with the fiber contribution. The fibers arranged according to
the 6 directions specified above will then provide isotropy.
Thus, 3 directions suffice for isotropy in two-dimensional con-
tinua while 6 directions are required for three-dimensional
continua,

The present proof is restricted to the cases discussed involv-
ing load transfer according to the simplified stiffness matrix of
equations (11) and (12). In that special case only a single ele-
ment of the stiffness matrix was taken to be nonzero. This
greatly simplified the number of terms to be considered in the
tensor transformation relation. Nevertheless, these special
cases probably cover the most important physical examples of
materials whose microstructure exhibits special forms of direc-
tionality, i.e., low density, open cell materials, and fiber rein-
forced materials. It is likely that the present results can be
generalized to the case where the individual material element is
transversely isotropic rather than just being the special case
considered here of transversely isotropic but with only one
nonzero entry in the modulus matrix. Such a proof, however,

Journal of Applied Mechanics

would require retaining many more terms in the tensor
transformation relations, and this may not be of any special
physical relevance.

Interestingly this same five-fold symmetry has been detected
by X-ray diffraction in full density materials. These are called
quasi-crystalline metals, and they do not fit into any of the
conventional crystal classes (see Rawls, 1986, for a recent
overview of developments in this field). With regard to the low
density materials of primary interest in the present work,
reference can be made to Christensen (1986) for experimental
data demonstrating the existence of these efficient materials.
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Intrinsic Orthotropy

Shape intrinsic orthotropy may be thought of as the type of elastic material sym-
metry possessed by the wood tissue of a tree. Each year’s new growth rings form a
laminate around a central core. The axes of material symmetry lie in the directions
tangent and normal to the growth rings or laminates and along the axis of the
cylinder. Let G, denote the linear elastic orthotropic shear modulus associated with
the axial and tangential directions, the tangent plane of a laminate. It is shown here

that, for a certain class of elastic cylinders with shape intrinsic orthotropy, the solu-
tion to the torsion problem is the same as the solution to the torsion problem for the
isotropic cylinder of the same shape if the isotropic shear modulus G were replaced
by the orthotropic shear modulus G,,.

Introduction

Orthotropic symmetry is characterized by three mutually
perpendicular planes of mirror symmetry. The normals to
these three planes form a symmetry coordinate system for or-
thotropic symmetry and, relative to this coordinate system,
there are only nine distinct orthotropic elastic constants for
linear elasticity. One set of these nine constants consists of the
technical elastic constants which include three Young’s moduli
E,, E,, and E,, three shear moduli G,, G 3, and G,;, and six
Poisson’s ratios, only three of which are independent. Cur-
vilinear orthotropy is the term used to describe a material in
which the orientation of the orthotropic symmetry coordinate
system is different from point to point. Wood is generally con-
sidered to have curvilinear orthotropic elasticity, and the or-
thotropic symmetry coordinate system for wood is oriented so
that one axis is coincident with the axis of the grain, one axis is
tangent to the growth rings, and the third axis is perpendicular
to the growth rings. The term shape intrinsic orthotropy is in-
troduced here to describe the general situation when the sym-
metry coordinate system for orthotropic symmetry of a
cylinder is coincident with the long axis of the cylinder, with
the local tangent and normal to a closed family of curves, one
of which forms the lateral boundary of the cylinder. The
closed family of curves also delineate the laminates of the
cylinder. The types of curvinlinear orthotropy known as cir-
cular (sometimes cylindrical) and elliptic orthotropy are
special cases of shape intrinsic orthotropy and are associated
with circular and elliptical cylinders, respectively. Shape in-
trinsic orthotropy is characteristic of cylinders that are formed
in growth processes like plant and animal tissue or in in-
dustrial lamination processes. In the literature of elasticity
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curvilinear orthotropy is contrasted with rectilinear or-
thotropy in which the symmetry coordinate system for the
material is Cartesian. For rectilinear orthotropy the symmetry
coordinate system is selected so that one axis is coincident with
the long axis of the cylinder and the other two axes lie in the
plane of the cross section. The fact that the symmetry coor-
dinate system is Cartesian means that the system at any point
in the cylinder has axes that are parallel to the axes of the sym-
metry coordinate system at all other points.

The 327 page paper presented to the French Academy by St.
Venant (1855) a century and a third ago remains the single
most outstanding work on the problem of torsion of elastic
cylinders. In that paper St. Venant reviews the basic equations
of elasticity for both isotropic materials and rectilinearly or-
thotropic materials. He considers the problems of extension,
contraction, flexure, and torsion of a cylinder of isotropic and
rectilinearly orthotropic materials. In particular he solves the
torsion problem for an isotropic cylinder of elliptic, of rec-
tangular, and of equilateral triangular cross sections as well as
of many cross sections described by higher order curves with
which simple names are not associated. His figures illustrating
his solutions have appeared in most subsequent texts on the
theory of elasticity. For example, St. Venant’s figure il-
lustrating the warping of an elliptical cylinder due to torsion
(1855, p. 339) is repeated by Love (1944, p. 320), Timoshenko
and Goodier (1970, p. 298), and Sokolnikoff (1956, p. 123).
Other warping illustrations derived from St. Venant (1855) ap-
pear in Love (1944, p. 321), Timoshenko and Goodier (1970,
p. 301), and Sokolnikoff (1956, p. 125 and p. 133). St. Venant
(1855) introduced a coordinate stretch transformation that
reduced the problem of torsion of cylinders with rectilinear or-
thotropy to the problem of the torsion of an isotropic
cylinder. Most subsequent work on elastic torsion, including
the present contribution, could be considered as footnotes to
the treatise of St. Venant (1855).

In this paper it is shown that St. Venant’s method of solu-
tion of the isotropic elastic torsion problem for a particular
cross section also, in many cases, solves the elastic torsion pro-
blem for a cylinder with shape intrinsic orthotropy of the same
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Fig.1 Anillustration of a cylinder of arbitrary cross section with shape
intrinsic orthotropy and the rectangular coordinate system employed

Fig.2 The arbitrary cross section of the cylinder considered. The fami-
ly of curves of which the lateral boundary is a member is iliustrated. The
local tangent and normal to this family form, along with the axis of the
cylinder, the local symmetry coordinate system for shape intrinsic
orthotropy.

cross section if the isotropic shear modulus G is replaced by
the orthotropic shear modulus G,,.

The torsion of a cylinder of arbitrary cross-sectional shape
and with shape intrinsic orthotropy is illustrated with the
Cartesian coordinate system x,;, x,;, X3 in Fig. 1. The local
coordinate system determined by the tangent and normal to
one of the family of curves of which the lateral bounding
curve is a member is shown in Fig. 2. The symmetry coor-
dinate system for the shape intrinsic orthotropy consists of
unit vectors in the direction of the local tangent and normal to
the family of curves and a unit vector in the plane perpen-
dicular to the plane of the family of curves. The two shear
moduli of interest are denoted by G,, and G,, and are referred
to this symmetry coordinate system. )

In the following section St. Venant’s solution of the torsion

Journal of Applied Mechanics

problem for an isotropic cylinder of arbitrary cross section is
briefly summarized. In the subsequent section, a condition is
obtained that determines the class of cylinders with shape in-
trinsic orthotropy for which the solution to the torsion pro-
blem is given by the solution to the torsion problem for an
isotropic cylinder of the same cross-sectional shape, but with
the isotropic shear modulus G replaced by the orthotropic
shear modulus G,,. In the next section, two specific examples
of the class of c¢ylinders are developed and, in the section
following that, St. Venant’s (1855) solution for the torsion of
a cylinder with rectilinear orthotropy is reviewed and
compared with the solutions obtained here. The final section
contains a discussion of results.

The Torsion Problem for Isotropic Cylinders

St. Venant (1855) generalized the solution of Navier to the
torsion problem for a right circular cylinder of isotropic
material to the solution for a right cylinder of arbitrary cross
section. St. Venant’s assumption concerning the components
u,, uy, uy of the displacement vector in an elastic cylinder of
arbitrary cross-sectional shape can be expressed as

U= —0XyXy, Uy =X X3, U3 =ap (X[, X;), )
relative to the Cartesian coordinate system illustrated in Fig.
1. The function ¢ (x,, x,) is called the warping function and «
is a constant representing the twist per unit length of the
cylinder. The only nonzero components of the strain tensor
are determined from eqution (1) using the strain-displacement
relations

a [ 0¢
E = < > ’ E =
23 2 \ox, +X) 13 3

and the only nonzero components of the stress tensor are
determined from equation (2) using the isotropic form of
Hooke’s law, thus
d¢ d¢
T. =ozG<— +x>, T, =(xG(—— —x>. 3

23 ax2 1 13 ax‘ 2 ( )
The vanishing of all the components of the stress tensor except
T, and T, satisfies all the stress equations of equilibrium ex-
cept for the condition

Ty N aTy,
0x, ax,

“ (2 -n), @

dx,

=0. @)

This condition is satisfied if the warping function ¢ (x,, x;,) is
harmonic in the region of the cross section 4,
d%¢ 3¢

7t 2
0x1 0x3
as can be verified by substitution of equation (3) into (4). The
lateral boundaries of the shaft are assumed to be free of sur-
face tractions. This condition is satisfied if the shearing
stresses T, and T, satisfy the condition

Tycosy + Tyysing =0 ©)

on the lateral boundary denoted by dA4. It is convenient to
define the quantity A by

V2=

=0 in A, )

A=Tycosy + Tyssing = (—:}?— —x2) siny + <—8(?% +x1)cosulx
1
M

where the second equality follows from the first and equation
(3). The boundary condition (6) then takes the form

A=0o0mndA. )
The total torque T carried by the shaft is given by

T= SA (X, Ty3 —x, T13)dx dx,, ©)

and can be expressed by the simple formula
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T=Glux 10)
where
o E
J= SA (x% +x3 +x17,’z, —X, 6_x:-)dxldx2' (11)

The method of St. Venant reduces the torsion problem for a
right cylinder of arbitrary cross-sectional shape and of
isotropic material to the determination of the warping func-
tion ¢ (x;, x,) that is harmonic in 4 and satisfies the boundary
condition (8) on dA. :

The Torsion Problem for a Class of Cylinders With
Shape Intrinsic Orthotropy

The solution to the torsion problem in the case of shape in-
trinsic orthotropy will closely parallel the solution for the
isotropic case; the only equations that will be different are
those expressing Hooke’s law. In the local tangent coordinate
system in which the material is orthotropic, the two shear
moduli of interest are G,, and G,,. The elastic coefficients
Cy33s Ci31z, and C,y3=C) 33 in the Cartesian coordinate
system are obtained from G, and G,, using the fourth rank
Cartesian tensor transformation rule for rotation from the »,
t, z system to the x,, x,, x5 coordinate system, thus

Copps = sin?YG,, +cos*yG,,,,
Ciai3 = cos2yGy, +sin2yG,,,
Chaps singcoxy (G,, —G,).
The only angle involved in this coordinate transformation is ¢,

as can be seen from Fig. 2. The stresses Ty; and 75 are related
to the strains F,; and E|; in the Cartesian system by

Ty =2C33 03 +2Cy 3 E3,
T3 =2C513E53 +2C 33 E 5.

The assumption (1) of St. Venant is employed in the solu-
tion of the problem with shape intrinsic orthotropy. It follows
that the strains E;; and E,; are then given by equation (2).
Substitution of equations (2) and (12) into (13) and subsequent
use of the definition (7) gives expressions for the stresses 7T,
and Ti5:

(12)

(13)

do
Ty =aG,, (E)Z +x1> +aA(G,, — G, )cosy,
(14)
3¢ .
T3 =aG,, (W —xz) +alA(G,, — G, )siny.
1

When these stresses are substituted into the boundary condi-
tion (6), condition (6) is again satisfied if relation (8) is
satisfied. Observe that if the relation (8) is satisfied not only
on 34, but also in A, then it can be used as an identity in the
formulas (14) for the shearing stresses, and-they reduce to the
following simple expressions

d¢ a9
T23:aGtz<W +x1), T3 =aG, (W *xz>-
2 1

(15)

These formulas for the shearing stresses are identical with
those given by equation (3) for the isotropic case except that
G, replaces G. Thus we can conclude that if ¢ (x,, x,) and the
family of curves of which the lateral boundary is a member
satisfy the relation (8) in 4 as well as on dA4, then the solution
for shape intrinsic orthotropy is the same as the solution for

the isotropic case for a cylinder of the same shape if the’

isotropic shear modulus G is replaced by the orthotropic shear
modulus G,,. The class of cylinders with shape intrinsic or-
thotropy for which this is true are those for which the warping
function ¢ (x,, x,) and the angle ¥ satisfy the relation

A= (g)—i— ~x2)sin¢+ (—:;?2— +x1>cos¢=0

(16)
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everywhere in the cross section of the cylinder. Observing
from Fig. 2 that

d.
tany = — —o2 amn
dx,
the condition (15) may also be expressed in the form
i)
L4 )
2 =4 (18)
0¢ dx,
— =X
ax, 2

The left-hand side of this expression represents a property of
the warping function ¢ (x,, x;) for A and the right-hand side
represents a property of the family of bounding curves of
which the lateral boundary, dA4, is a member. Alternatively,
from equations (2) and (3) it is easy to see how to express the
result in terms of the shearing stresses or shearing strains.

The results presented above apply to the case of hollow
cylinders for which the interior and exterior bounding curves
of the lateral cross section are of the same family. It follows
then that the formulas of Bredt (1896) for the torsion of thin-
walled isotropic cylinders also apply to the torsion of thin-
walled cylinders with shape intrinsic orthotropy if the
isotropic shear modulus G is replaced by G,,.

Examples of the Selected Class of Cylinders With Shape
Intrinsic Orthotropy

In this section two examples are given of the class of
cylinders with shape intrinsic orthotropy for which a solution
to the torsion problem has been obtained. The examples are of
a cylinder of elliptic cross section and a cylinder of general
type considered by St. Venant (1855). For an elliptic cylinder
made of an isotropic material the warping function ¢ (x;, x,)
and family of ellipses of which the lateral boundary is a
member are given by

g1
(,b(x], x2)= —EE—-'—Txlxz, (19)
X\ 2 X \?
(—a-) +(Ea) =1, 0<éxl, (20)

respectively, where £ is the ratio of minor axis length to the
major axis length. The family of ellipses is obtained by varia-
tion of the major axis ¢ while holding £ fixed. Using equation
(19) it is easy to see that

i
ax ! — 2x
.0 @
i) X X3
ax, 2
and from equation (20) it follows that
dx, £2x,
=— ) 22
dx, X 22)

thus, from equation (18), the condition for this isotropic solu-
tion to be a solution for shape intrinsic orthotropy is satisfied.
It follows that the nonzero strains and stresses in the elliptic
cylinder with shape intrinsic orthotropy are given by

£rax, — QX
Eyp= — = -
23 R 13 ire (23)
and '
Ezaxl X,
T3 =2G, Tre Ty3=-2G, Tre (24)

respectively, and the total applied torque T by
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Fig.3 The family of curves is given by equation (28), with ¢ = — 0.1. The
outermost curve corresponds to a = 1.5448, the next ones to a = 0.9045,
a=0.4438, a =0.1348, and a = 0.0425, respectively, as the closed curves
tighten on the center of the shaft.

X

(1,0)

X2 an (0,0)

Fig.4 The family of curves given by equation (28) with a = 1 and various
values of £. From the outermost curve to the innermost, £ = —0.207,
= —0.1, £=0.0(a circle), £ =0.1, £ =0.2, £ = 0.3, £ =0.4, and £ = 0.5. This
figure is adapted from St. Venant (1855). In a similar plot given by
Timoshenko and Goodier (1970, Fig. 152, p. 267), the curve corre-
sponding to £ = — 0.207 above is mislabeled as 1/2 (VZ—1)= +0.207.

Ea
T= —_IF 7l'a4G,z.
The shear stress T, referred to the symmetry coordinate
system for shape intrinsic orthotropy is the only nonzero stress
compouent in that system. It is related to 7,; and T3 in the
Cartesian system by

(25

Ty =T,siny, T\3=—T,cosy, (26)
and it follows from equations (24) and (26) that
WA T A
T,= —121—-521—2 G 9. @7

As a second example, a solution for an isotropic cylinder
described by a fourth order curve given by St. Venant (1855) is
considered. The warping function ¢(x,, x,) and family of
curves of which the lateral boundary is a member are given by

& =28x%, (x] — x}) 28)

and
xt+x5—E(xt+of—6xtxd)=a—¢, (29)
respectively, where ¢ is a parameter of curve shape, and dif-

Journal of Applied Mechanics

ferent values of a correspond to different members of the
family of curves. In order that the curves described by equa-
tion (29) be closed it is necessary to require that
a>0 |, if £=0,
1>4(t—-a)t> -1, if £<0, and
0>4(¢—a)t>—1 if £>0.
Fig. 3 represents a typical cross section of the shape given by
equation (29) when £ = —0.1. The curves for the same value of
¢ and different values of @ represent the everywhere-dense set
of local curves which determine the direction of the local sym-
metry coordinate system. When § rather than g is varied in
equation (29), different shaped curves are determined, as
shown in Fig. 4. This figure shows that equation (29)
represents cross-sectional shapes that vary from almost square
to circular. Using equation (27) it is easy to show that

(30)

d¢
0x, = (1428063 - D)), 1)
ap (1+2EGxT -3,
0x,
and from equation (29) it follows that
o, _ (+ 23X —xx, 32)
dx, (1 +28Gx3 ~x3)x,

thus, from equation (18), the condition for this isotropic solu-
tion to a solution for shape intrinsic orthotropy is satisfied. It
follows that the nonzero strains and stresses in this cylinder
with shape intrinsic orthotropy are given by

Eyy = oy (1 +28(3x3 — x1)),

Ejy = —ax,(1+2£3x1 — x3)), 39
and
Ty =2Gax,(1+2£(3x3 —x1)), (34)
T3 = = 2Gax,(1+2£(3xF - x3)),
respectively.

St. Venant’s Solution for an Elliptic Cylinder with Rec-
tilinear Orthotropy

It is interesting to compare the results obtained here for an
elliptic cylinder with shape intrinsic or elliptic orthotropy to
the results obtained by St. Venant (1855) for an elliptic
cylinder with rectilinear orthotropy. In the case of rectilinear
orthotropy the shear moduli of significance are G,; and G,;.
These are the orthotropic shear moduli in the rectilinear or-
thotropic symmetry coordinate system whose axes are coinci-
dent with the major and minor axes of the ellipse and the long
axis of the shaft. This solution is described, for example, by
Hearmon (1961) or Lekhnitskii (1963). In this case the warp-
ing function ¢ (x;, x,) is given by

£G3 -Gy
X|y Xp)= ————— X1 X5, 35
o (xy, X3) F2G + G 1%2 (35)
and the strains and stresses by
2G -G
E23=fl—ﬂxl’Ela=_22—ﬂxz_’ (36)
£°G;3+Gy £2G ;3 + Gy
and
282G ;G0 —2G3Gpyax
T23=2—13§-———1, 13=___213¢, (37
£°G13+ Gy £°G3+ Gy
respectively. The torque 7 applied to the shaft is given by
T= 012302353”__4“ . 3%
£G;+Gy

The resuits for the elliptic cylinders with rectilinear orthotropy
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and shape intrinsic or elliptic orthotropy are easily compared.
The warping functions for these two solutions are given by
equations (35) and (19), the strains by equations (36) and (23),
the stresses by equations (37) and (25), and the total torque by
equations (38) and (25), respectively. The results recorded
above reduce to the corresponding results for the elliptic shaft
with shape intrinsic orthotropy if

Gi3=Gn=G. (39
Specifically the use of equation (39) reduces equation (35) to
(19), equation (36) to (23), equation (37) to (24), and equation
(38) to (25).

The Case When the Shear Modulus Varies

In this section the situation in which G,, is a function of x,
and x, is considered. The unit vectors n and t illustrated in
Figs. 2 and 3 are represented in terms of ¢ by

(40)

It is shown here that if G,, does not vary in the tangential
direction,

n=sinye, +cosye,, t= —cosye, +sinye,.

t+vG, =0, )

then the solution to the torsion problem for shape intrinsic or-
thotropy given above is still applicable even if n+ Vv G,, is not
zero. Thus G, can vary in the direction n, or from laminate to
laminate. To prove this result it is assumed that G, is a func-
tion of x; and x, and the stresses given by equation (15) are
substituted into equation (4); then equation (4) is rewritten as
acosyG,, Vi +alh %—f'ﬁ +

a(——— ~x2)t- vG,=0,
2

where the final representation was obtained by use of equa-
tions (40) and (7). The result (42) shows that if te VG, and A
are zero everywhere in the region, then equation (42) reduces
to (5) and the solution to the torsion problem for shape intrin-
sic orthotropy is recovered even though nev G, need no
longer be zero.

In the remainder of this section the case when G,, is a func-
tion of x, and x, satisfying the relation (41) is considered.
Substitution of the stresses given by equation (15) into (9)
yields the following formula for the total torque on the shaft:
d¢

g )
— =X, — )dx,d.
0x, 2 ax, 1%

(42)

T= L oG (X, x2)<x%+x§+x1

(43)

In the case where the shaft is composed of N laminates with
different G,, shear moduli, the total torque is given by

N
T=a ), GLJ" (44)

n=1
where G7, is the shear modulus G, for the nth laminate and J*
is the J for the nth laminate, the formula for J” being given by
equation (11) with A4 set equal to A", the cross-sectional area
of the nth laminate.

Discussion

The advantage of the result presented here is that it extends
a class of known isotropic solutions for the torsion of a shaft
to the case of shape intrinsic orthotropy. It can be shown that
the pure bending and axial extension or compression of a
(shape intrinsic orthotropic) shaft with v,, = »,, are the same
as for an isotropic material (shaft) if one replaces the isotropic
Young’s modulus E by the orthotropic axial modulus E.
Thus it has been shown here that the problem of the combined
torsion, pure bending, and axial extension or compression of a
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shaft with shape intrinsic orthotropy, for which »,, = »,,, has
the same solution as the same problem for an isotropic
material, provided the isotropic elastic moduli £ and G are
replaced by £, and G, respectively, and the condition (18) is
satisfied. Since the determination of the transverse shear in
engineering beam theory depends on the axial normal stress, it
follows that engineering beam theory can be extended from
beams of isotropic material to beams with shape intrinsic or-
thotropy, for which »,, = v, by the same prescription. In
fact, much of the content of texts on the mechanics of
materials or strength of materials can be extended from
isotropic materials to materials with shape intrinsic or-
thotropy, for which »,, = »,.

There is an interesting point concerning the expeimental
evaluation of the shear moduli G, and G, for shape intrinsic
orthotropy. For any of the class of solutions obtained here for
the torsion of a shaft with shape intrinsic orthotropy, the
shear modulus G,, can be experimentally determined by a tor-
sion test of the entire shaft. Since G, is the only elastic cons-
tant involved in the formula relating to angular deflection, on-
ly one test is necessary. For example, if the shaft is circular it
follows from equation (25), by setting £ equal to one, that

woat

— G,
Thus, by measuring 7, ¢ and « in an experiment, one can
determine G,,. However, if one takes a small circular torsion
specimen from a cylinder with shape intrinsic orthotropy, a
specimen whose axis is parallel to the axis of the shaft but
which is not concentric with the shaft, the small specimen will
appear to have rectilinear orthotropy and the relation between
applied torque and angular deflection will involve both G,
and G,,. The formula relating the applied torque T to the
angle of twist per unit length for a circular shaft with rec-
tilinear orthotropy is given by equation (38) with £ equal to
one, thus

T= (45)

T 7raa4< 2G,,G,, ) (6)

T2 \G,+G,

The effective shear modulus of the small specimen is thus seen
to be a combination of G,, and G,,.
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Poroelastic Solution of a Plane
Strain Point Displacement
Discontinuity

E. Detournay
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Tulsa, OK The plane strain fundamental solution of an instantaneous and a continuous point
displacement discontinuity is presented in this paper. These solutions, together with
A. H-D. Cheng the one of a fluid source, are obtained on the basis of a decomposition technique

proposed by Biot, which separates the displacement field into a time independent
part satisfying an elasticity equation, and an irrotational part governed by a diffu-
sion equation. We begin the derivation by presenting a continuous edge dislocation.
The continuous point displacement discontinuity is obtained by differentiating,
along the direction of the cut, the corresponding edge dislocation solution. The in-
stantaneous influence functions are determined by further differentiating with
respect to time. The displacement discontinuity and source singularities can be
distributed on a crack surface to create displacement and flux jumps required for the

Department of Civil Engineering,
University of Delaware,
Newark, DE

numerical modeling of a fracture in a poroelastic medium.

Introduction

Crouch and Starfield (1983) pioneered the displacement
discontinuity method (DDM) as a means of solving boundary
value problems in elasticity. It has become a popular
numerical method in the field of geomechanics, because of its
ability of handling rock discontinuities and fractures (Crouch
and Starfield, 1983; Wiles and Curran, 1982; Vandamme,
1986). The concept of the DDM can be traced back to the
mathematical theory of dislocations (Bilby, 1968; Dundurs,
1969; Mura, 1982); in its current implementation, however, we
view it as a variation of the indirect boundary element
method, in which a fictitious density of a displacement discon-
tintuity singularity, instead of Kelvin’s point force, is
distributed along the boundary of the elastic domain. A boun-
dary element procedure, which includes boundary discretiza-
tion, polynomial interpolation, etc., is then applied for the
numerical solution.

The DDM is particularly appealing for problems involving
fractures and discontinuities because the fundamental solution
contains a displacement jump, thus requiring only one layer of
singularity to be distributed along the crack. In addition, the
so-called fictitious density of singularity on the crack surface
has the physical significance of being the actual displacement
discontinuity associated with the fracture.
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The DDM is presently limited to solving elastic problems.
However, many geomechanics problems, such as soil con-
solidation (Cheng and Liggett, 1984), hydraulic fracturing
(Cleary, 1978), and stabilization of faults (Rudnicki, 1985) are
dominated by coupled diffusion-deformation effects, and
should therefore be analyzed within the framework of Biot’s
theory of poroelasticity (Biot, 1941). In order to extend the
original DDM to poroelasticity, the fundamental solutions of
an impulse point displacement discontinuity and an impulse
point source are required.

The objective of this paper is to derive these solutions. In
the process, a general methodology for deriving singular solu-
tions in poroelasticity is outlined.

Poroelasticity

The theory of linear, isotropic poroelasticity was introduced
by Biot (1941) for modeling the response of fluid-saturated
porous solids. As in the original formulation of Biot (see also
Rice and Cleary, 1976), we choose the basic dynamic variables
to be the total stress o, and the pore pressure p. The cor-
responding conjugate kinematic quantities are the solid strain
e;, derivable from an average solid displacement vector u;,
and the variation of fluid volume per unit reference volume, {.

A consistent set of five material parameters for the linear
isotropic theory is (Rice and Cleary, 1976): the shear modulus
G, the drained and undrained Poisson’s ratio » and v,
Skempton’s pore pressure coefficient B (ratio of the induced
pore pressure over the variation of confining pressure under
undrained conditions) and the permeability coefficient «
(which can be expressed as k/u, where k is the intrinsic
permeability and p the dynamic fluid viscosity).

The governing equations of linear poroelasticity consist of
the following (Biot, 1941; Rice and Cleary, 1976):
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e constitutive relations

2Gy
GUZZG€U+"1—_*2—1}— 6,-je—a6,-j 1)

2201 2
p=— 2GB(1+v,) ot 2GB*(1 -2v)(1+v,) ¢ @

3(1-2»,) 9(v,—»)(1—2»,)
e equilibrium equations .
0,5 = —F; €))
® Darcy’s law
g;i=—«(p,;,—f;) 4)
e continuity equation
‘/‘gti +4:i = (5)

where e = ¢; is the volumetric strain, g; the specific discharge
vector, F; the bulk body force (fluid and solid), f; the fluid
body force, v the volume rate of injection from fluid source,
and « is the Biot coefficient of effective stress (Biot and Willis,
1957), defined as
3(”11 - V)
Q=
B(1—-2v)(1+v,)
The foregoing can be combined to yield a set of field equa-
tions in terms of u; and {. Joining equations (1) through (3)
gives an elasticity equation with a fluid coupling term
G . 2GB(1+v,)
1-20, " 3(1-22,)
Combining equations (2), (4), and (5), and also using equation
(7), produces the following diffusion equation:

lile - kB(1+v,)
= = " o f
ot 4 3(1— ”u) ii Kf,,: +v ®)

©®)

GV2iu;+

§',i= —F; N

V2t

where
_ 2kBXG(1 — v)(1 +»,)?
91 —-v,)(v,—»)
is a generalized consolidation coefficient (Rice and Cleary,
1976).

It should be noted that the body force and source terms in
the above field equations can be used to introduce field
singularities, such as point force, source, dipole, etc., into the
solution.

®

Decomposition of the Displacement

Biot (1956) introduced the following decomposition which
allows further uncoupling of the field equations (7) and (8):
B(l1+
ui=u?+Aui=u;’+—~—(—‘l")— ®,;
3d1-»,)
If the first part of displacement field is required to satisfy
Navier’s equation of elasticity with undrained coefficients,
i.e.,

10)

G
1-2p,
then it can be proven, from equation (7), that the potential & is
defined by the identity

GVv2iug +

[/
e;=~F;

(11

{=vie

Substituting the preceding expression into equation (8), and
relaxing a Laplacian leads to a diffusion equation for &

0P

at

—CcV =g +g,+8+Y, (13)
in which
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12) -

kB(1+v,)
V2g1=mﬁ“‘ Wi
Vigy=—«fi;
Vigy=vy 14
V23, =0

The completeness of the above solution has been proven by
Biot (1956).
It is sometimes more convenient to use an alternate right-
hand side for equation (13}, in the form:
0P 3c(1—v,)(v,—»)

—_ 2h = —
FYRRERA Sy TS Bap v e e vy B

e’ +g,+8+ Y

(15)
In the above, the body force F; has been eliminated using the
divergence of equation (11).
Another useful relation can be obtained from equations (4),
(5), and (12)

aP
ot

where V2y, = 0. The previous equation leads to an alternate
definition of ®:

—kp=8+& +y, (16)

4 !
=k par+ | (g ++vna a7

The above results suggest that the displacement field can be
decomposed into an ‘‘undrained” part, u?, satisfying an
elasticity equation with undrained coefficient; and an irrota-
tional part derivable from a potential, ®, that is governed by a
diffusion equation. Although the governing equations, (11)
and (13), appear to be fully uncoupled, except for a body force
term, the coupling generally persists through the boundary
conditions in terms of the new variables. Hence, the ‘“‘un-
drained’’ part, u¢, is generally time-dependent and cannot be
solved independently from the variable &.

However, for problems in infinite domains, such as solu-
tions of free-space Green’s function, the above restriction
does not apply. The undrained part, no longer subjected to a
transient boundary condition, becomes time-independent; it
then follows that the time-dependency is completely absorbed
in the irrotational part. The harmonic functions ¥, and ¥, can
also be dropped. The task of finding the fundamental solu-
tions for poroelasticitiy is thus reduced to seeking the par-
ticular solution of two uncoupled, singular equations. The
complete poroelastic solution is then the summation of the un-
drained and the transient parts.

Displacement Discontinuity

To derive the solution of a plane strain point displacement
discontinuity, let us start from the solution of a continuous (in
time) edge dislocation, that is located on the positive x, axis
(see Fig. 1). Two in-plane dislocation modes are considered,
namely the slip mode and the normal mode. The displacement
jump across the cut is characterized by the following
relationship:

lim u%—~ lim u®=H(f)H(x,)d; (18)

xp— 0~ Xp—0+
where d; is the displacement discontinuity, and H the
Heaviside unit step function. The superscript ec stands for
edge dislocation and continuous.

The instantaneous point displacement discontinuity re-
quired for the DDM can be obtained by differentiating the
edge dislocation solution with respect to time and along the
direction of the cut. The following displacement jump is then

" observed
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Slip mode
“normal mode

Fig. 1 Edge dislocation

lim wf— Hm wf =6(1)6(x))d;
xy—~0- X3—0+

(19)

in which 6 is the one-dimensional Dirac delta function and
where the superscript di denotes displacement discontinuity
and instantaneous. The above instantaneous displacement
discontinuity can be integrated along a segment of fracture
and over an interval of time using certain shape functions, to
create the desired displacement discontinuity element needed
in the numerical method.

The two-dimensional, poroelastic solution of a continuous
edge dislocation can be obtained using the following pro-
cedure. First, it is recognized that, at the instant of loading, a
poroelastic material behaves as an elastic one with undrained
material coefficients. Therefore, in the decomposition, the un-
drained displacement part, ¢, is required to fully absorb the
initial value and to be time-independent. This ensures that
equation (11} is satisfied. Secondly, the irrotational part, ®,
must satisfy equation (13) with zero initial condition. As a side
condition one must also check that the time-dependent
displacement field, obtained by differentiating ®, is con-
tinuous and does not contain any additional displacement
discontinuity. The displacement jump condition, equation
(18), is then satisfied at all times.

Consequently, the initial displacement field is given by the
classical elastic solution (Dundurs, 1969), with undrained
coefficients:

@s5)® =—4—7r(1%)— H(OR(-7,)0+7,7 ]

(ug5)° = —4—#(1—1_? H(OI =20l r+7,7,]
(uf5)°=m H(OI(1~20,)In r+7,7,] (20)
ws)° =4—7F(-II_T H(0[201 - 5,07 7]

where r is the radial distance from the origin; r; = x;/r; and, 6
is the polar angle, which has a branch cut along the positive x,
axis (0 < 6 < 27), see Fig. 1. Note that the first subscript of
displacement denotes the displacement component, while the
second subscript is reserved for the dislocation mode (1 for
slip, 2 for normal mode).

The presence of an edge dislocation is equivalent to the in-
troduction of a singular body force Fy, to the right-hand side
of equation (11) (the second index again refers to the edge
dislocation mode). The body force in turn becomes a forcing

Journal of Applied Mechanics

function in the diffusion equation (13) or (15). Substituting
equation (20) into (15) and arbitrarily setting
82 =83 =1, =0 yields:
¢ v = 3c(v, —»)

ot t o 2aB(1—-»)(1 +v,)
where the subscript for ¢ denotes the dislocation mode, and ¢;
is the two-dimensional permutation symbol, (i.e., €;; = ey =
Oandep = —ey = 1).

The physical significance of the preceding equation becomes
clear after applying the Laplacian operator:

o _ 3e(v,—v)
o VT B+

in which §(x) = 6(x,)8(x;,) is the two-dimensional Dirac delta
function. The time-dependent part of the poroelastic edge
dislocation is thus created by the spatial derivative of a fluid
volume source, which is also known as a dipole (opposing
source and sink). In the above, the dipole is in the positive x,
and negative x, direction, for slip and normal dislocation
modes, respectively. As pointed out by Rudnicki (1987) the
orientation of the dipole enforces a no-flux boundary condi-
tion across the dislocation line for the normal mode, and a
constant (zero) pressure condition for the slip mode.

To solve equation (21), we first begin with the solution of a
continuous source in a poroelastic medium (see Appendix) and
then differentiate the expression. After some algebra, we
obtain

H()e;(Inr) ; (1)

vige H(#)e;6(x) (22)

o _ 3(v,—v)

T 8rB(1+v,)(1—-) 23)

ey lE( () +E2(1— et
where ¢ = «r?/4ct. From equation (10) the time-dependent
displacement field for the edge dislocation is then given by:

v, —v
Srl— (i —r,) L0k

—2rr ) E2(1— e~ E) 4 8, B (53]

Augf =
(249

Once again, the second subscript of the displacement denotes
the edge dislocation mode. The foregoing field is continuous
across the positive x; axis, as required in the original
postulate.

The influence function for the stress field, of, is deduced
from equation (24) using the strain displacement relations
and the constitutive relations, (1) and (2). As before, the solu-
tion can be separated into an undrained part, (¢%%)°, and an
evolving part, Acf;

G 1
(0’6.‘;()0 =m H(f)éke —r"(aigr,j
00 ;=81 g=2rir ir ) 25)
C G(V - V) 1 2
Ach, = —m €xe T[Z(r,ir,jr,[—éyr,e)e £
+ B+ 8pr + 87— drur r )E"2(1— e~ ] (26)

where the last subscript of the influence function refers to the
dislocation mode. It is of interest to remark that by setting &
= 1 in equations (25) and (26), a solution identical to the slip
dislocation solution derived by Rice and Cleary (1976), using
Muskhelishvili’s complex variable technique, is obtained.
The aim here is to derive the fundamental solution of an in-
stantanéous point displacement discontinuity. Before pre-
senting such solutions, however, it is instructive to examine
the limiting behavior of a continuous point displacement
discontinuity. Differentiating equations (20) and (24) with
respect to x;, the following set of equations is obtained
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acyo — —— _ H(()—[(1-2 8;;
(uf} =y O =) @yr
+8pr ;=81 ) +2r,r 1 4] 27
. v, —V 1 2
M = Ty 7 2 dar e
F(8pr 88 i+ Oyr s —4r i ir,)E (1 - et (28)

The asymptotic behavior of the combined displacement field is
such that

1
4w(l — )
+0pF, j—0pk ) +2rr 1)l

1
lim u;j-f = - “"_“[(1 —27) (6,7,

{—0or o

29

where # = v, ast — 0, and, » = » as? — oo, Thus, as ex-
pected, the poroelastic medium responds to the loading
generated by a displacement discontinuity as an undrained
material at # = 0" and as a drained material as ¢ — . Note
that the above expression is identical to the solution of an
elastic point displacement discontinuity obtained by Wiles and
Curran (1982) with the appropriate Poisson’s ratio
substituted.

Finally, we differentiate with respect to time to obtain the

instantaneous displacement discontinuity solutions:

1
4r(l-v,)
—8pr ;) +2rr ;)]

. 1
i) =— 5(1)7[(1‘“2%)(5[!”,2 +0pr,

(30

c(v,—v) 1 2
) (—p) 7 2Carimrir ratte

— By, + 8pr 4 8yr, —Arr )1 —e 8 — et
1
;

Audi =

(€)Y
(of)° =

m S =5 [8ryr jr = 2Biar it j + 84T il 2)

= (Bidjp + 8 b — 8610)]
—%E%)—— —}4—{ [24r,;r ;r,r s
= 12(0;r k7 2 + 07 i ;)
— 3By + 8dn — 38011 — (1 + £D)e ]
—[12r 1 14l 2 —6(0a7 i1, j + 857 4T 2)
— 28,8, — 28,0, + 48,5518 %
—{4rr v r o — 40y o+ 841 ir ;) + 46,-j6k2)]£6e—52 }
BG(1+v,)
3n(l—v,)

(32)

R

adt

(33)

) 1
(pf)e = B(I)r_z(aiz_zf',ir,z) (34

4BGe(1+v,) 1

di = —[8pte " +2(r 7, —8p)E0e ] (35
Ap' 3,".(1_1/“) rA[ IZE € (r,lr,Z 12)5 4 ] ( )

) 3c(v,—») 1

diyo —__ ~"YU8 "7 s(D)—(-F
(@) = Tpa iy O e

+ 8l i+ Oyr,—Arr ir ) (36)

; 6c2(v,—v) 1 .

Agf == wB(1 —V;(l +v,) 7‘—5_[2(6‘2’»!4'61'/",2"351'2’,:‘)56‘—’ £

+A4@pr i —rr, jr,z)fse"le

In problems involving fluid flow in the fracture, it is also ex-
pected that there will be a flux jump across the crack surface.
To account for this flux discontinuity, sources need to be
distributed along the surface. The instantaneous source solu-

tion for poroelastic medium is obtained by differentiating the -
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6N

continuous source solution (given in the Appendix) with
respect to time, which yields the following:

B(+p,) 1

Sl 2 ML (11— —¢2 38
w7 ) 38)
 BG(1+y,) 1 "
ey A2 ) (1me)
—20,—r,r )t 39)
2 - 2
y_ 2BG(1-)(1+,) _12_.526_52 “
9n(l—w,}(v,—v) r
gi= i} rikte=¥ 1)
T r !

Discussion

The influence functions of an instantaneous displacement
discontinuity and source can be distributed on the locus of a
fracture to generate a desirable solution field. In particular,
the following integral equations can be exploited for the
numerical solution of a boundary value problem

!
oy ={, | detonogx—xst=ndroods

!
+{ | ssmayx—xst-nar cods @)
!
pun={ | denpio-xst-ndrods
!
+{, | 906mp a—xst = ods @)

in which 9 is the normal flux discontinuity, x is the field point
where the stress or the pressure is evaluated, and x is a point
on the fracture; both x and x are referred to a global coor-
dinate system (see Fig. 2). The influence functions, denoted by
an asterisk (*) in equations (42) and (43), are defined as
follows:

O = bl Ol (X" 5 —17)
pi=pfi(x';t—r)
o =Ly bypo (x50~ 1) 44)
pr=p*(x';t1=1)
where §; = £;(x) are the directional cosines between the local
(crack) and the global coordinate system, and x’ the field

point in the local coordinate system (see Fig. 2). Transforma-
tion between the two coordinate systems is done according to

X2

X

Fig. 2 Global and local crack coordinate systems
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x{=8; (x;—x;) (45)
Equations (42) and (43) can be discretized, numerically in-
tegrated in both time and spatial coordinates, and collocated
for the known stress and pressure boundary conditions along
the crack surface. These operations result in the formulation
of a linear system of algebraic equations which need to be
solved for the displacement and flux jumps at each time step.
The influence functions defined in equations (30) through (37)
are then used to evaluate quantities such as displacement,
stress, pressure, and flux in the poroelastic medium. The
details of the numerical implementation and also the applica-
tions to hydraulic fracturing problems will be separately
reported (Detournay et al., 1987; Vandamme et al., 1987).

Conclusion

The fundamental plane strain solutions of a point displace-
ment discontinuity and a point source in a poroelastic medium
have been derived. The methodology is based on the decom-
position technique proposed by Biot (1956). This procedure
offers a systematic approach for finding Green’s functions for
poroelasticity. In addition to the displacement discontinuity
and fluid source solutions provided herein, other types of
Green’s functions, such as point force and fluid dilatation,
can also be derived (Cheng and Predeleanu, 1987).

The influence functions presented here can be used in a
boundary element procedure to solve general boundary value
problems governed by poroelasticity. This numerical tech-
nique would be particularly appealing for solving problems in-
volving fractures and discontinuities.
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APPENDIX

The governing equation for a two-dimensional continuous
fluid source of constant injection rate Q is given by:
2gsc _ 8"
Solution of the above is well-known (Carslaw and Jaeger,
1959), i.e.,

(A-1)

Q

4rc

E\(£) (A-2)

=

where £ = Vr?/4ct; and E| is the exponential integral (Abram-
owitz and Stegun, 1972)

El(ﬂ)=S:

Because of axial symmetry, the scalar potential ® can be ob-
tained by integrating equation (12) in the radial direction, and

—Z

dz (A-3)

$5C = Q P+ DEED+E22In r—e-)]
167c

According to equation (10), the poroelastic displacement field
due to a continuous source is given by

(A-4)

QB( 14+»,) - 2
Comee 2 M e [E(ED) + £~ A-5
M ey TEEHEH e )] (4-5)
The pressure and flux expressions are the following
p* =——4Q E(8) (4-6)
T
qi."C:._Q__i et (A-7)
2t r
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The connected pore space is filled with an inviscid, compressible fluid. A low-
Jfrequency expansion technique is used to calculate the effective wave speeds explicit-
ly in terms of the microstructural properties of the rock considered. The effect of
both the pore fluid and the initial confining pressure to which the rock is subjected

can be included in the calculations.

1 Introduction

In the present paper we derive the basic equations for wave
propagation in a fluid saturated rock having connected pore
space. Here, as in Biot’s work (1956), the rock will always be
elastically isotropic and homogeneous over lengths large com-
pared with a typical grain diameter. We also consider the case
in which the pore space is filled with an inviscid, compressible
fluid. We derive the basic equations of motion for the medium
when a steady state disturbance, whose amplitude is small
compared with the contact radius of the contacting grains,
propagates through the medium. The equations first derived
by Biot (1956) to study this problem have long been regarded
as standard. They may be written in the form

NV2<u>+V[A+N)Ve<u>+QVe<v>]

= —wpy <u> 401, <V>]
and 1
VI[QVes<u> +RVe<vV>]

= —wpp<u> +pp<V>]

In equation (1) above, and for the special case of a dry
porous rock, the constitutive coefficients N and A may be in-
terpreted as the effective Lamé coefficients for the dry rock
framework. Explicit expressions for the effective Lamé coeffi-
cients of an initially hydrostatically stressed dry granular rock,
modeled by a random packing of contacting, identical
spherical particles, have been obtained by Digby (1981) and
Walton (in press). The coefficients p,,, p,,, and p), in equa-
tion (1) above describe the coupling between the motion of the
fluid and that of the solid. The components of the average
solid and fluid displacement vectors, <u> and <v>, cor-
responds to solid and fluid displacements, averaged, in some
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sense, over regions whose dimensions are large compared with
a typical grain diameter but small compared with lengths over
which the macroscopic processes are occurring. Similar
remarks apply to the other relevant field quantities appearing
in a number of other equations derived in Biot’s paper.

The application of Biot’s theory to the study of diffusion
and wave propagation processes in fluid saturated, poro-
elastic rocks is, of course, a subject of considerable impor-
tance. A number of equally plausible interpretations, on both
the method of averaging the various field quantities and the
physical meanings of the coefficients which appear in Biot’s
paper have, therefore, been advanced by both Biot himself
and a large number of subsequent writers. Despite this con-
siderable effort, however, we believe that with the exception
of a few special cases, considerable ambiguity still exists here.
We believe that some progress towards a solution of the pro-
blem described above was first made by Burridge and Keller
(1981} and Walton (1977).

Burridge and Keller (1981), in their elegant application of
the two-space method of homogenization, related the coeffi-
cients in equations (1) above to the microstructural properties
of the rock considered.

Walton (1977), on the other hand, performed the same exer-
cise rigorously by a rather different method. A low-frequency
expansion technique was used. In its original form, Walton’s
work (1977) deals only with the propagation of longitudinal
waves through an initially stressed fluid saturated rock whose
framework is modeled by a simple cubic packing of identical,
contacting spherical particles, and is, of course, far less
general than Burridge and Keller’s work. However, the results
obtained are more directly applicable to the study of wave pro-
pagation through initially stressed, fluid saturated rocks in
which the dominant mode of deformation of the rock
framework is by grain contact deformation. In addition,
Walton’s work (1977) allows a more explicit interpretation of
Biot’s dynamic coupling coefficients p;,, ps,, and p;,, which
appear in equations (1) above.

In the present paper we will therefore generalize Walton’s
original work (1977). The propagation of both longitudinal
and transverse steady state disturbances through fluid
saturated rocks will be studied.
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2 The Low Frequency Expansion Technique and
Averaging Procedure

(a) The Governing Microstructural Equations. The mo-
tion of the fluid and solid components will be assumed small
enough to be governed by the linearized equations of fluid
mechanics and elasticity. Then with the e~ time dependence
suppressed (steady state disturbance of frequency w), the
equations of motion governing vibrations about an
equilibrium state are

0y = —psw’l; . .
in the solid grains 2)

7 =)\6,»juk,k +[L(u,-J + uj’,-)

and
Dy = put;
in the inviscid pore fluid 3)
D= =KV

In equations (2) and (3) above and throughout the re-
mainder of this paper, standard suffix notation will be used,
with §;; denoting the usual Kronecker delta symbol. p, X, and
u denote the density and Lamé coefficients for the solid grains
(assumed elastically isotropic and homogeneous). p, and Kf
denote the density and bulk modulus of the pore fluid compo-
nent (assumed inviscid and compressible). ¢; and u; denote
the increments in the Cartesian components of the Cauchy
stress tensor and displacement vector, respectively, for the
solid component. Similar remarks apply to the fluid displace-
ment vector v for the fluid component. Across the fluid-solid
boundaries we also require continuity of the traction and nor-
mal displacements, that is,

Rplp =N Uy } @

Gijnj= —Dn;

and

where, in equation (4), n; denotes a component of the unit
normal to the fluid-solid boundary pointing out of the solid,
that is, into the pore fluid.

(b) Low-Frequency Power Series Expansion Tech-

nique. We follow the approach of Walton (1977). Thus we
write each field quantity appearing in equations (2)-(4), for
example o, in the form

o =0 + wold + w?al? + 5)
This power series expansion is supposed to be valid only for
those values of the frequency w for which the effective
wavelength of a wave travelling in an infinite medium made of
the fluid saturated granular material would be much larger
than the grain radius, R. In equation (5), the superscripts
denote the order of approximation used. Strictly speaking,
one should make equations (2)-(4) dimensionless, introduce a
dimensionless frequency, and expand all quantities in powers
of this. For convenience, however, all of our equations will be
expressed in terms of the physical frequency w.

(¢) The Averaging Procedure. Our ultimate aim is to ob-
tain equations expressed in terms of ‘‘averaged’ field and
physical quantities. We will again follow Walton’s approach
(1977), but with one major difference. Our representative
volume element will now contain many spheres (grains) in the
medium, The average of any field quantity, for example o;(y)
is denoted by ¢;;(x) = <¢;;> and is defined by the equation

1
<o,;>= - S v, o (y)dv, 6)

The integral in equation (6) is now taken over a large volume

Journal of Applied Mechanics

(the representative volume), centered on the point x. ¥ denotes
its total volume. V, and ¥V, denote those parts of ¥ occupied
by the fluid and solid components, respectively. Throughout
this paper, the porosity n of the rock considered is defined to
be the ratio of the volume of fluid V; contained in the
representative element to its total volume V. Remarks
analogous to those made above apply to quantities defined on-
ly in the fluid part of the representative element. We shall also
make frequent use of equations of the type

< 0> 1 S ds -
ox; W Jsw T0E @
which follow directly from equation (6). In equation (7), s,(x)
denotes the external bounding surface of the representative
volume intersected by the solid grains, having a unit normal ;
and an element of area dS,. In equation (7), and throughout
this paper, differentiation of averaged field quantities is taken
with respect to the coordinates of the centroid of the represen-
tative volume element.

<0'ij>,j=

3 Some Basic Equations Derived from the Low Fre-
quency Expansion Technique

(@) Some General Considerations. We first present some
basic equations which may be derived independently of any
expansion technique. We first note that one immediate conse-
quence of the microstructural equations (3) is that the fluid
motion is irrotational, that is

curlv=0 ®

Hence, (at every order of approximation in equation (5)) there
exists a displacement potential ¢ defined by the equation
V=V ©
To obtain further equations, we note that by direct application
of the averaging procedure described in Section 2(c) of this
paper and the first of the boundary conditions (4) to the se-
cond of equations (2) and (3) gives
< > <p> 1 1
—%__LZ_S ukde+_S Ukde
3Ks Ky Vv ve 7 Vv Ve ’

= <>+ <u>,; (10)

Similarly, from the first of equations (2) and (3) and the se-
cond of the boundary conditions (4), one obtains

an

Equations (10) and (11) above correspond to equations (55)
and (61), respectively, in Walton (1977). They are also valid at
every order of approximation in the power series representa-
tion (5).

<LOy>, = <Pp> = —pet <up> —pwt <u>

(b) Further Equations Obtained from the Low Frequency
Expansion Technique. These equations are all obtained by
first substituting the power series expansions (5) into the basic
microstructural equations (2)-(4) and then equating coeffi-
cients of like powers of the frequency w. We then derive the
following equations:

Zeroth Order Motion. In the solid we have

o =0 }
(12)
ofp = )+ + 7o
and in the fluid we have
vpO =0 (13)
Hence p@ = constant (which we take as zero), therefore
p© =0 (throughout the fluid) (14)
Also from boundary conditions (4)
o =0 (on the solid-fluid interface) (15)
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We also suppose that the zeroth order motion corresponds
to zero solid stress, that is,

of® =0 (throughout the solid) (16)
From equations (3), (5), and (14) it follows that
V¥ «v® = (throughout the fluid) n
From equations (8), (9), (17),
curlv@® =0
vO = vo©® (18)
V20 =0
and on the inner boundaries (the solid-fluid interface),
uPni=vdn, 19

The zeroth order motion considered here, therefore, con-
sists of a solid motion which, from equations (12) and (16), is
that of a rigid body translation (since there is zero stress and
the displacement is bounded at infinity), and a fluid motion
which has zero accompanying pressure. Thus, with a zero
superscript denoting zeroth order, we have also

u® = constant (throughout the solid) 20)
First Order Motion. In the solid we have
oM. =0
UJ } (21)
olP) = p(ul)+ ulth + N6 1),
and in the fluid,
Vp(l) = 0
that is, p) = constant throughout the fluid 2
Also, Vv = —pM/k,
Again, from equations (8) and (9) we have
curlviD =0
vl = v ) (23)
Then, vigM = —pM/k,
Also, on the inner boundaries, we have
nufh) = n o)
(24)
and oPn; = —npW

where from equation (22), p\ in equation (24) is constant.

Second Order Motion. Here, it will be necessary to con-
sider only the fluid motion in the subsequent sections of this
paper. Thus, to this order, we need only consider (from equa-
tion (18)), the equation

VP = pr(O) =psV o 25)
We then obtain

P =p,6® + constant (26)

4 The Complete System of Equations for Wave Pro-
pagation Through a Fluid Saturated Granular Rock

(@) Fluid Motion. It will be seen that the fluid motion
will, to the lowest order, be completely determined by the
function ¢©@ appearing in equations (18) above for the zeroth
order fluid motion. To satisfy equations (18) above for ¢©,
subject to the boundary conditions (19) on the inner boun-
daries, we first consider a potential function ¢© of the form

3O =(@—u®)e ¥ +uOer @7

In equation (27) u® is a constant vector determined from
the zeroth order solid motion (equation (20)), and ® is also a

790/ Vol. 54, DECEMBER 1987

constant vector. The vector potential function ¥(r), depending
only on the geometry of the medium considered, satisfies the
following conditions:
Vv 2¥ =0 in the fluid

(28)

and (7ie V)¥ =0 on the inner boundaries

" These conditions are of course insufficient to determine
either ¥(r) or ¢© uniquely, since the boundary conditions on
the external surface of the representative volume element are
unknown. However, the form of the potential function for
¢@ given in equations (27), (28) may be regarded as a par-
ticular integral to the original problem described by equations
(18) and (19). By applying the averaging procedure described
in Section 2(¢) of this paper, it then follows from equations
(18) and (26)-(28) that

n<ul®> 1S av;
<> ="""t 7 4 (d,—y)—\ —LdV (29
v; a=n (®;—uj )V v, o, (29)
and
<p?@>, =p,<pO>,,
_npf<u(°)> 1
~__(—1$+,of(c1>j—uj(O))7 5 ¥ ,n,ds, 30)

We now use equation (30) to provide the required additional
constraint on the values taken by the function ¥(x) on the ex-
ternal boundary S, of the representative volume element.
Thus, we postulate that the averaged pressure, <p® > should
be linear in x, that is, <p® > is of the form A+x where A is a
constant vector. This, from equations (27) and (30), is
equivalent to supposing that we must find a particular integral
of equations (28), such that for a statistically isotropic
medium,

1
7sz V¥ ;n,dS, =nd; (€1))
A reasonable choice is to take ¥; =x; on S,. From equations
(29) and (30) we then have

n<ul® > no,<ul® >
{< 0 > ———————}pf=K,--{<p(2)>,A—————} 32)
(1-m) ’ T (-m)
In which
1 v,
K.=_S LdV 33
K v |24 Vf axi d ( )

In particular, if the medium is stastistically isotropic, K; =
8;K where K is a scalar depending only on the geometrical
properties of the packing used to model the rock we are con-
sidering. Hence K can, in principle, be determined numerical-
ly. Also, in this case, equation (32) reduces to

0) 0)
<p(2)>:1= ner<u;’ > n<u; >}
- 1-=

Where, in equation (34), x=K~!. From equations (5), (14),
(22), and (34) we then obtain, to the lowest order,

<p>,=w0?<pP>,;
n(l—x)<ui>}
1-n)

Equation (35) is equivalent to equation (58) in Walton’s work
(1977) for the case of a simple cubic packing.

It is very unlikely that the quantity x(=K""!) in equations
(33)-(35) above could ever be determined analytically, in a
general case. However, an upper bound on the scalar K can be
obtained from the following considerations.

The scalar K, for a statistically isotropic medium, is defined
in terms of the vector potential function ¥(x) through equa-
tion (33). We note that in addition to equations (28), each
component ¥,(x) now also satisfies the condition that

+pfx{< sO > — (34)

=pptfx<v,> + (35
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¥,(x)=x; on the external boundary of the representative
volume element. Suppose now that ¥*(x) is any other func-
tion, not necessarily satisfying equations (28) but is such that
¥ (x)=x; on the same external boundary. We consider the
volume integral

S IV (¥} —¥)) 2dV=0.
43 .
We can then easily show that

[, 1vwprav={ vy, rav.
42

Yy
We then have,

SV |V ¥} 2av= S IV, 12dv
S

Ve

= SS X;ie v ¥,dS

oYy,
L[ gy
=V/K; (nosumoverj!)

Hence,

1
Ks—-——S IV ¥ dy
Vi dvy

Since ¥} is any function satisfying ¥*=x; on the external
boundary, we now take ¥*=x; throughout the fluid volume

V; and we have
K=1 }
that is x=1

Our required lower bound for the numerical factor x.

(36)

(b) Solid Motion. We now derive the constitutive equa-
tion for the fluid saturated rock framework. We consider the
problem for the solid component defined by equations (21)
and the second of equations (24) for the first order motion. To
complete the specification of this problem, conditions on the
external boundary of the representative volume intersected by
the solid grains are now required. Here, following our earlier
work (Digby, 1981; Walton, in press), we suppose that the
displacement u‘) will be linear on this external boundary, that
is, we write

u) =efPx; 37

where in equation (37) we write
L M, + 400 )dS 38
& =Sy s, (u}7n; +ui’n))ds, (38)

We now consider the displacement field u{V + (pWVx,;/3x,),
denoted by w{", and the associated stress field o) + 8,0V,
denoted by 7{P. This displacement field and stress field
satisfies the following boundary value problem:

N _
=0

in the solid grains (39)

740 = N, Wi, + 1 (W) + wid)

Journal of Applied Mechanics

7{P n,=0 on the inner boundaries
(40)

p0s..
wih) = (ef}) +—”)xj on the external
3k boundary

We note that the problem defined by equations (39) and (40)
corresponds to the problem which would arise when we
calculate the effective elastic Lamé coefficients for a dry pack-
ing. Thus 7{) and w{!) will be related through the effective
Lamé coefficients for the dry packing. Denoting these by A*
and pu* we then have

LVSVS v =2u" (eff +%§’l) (e + ”K( l)) (41)
That is, from equation (38)
<oi>+ (1—n~K—‘*)-—<p(L5,-j
Ky 7
—_ (<ufd >, +<ud> )+ A S, <ud >, (42)
(1-9) ! N (B A

Hence, from equations (5), (16), (20), and (42), our required
constitutive equations are, to the lowest order in w,

N\ <p>
<o,-j>+(l—-11— KS) P 8
KS
w* *
=(l_n)(<u,->,j+<uj->,,-)+-(T:-1;)—6,<j<uk>,k (43)
(¢) Summary of the Full System of Equations. Col-

lecting together equations (10), (11), (35), and (43), we now
have the required full system of equations which will be used
in Section 5 of this paper to relate the various coefficients ap-
pearing in Biot’s equations (1) to the micro-structural proper-
ties of the rock we are considering. This full system of equa-
tions is as follows:

<Opp > <p>

3k, Kf
<op>, - <Pp> = — et <up> —pwt <v> (45)
1-x)<u;>
<p>,,~=pfw2{x<v,->+w—} (46)
1-=)
x <p>
<aij>+(1—n~£>6,-j p
Ks n
‘u* 6ij>\*
= <u;>, i+ <up>,)+ <up>, 47
(1_7])( i Jj J 1) (1"“77) Uy k ( )

The only ‘““‘unknown’’ quantities appearing in the above
system of equations are x (or equivalently, K) and the effective
Lamé frame elastic coefficients A* and p*. Now the effective
Lamé coefficients A\* and u* are known for dry packings.
However, it must be remembered that the above equations ap-
ply to the case in which fluid is present, but it is still a relative-
ly straight-forward matter to apply our earlier results (Digby,
1981; Walton, in press) here since the only effect of a uniform
fluid pressure is to create a hydrostatic compression
everywhere.

The quantity K;; appearing in equation (33) could be deter-
mined numerically for a granular rock modeled by a spatially
periodic packing of spherical particles (see, for example, the
case of the simple cubic packing treated by Walton, 1977). In
principle, it should also be possible to perform the same exer-
cise for K or equivalently x for random packings. We have
also obtained a lower bound for the numerical factor x, name-
ly x=1. It will be seen in the following section that this result
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has important physical implications on the final results ob-
tained from our full system of equations (44)-(47).

5 Results Obtained

(@) Comparison with Biot’s Equations. From our basic
equations (44)-(47) summarized in Section 4, we have, in par-
ticular, from equations (44), (47)

1-— P
<p> = {MVO<U>
(1—7)

_TMHEREs
(Kg —KpKg)
Where, in equation (48), kp denotes the usual Reuss averaged
effective bulk modulus 1/kg=(9/x;)+ ((1—n)/k;). From
equations (47), (48) one then obtains

* *

N*6,;
(<> + <up>, ) +——"—
(= (1-n)

+st-<v>} (48)

<0U>= <uk>,k

8 (ks (1 — 1) — kg
(K — kpt)
y [ (k(1—n) — )
Ks(l —1)
From equations (46) and (48) one then obtains

<uk>,k+<vk>,k} 49)

(Ks(l—‘n)_’(s*) ] NKRKs
Ve <U> + g,V Ve V> {—
[ (1-m) (K3 = KRk
l-x)<u>
- Z{ML+X<V>} (50)
-
Also, from equations (45), (46), and (49), we obtain
prvi<u> (A +p¥) {(Ks(l—n)-xs*)
VVe<u> +§j—————VV
- (1-n) Ks(1—1)
1__ _ *
-<u>+vv-<v>}KRK‘(K§( )
(k5" — kgks')
—1
:_wz[<ps+n»%—))pf)<u>+pf(1-x)<v>} (51)
-1

Regarded as two equations in the two unknown
displacements u and (1 —%)<v> /%, equations (50) and (51)
will in fact be identical to Biot’s equations (1), discussed in the
introduction to this paper, provided we make the following
identifications:

N=pu*

. KR (1—m) — k)’

A=N"+
(k3 — kK
(52)
_ Kgky (kL= 1)~ )
(Kg _KRKS*)
R= 'fIZKR'fg
(k2 — KkgK)
From which
A=\*+(Q*/R)
and
py = =mos+{x— Do,
ez =1(1—x)oy (53)
P22 =NXPr
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Following Biot’s notation (1956) we now also write, from
equations (52)

P=A+2N=N\*"+2u*+(Q*/R)

H=P+R+2Q=\*+2u*+((Q+R)*/R). (54)
0y =P/H, 0,,=0Q/H, 05p=R/H
from which
g +topt+2o,=1
and from equations (53),
pr2=1(l=x)ps=—p, )
pr=01-1)p,
P2 =m0y P69
b=p+p,
Y11 =P11/By Y12 =P12/Bs Y22 = P22/ B J
from which

Yiitrn t2y=1

We note that our explicit expressions for Biot’s constitutive
coefficients in terms of the microstructural properties of the
rock we are considering (equations (52)) are all positive. Our
explicit expressions for Biot’s dynamic coupling coefficients
(equation (53)) also all have the correct sign since we have
shown earlier that the numerical factor x always satisfies the
inequality x = 1. It is also easy to show that our expressions for
Biot’s coefficients, a;; 0,5 05, and v, v, 2, (equations (54)
and (55)) also satisfy the inequalities o,; 0y, — 0%,=0 and

YirYze — v 20.

(b) The Longitudinal Wave Speeds. We have shown
above that our averaged equations of motion (equations (50),
(51)) are in fact identical to Biot’s equations (1) discussed in
the introduction to this paper, provided the identifications
defined by equations (52)-(55) are made. All of Biot’s analysis
(1956) for the determination of the properties of the elastic
waves and their propagation speeds may therefore be applied
unchanged. Only a brief discussion will, therefore, be given
here.

For the longitudinal wave speeds, for example, we write
(<u>, <v>) = (U,V)e®* where (U,V)=k(U,V). That is,
the displacement amplitudes are parallel to the wave vector k.
One can show, for example, exactly as in Biot’s work (1956),
that in general there are exactly two real P-wave speeds
a=w/k (k= 1kl), whose values are determined from the
quartic equation

(011022 = 01) = (o711 + 011722 — 2027 12) @/ V)?
+(ruve —r)a/V)4 =0 (56)

In equation (56), ¥2=H/p. All of the coefficients appear-
ing in equation (56) are determined explicitly in terms of the
microstructural properties of the rock we are considering
through our equations (52)-(55). One can’also obtain other
results in Biot’s original paper, but now expressed more ex-

~ plicitly. For example, by taking U=((1—7)/9)V we can ob-

tain a more explicit form of Biot’s so-called ‘‘dynamic com-
patibility condition’’ in which

o = V2=H/p=((\*+2u*)/p)+ ((Q+ R)*/Rp) (57)
Also, by putting p,=0 in equations (52)-(56), we obtain just
one ‘‘effective wave speed,’” in which

o =Vi=\*+2p*)/py(1-1) (58)
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(¢) The Shear Wave Speeds. Here, as earlier, we write
(<u>, <v>)=(U,V)e**, but now with (U, V) = (U, V) k,,
where k,, is perpendicular to the wave vector k. From equa-
tions (50) one then obtains

_n(x—-1DU

x{I—n) ,

Since 0<n <1 and from Section 4 we have shown that x=>1,

the fluid and solid displacement amplitudes in equation (59)

are similarly directed. It then follows directly from equation

(51) that there is always exactly one real S-wave speed 8= w/k
given by

(39

=)
. | (60)

= [|m1-n+

6 Conclusions

In this paper, equations have been derived in which both the
constitutive coefficients and the dynamic coupling coefficients
appearing in Biot’s equations (1956), and hence also the effec-
tive longitudinal and shear wave speeds have been related ex-
plicitly to the microstructural properties of a fluid saturated
rock. The rock was modeled by a random packing of identical,
contacting spherical particles. The connected pore space was
filled with an inviscid, compressible fluid. The constitutive
coefficients are also expressed explicitly in terms of the bulk
modulus of the pore fluid and the effective elastic moduli of
the rock framework whose values are known from our earlier

Journal of Applied Mechanics

work (Digby, 1981; Walton, in press). The effect of the initial
confining pressure to which the rock is subjected, as well as
the effect of the nature of the contact regions between adja-
cent particles in the rock, can therefore also be included in our
calculations. We believe that the work presented in this paper
will provide a good theoretical basis for the study of more
realistic problems in which finite frictional forces are also ex-
erted across contact regions and the pore fluid is both com-
pressible and viscous. Direct comparison of results from a
study of this type with experiments should then be possible.
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Steady Flow in Porous, Elastically

Deformable Materials

The steady, one-dimensional flow of an incompressible fluid through a deformable
porous material is studied theoretically and experimentally. The theoretical model is

R. V. Mehta

C. G. Caro

essentially that of Biot. Assuming that the stiffness and permeability of the matrix

are functions of the local strain gradient, the governing equations can be solved and

Physiological Flow Studies Unit,
Imperial College,
London, SW7, England

analytical solutions are presented for several simple constitutive relationships. The
stiffness and permeability properties of one particular foam are measured and then
used to predict the rate of fluid flow and the distortion of the matrix as a function of

the applied pressure difference across the material. Comparison of the predictions
of the model with experimental observations indicates good qualitative agreement.

1 Introduction

When fluid flows through a porous, deformable medium
there is coupling between the flow and the deformation of the
medium which may lead to various interesting phenomena.
For example, the strain distribution in a porous, deformable
matrix under steady mechanical compression is uniform, but
if the strain is produced by fluid flow, the strain distribution
can be highly nonuniform (Caro et al. 1984) as can be seen in
Fig. 1. In general, the nature of the flow and the resultant
strain distribution depend upon the properties of the porous
matrix and the fluid and their interactions as well as the
boundary conditions: geometry, applied pressure, etc. In
order to assess some of these effects, we have analyzed the
behavior of the simple system: steady, one-dimensional flow
through a slab of porous deformable material restrained at the
downstream end by a freely draining rigid support. The results
of this analysis have been compared with experimental results
obtained for the flow of a glycerine-water mixture through a
polyurethane foam.

The first theories of flow in porous, deformable materials
were developed to explain the consolidation phenomena in soil
mechanics (Terzaghi, 1925) culminating in the equations pro-
posed by Biot (1955) which are widely accepted and used to ex-
plain observed behavior in geological materials. The fun-
damental basis of this theory has been studied both from the
viewpoint of the thermodynamic theory of mixtures (Crochet
and Naghdi, 1966); Rice and Cleary, 1976; and Kenyon,
1976a, 1976b) and from a two-scale analysis of the Navier-
Stokes equations (Burridge and Keller, 1981). More recently,
interest in flow in porous, deformable materials has been
stimulated by problems in biomechanics. Both the response of
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articular cartilage to loading (Lai and Mow, 1980; Lai et al.
1981) and the flux of water through arterial tissue (Kenyon,
1979; Jayaraman, 1983) have been analyzed in these terms.

2 Mathematical Model

(a) Basic Equations. As the starting point of this analysis
we shall take the consolidation equations of Biot (1955) with
the definitions and interpretations of Kenyon (1976a, 1976b),
who has derived these equations as a special case of his theory
of isothermal solid-fluid mixtures. In this continuum ap-
proach the solid matrix and the fluid coexist, both the solid
stress and the fluid pressure are continuous properties
representing some ‘‘pore averaged’’ value, and the fluid
velocity is measured relative to the solid matrix. The solid is
described by constitutive equations which relate the stiffness,
A, and porosity, K, of the matrix to the local strain gradient,
R. For one-dimensional problems, the balance of forces and
Darcy’s law lead to the dimensionless equations

I(AR) =_a£ " @.0

ax ox k

The height, stiffness, and permeability of the matrix in the
reference state have been chosen as characteristic values so
that A=A, is the dimensionless stiffness, k¥ = K/K_ the dimen-
sionless permeability, p=P/A. the dimensionless pressure,
and w=pH_W/K_A, is the dimensionless fluid velocity where
w is the fluid viscosity. For an incompressible solid-fluid mix-
ture w= —dR/d¢ where t=TK,A./uH,? is the dimensionless
time. Here and throughout, capital letters refer to dimensional
parameters, small letters refer to the corresponding dimen-
sionless parameters and the subscript ¢ refers to characteristic

.dimensional values. Combining these equations gives the

familiar diffusion equation for the local strain gradient
a /. a OR
—kR——(R)xR))=———
ax < (R) ax (R) at
(b) Boundary Conditions. In the following, we will con-

2.2)

~sider the simplest case of a homogeneous matrix of unde-

formed thickness H, restrained at x=0 by a rigid grid which
Transactions of the ASME
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Fig. 1
ferent conditions: (a) no load, no flow, showing the foam in its relaxed
state; (b) mechanical compression with no flow, showing uniform strain
distribution; (c) the nonuniform strain distribution resulting from flow

Strain distribution in a porous, deformable matrix under dif-

does not impede the flow. We will assume the pressure in the

fluid at x=0 is maintained at a constant level which, without

loss of generality, we will take to be zero. At the top of the

matrix, x = h, we will assume that both the pressure in the fluid

and the contact stress on the solid matrix are prescribed. The

dimensionless boundary conditions are
x = 0: AR=s;+p
X = h NR=s,;

where p; =P,/A, and 5, =S,/A, are the pressure and the con-
tact stress applied at the top of the matrix. The location of the
top of the matrix is, of course, not known a priori and the
calculation of A under different conditions is one of the
primary goals of the analysis. From the definition of strain,
however, we have the ‘‘matching’’ condition

2.3)

h
So Rdx=1-h 2.4)
These equations together with an initial condition describe a
well posed, free boundary problem for the local strain, R.

(¢c) Steady State. If the applied stresses, p, and s,, are
constant, then the problem is steady and equations (2.1), (2.3),
and (2.4) are sufficient to determine the constants w and 4 and
the distribution of strain R(x) as a function of the applied
stresses p, and s;.

3 Results

In principle, solutions are possible for any sufficiently well-
behaved functions of permeability and stiffness, K(R) and
A(R); but in practice, analytical solutions are obtainable only
for relatively simple constitutive relations. In order to explore
some of the interesting phenomena of flow in deform-
able, porous matrices, we will look at the solutions of these
equations for several simple relationships, in the knowledge
that in real materials both &k and X\ can be quite complex func-
tions of the local distortion.

(a) Zero Flow. If p, =0, then R =y, is a solution of equa-
tions (2.1) and (2.3). Substituting into equation (2.4) and in-
tegrating we obtain

h=(1+s/N)"! 3.1

In its dimensional form, this solution implies that the strain is
uniform throughout the matrix thus providing a convenient
way of measuring A (R) experimentally, By applying different
loads, S,, and measuring the resultant height of the matrix,
A=8,/R can easily be calculated since for constant strain,
R=(H,—H)/H.

Journal of Applied Mechanics

a = 1.0

43

Fig.2 w versus p; calculated for constant permeability and exponen-
tial stiffness, equation (3.6), with b=1 and various values of a. The
curves for a=0.01 and 0.1 exhibit the hysteresis resulting from the
multi-valued nature of the assumed stress-strain law. The limiting case,
a=1, is the solution for constant stiffness and permeability, equation
(3.8).

For the rest of this section, we will assume that s, =0, i.e.,
there is no contact stress at the top of the matrix, and explore
the nature of the solutions with flow.

(b) Constant Permeability: k=1. If the permeability of
the matrix does not vary as the matrix is distorted, k= 1. For
this case equations (2.1) and (2.3) have the solution

AR =p,(1-x/h) (3.2)

and w=p, /h. The thickness of the matrix is determined from
the matching condition,

h=1+ SORdy“ (3.3)

where y=x/h is the distance scaled by the deformed matrix
thickness.

(i) Constant Stiffness. For the special case of constant
matrix stiffness, A= 1, and the solution becomes

h
w

(1+p,/2)7!
pi(1+p,/2)

(3.4)
3.5)

I

This solution corresponds to the incompressible case discussed
by Keynon (1978) and is shown as the limiting case, a=1, in
Fig. 2.

(ii) Exponential Stiffness.
ness law

Consider the exponential stiff-
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Fig. 3 w versus p; calculated for constant stiffness and linear
permeability, equation (3.11), for ditferent values of the critical strain A.
The curves have a maximum value R(1+ R/3)/2 at p4 = R. The limiting
case, R = «, is the solution for constant stiffness and permeability.

A=a+ (1 —a)exp(— bR) 3.6)

where « is the limiting stiffness at large compaction. From the
boundary conditions, the strain varies from 0 at the top of the
matrix to R, at the bottom, where R, is the solution of
RoA(Ry) =p,. For values of a< (e® +1)~! care must be taken
because there is a range of pressures for which there is more
than one solution for R,. Such behavior could give rise to a
sudden ‘‘collapse’’ of the matrix as the pressure is increased
beyond some critical value. It could also lead to hysteresis
since the collapsed matrix would not recover as the pressure is
lowered until another, lower, critical pressure was reached.
The integral in equation (3.3) has the solution

! 1 1 Dy R, I4
o () (e )
So dy b2 V=% @ %,

of P14 )]
+R3( o
The resultant velocity is plotted as a function of p, for dif-
ferent values of @ in Fig. 2. The effect of the hysteresis is seen
at the two lowest values of 4.

(¢) Constant Stiffness: A=1. The results in the previous
section were calculated for the special case of constant
permeability, We now relax that condition and calculate the
effect of nonconstant permeability under the simplifying
assumption of constant stiffness, A= 1. For this case we must
solve

3.7

dR
k(Ry — =—w 3.8)
dx
x=0,R=p, 3.9
x=h,R=0 (3.10)

(i) Constant Permeability. This case was discussed above
with A and w given by equations (3.4) and (3.5), respectively.
The predicted flow as a function of the applied pressure is
shown as the limiting behavior in Fig. 2.

(ii) Linear Permeability. Assume that the permeability
varies linearly with local strain,

k(R)=1-R/R

for R< ﬁ, the critical strain at which the permeability becomes
zero. The solution for this case is,

=afi-(-3-3) ")
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(3.12)

where

(3.1

(4%

Fig. 4 w versus py calculated for constant stiffness and the exponen-
tial permeability, equation (3.16), for different values of c. The curves are
monotonic with the asymptote (1 + c)Ic2. The limiting case, ¢ =0. is the
solution for constant stiffness and permeability.

p(R-1)  p} )
=p, (1 - .
w pl( + 55 37 (3.13)
and
Y4 P
he 2 (1o ) .
” B (3.14)

The fluid velocity for this case is shown in Fig. 3. One of the
interesting features of this solution is that the fluid velocity
goes through a maximum as the pressure is increased. The
maximum velocity depends upon the critical strain, R,

Winay = R(1 +R/3)/2 (3.15)

and occurs at p, = R. As the pressure is increased further, the
velocity decreases, eventually reaching zero. This limit is prob-
ably not very realistic since real materials will deviate from the
linear permeability law at large deformation. However, the
flow limitation properties implied by the maximum are more
realistic since they occur at lower levels of distortion of the
matrix where the linear variation of permeability with distor-
tion may be a reasonable model of the behavior of the matrix.

(iiiy Exponential Permeability. A constitutive relation
for the permeability which avoids the problem of a critical
strain at which the material becomes impermeable is the ex-
ponential relation

k=exp(—cR) (3.16)
This is the law proposed by Lai et al. (1981) for the flow of

synovial fluid through articular cartilage. With this law, the
solution is,

R=— —i—— ln(l—cwh(l—x/h)) 3.17)
where
(1 o) (1 —exp(— cp)) — E— exp(—cp) (3.18)
c?
and
_Je+1 _ piexp(—cep) -
h_[ c l—exp(—cp)] 3-19)

The variation of fluid velocity with pressure is shown in Fig.
4. In this case the curves are monotonic but approach an
asymptotic maximum

1+¢
C2
4 Experimental Measurements

(3.20)

Wnax =

The porous, elastically deformable material used in the ex-
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Fig. 5 A sketch of the experimental apparatus: (1) upstream reservoir;
(2) test section; (3) downstream reservoir; {a) polyurethane foam; (b)
plastic clay gasket; (c) wire mesh; (d) freely draining rigid grid

periments was a highly flexible, open-celled polyurethane
foam marketed by Declon, England. The foam had a nominal
pore distribution of 100 pores per linear inch with a corre-
sponding nominal pore diameter of 150 um. The void fraction
of the foam was about 0.97 and it had a bulk density of 27
kg/m3. When observed under a dissecting microscope, the
structure of the foam was seen to be lattice-like with
polyurethane fibres as the members of the lattice and no free
fibre ends internal to the structure. This foam was chosen as
matrix material because it showed acceptable variations in its
poroelastic properties from sample to sample. Although in-
homogeneous, it was more uniformly porous than other can-
didate materials. An 80:20 glycerine-water mixture at room
temperature was used as the fluid medium. The viscosity of
this medium was 40 to 50 times higher than the viscosity of
water at the same temperature, As a result, we were able to in-
duce relatively large drag in the foam at much lower flow rates
while operating in the Darcy flow regime. In this regime, the
pore Reynolds number (that is, the Reynolds number based
upon a typical pore dimension) is less than 1.

A schematic diagram of the experimental apparatus is
shown in Fig. 5. A 650 cm?® Perspex cylinder served as the feed
reservoir which was connected to the test section by 9 mm ID
Tygon tubing. The test section, Fig. 5 inset, was a 12 cm high
Perspex cylinder 5.1 cm in diameter. It retained the
polyurethane foam on a perforated plate having 7 mm
diameter perforations on a 1 c¢m triangular pitch. In order to
prevent any bulging of the foam through the perforations, an
ordinary wire mesh, 2 mm square mesh size, was placed be-
tween the foam and the perforated plate. The pressure drop
across the mesh and the plate was negligible compared to that
across the foam itself under experimental conditions. Pressure
taps were installed 1 cm above the upstream face and 1 cm
below the downstream face of the uncompressed foam whose
height was 7.6 cm. The diameter of the holes used for the taps
was 6 mm. The taps were connected by Tygon tubing to a 175
mbar differential pressure transducer (Druck Ltd, England).
The feed solution entered the test section at the same level as
the upper pressure tap and left it at the same level as the lower
pressure tap through 6 mm ID plastic tubes. The Reynolds
number based on the test section diameter was less than 1
under experimental conditions and no entrance or exit effects
were expected. On the one hand it was essential to minimize
friction between the foam and the test section and on the other
hand it was important to minimize flow around the sides of
the foam. After careful experimentation, we used a slightly
undersized foam and reduced the amount of flow around the
foam to an acceptable minimum by placing a plastic clay
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Fig.6 Results of uniaxial compression tests on the polyurethane foam
plotted as stress versus height. Broken line corresponds to data for
similar polyurethane foams obtained by Beavers et al. (1981b).

gasket, 3 mm in width, at the downstream face of the foam
(Fig. 5). The effluent liquid from the test section was collected
in a 5000 cm? glass bottle which served as the downstream
reservoir. The glass bottle was connected via a variable leak to
a vacuum pump so that the downstream pressure could be ad-
justed to the desired level.

The feed flow rate or its equivalent, the rate of change of
the height of the feed solution in the upper reservoir, was
monitored by measuring the pressure at the base of the reser-
voir with another 175 mbar differential pressure transducer.
The outputs from the two pressure transducers were passed
through signal conditioning modules to a BBC microprocessor
for on-line data collection. Signals were sampled every 100
msec and displayed simultaneously on the screen. For a given
experiment, 180 such samples were collected for each signal
and stored. The stored data were processed later to obtain the
corresponding pressure drop, AP, and flow rate, Q.

Preliminary tests indicated that when a new foam was used,
its poroelastic properties varied with the number of times it
had been compressed. After it had been compressed several
times, however, its properties became independent of its
history reflecting a mature, unchanging state. Similar findings
were reported by Beavers et al. (1981b). We have used such a
well conditioned foam in all our experiments to eliminate
history dependence. Three different sets of experiments were
performed to characterize the foam and test the mathematical
model. These were (1) measurement of stiffness, A, as a func-
tion of strain, R; (2) measurement of permeability, &, as a
function of strain; and (3) experiments concerned with the
steady behavior of the foam involving measurements of flow
rate, Q, and overall compaction, H/H_. as a function of
pressure drop, AP. The principal features of each set of ex-
periments are described below.

(a) Stress Versus Strain. The foam was placed in the test
section and immersed in the test fluid. In order to ensure that
the matrix was air-free, the air filled test section together with
the foam was placed under vacuum and the degassed glycerine
solution was then allowed to rise slowly through the foam.
Once the foam was completely filled with the solution, the
vacuum was released and care was taken not to expose the
foam to air. A rigid grid was placed on the top of the foam
and the deflection of the foam under different loads was
measured. The poroelastic nature of the system was reflected
by the finding that the deflection for a fixed load increased
slowly to its equilibrium value over a very long period of time
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Fig. 7 The uniaxial compression data of Fig. 6 plotted as stiffness ver-
sus strain. The solid line is the fitted curve used in the numerical
calcuiations (equation (5.1)).
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Fig. 8 The measured permeability of the polyurethane foam used in
the experiments versus strain. The solid line is the fitted curve used in
the numerical calculations (equation (5.2)).

even though it increased quite rapidly in the initial period after

loading. We found that at least .80 percent of the equilibrium

deflection was achieved within the first four hours. The stress
versus height data shown in Fig. 6 correspond to values at the
end of that four hour period. The stress values are accurate to
within =2 percent and the heights to within =1 percent. Also
included in the figure are data reported by Beavers et al.
(1981b) for a similar foam in water. The same data are shown

in Fig. 7 in the form A versus R along with the fitted curve

798/Vol. 54, DECEMBER 1987
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Fig. 9 The predicted flow versus applied pressure. The symbols repre-
sent experimental data; solid line corresponds to prediction for ex-
perimental stiffness and broken line corresponds to prediction for
hypothetical stiffness (equation (6.1)).
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Fig. 10 The predicted height of the matrix versus applied pressure. The
symbols represent experimental data; solid line corresponds to predic-
tion for experimental stiffness and broken line corresponds to predic-
tion for hypothetical stiffness (equation (6.1)).

which was used in the related numerical solution of equation ‘
3.1).

(b) Permeability Versus Strain. The measurement of the
permeability of the foam involved constraining the foam be-
tween two porous grids at the desired strain and measuring the
flow rate as a function of the pressure drop across the foam.
Since the flow induced a nonuniform distribution of local
strain within the foam matrix even at small pressure drops,
measurements were made at several different pressure drops
and the permeability was calculated from the initial slope of
the measured flow rate versus the pressure drop curve. The
permeability measured thus was accurate to within +£6 per-
cent. The results, plotted as a function of the imposed strain,
are shown in Fig. 8 in the form K versus R along with the fitted
curve which was used in the numerical calculations.

(c) Steady State Behavior. The steady state behavior of
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the foam, constrained only at the bottom end, was studied at
different flow rates. The flow rate was varied by changing the
pressure at the downstream end by applying a suitable
vacuum. The height of the foam as well as the flow rate and
pressure drop were continuously monitored until steady state
conditions were attained. At least two pore volumes of solu-
tion were allowed to flow through the foam before data collec-
tion was begun. The measured steady flow rate for several
pressure drops is plotted in Fig. 9 in nondimensional coor-
dinates. The corresponding steady state height is shown
against the applied pressure drop in Fig. 10.

5. Theoretical Predictions

Both the stiffness, A, and permeability, X, had strong and
complex dependence on the strain as shown in Figs. 7 and 8.
Therefore, an analytical solution of equations (3.1) - (3.3)
was not possible and appropriate analytical expressions were
fitted to the poroelastic properties data for use in the
numerical solution. Polynominals were fitted to the stress-
strain data over three piecewise continuous ranges of strain:

0<R=<0.065, \ = 18.87/A,
0.065<R=<7, X\ = (0.2R?—0.1R+1.23)/(RA,) (5.1)
7<R, N = (1.44R?—17.52R+62.41)/(RA,)

The following expression was fitted to the permeability data:
k(R)=(3103/K,) exp(—1.289/R) (5.2)

The undeformed height of the matrix, H,, was used as the
characteristic length. For better accuracy, A, and K, were
chosen to correspond to their values at R=1 (A,=1.33 kPa,
K,=855 um?). The model equations were then solved
numerically using a second order Runge-Kutta integration
scheme. Since it was a free boundary problem, solutions were
found by iterating on height until all the boundary conditions
were satisfied.

The solid lines in Figs. 9 and 10, respectively, represent the
predicted fluid velocity and predicted matrix height while the
symbols represent experimental data.

6 Discussion

The agreement between experiments and theoretical predic-
tions of fluid velocity is good considering the fact that there
are no free parameters in the theory. On the other hand, the
predicted height of the matrix is as much as 35 percent below
the experimental measurements. This may be an experimental
artifact or could be an indication of the limitation of the pro-
posed theory. This point merits more discussion.

It is possible that the pressure-flow relationship was
dominated by the most compressed region of the foam very
near to its constrained end while the overall height of the
matrix was largely determined by the less strained upper sec-
tion within which a nonuniform distribution of strain existed.
Since the stress-strain curve for this foam shows a wide
plateau from R =0.065 to about R =3.000, a small discrepan-
cy in local stress would correspond to a large error in
estimated R. The cumulative error over the entire matrix
height could well account for the extent of disagreement with
the experimental results. To test this hypothesis, we changed
the stress-strain curve in the plateau region and beyond to the
following:

0.065<R=<7, N = 0.2(0.2R2—-0.1R+1.23)/(RA,) (6.1)
T=R , A 0.2(1.44R? - 17.52R + 62.41)/(RA,)

The resultant prediction of matrix height, shown by the
broken line in Fig. 10, is in close agreement with the ex-
perimental results. The corresponding predicted fluid velocity,
however, is much higher than the experimental result. Ap-
parently, it is difficult to reconcile theory and experiments

I
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completely. We speculate that incorporation of the strain gra-
dient, dR/dX, as an additional independent parameter might
shed more light on the complex interaction of matrix and flow
seen in the present experiments.

There are few previous studies with which this work can be
compared. Manins and Roberts (1975) used a similar model
with a power law for the permeability to calculate numerical
solutions for the unsteady, two-dimensional problem of a
Hookean elastic matrix confined in a rectangular box with one
porous side. They studied the case of loading from the top
with no through flow which makes comparison to this work
difficult. More directly comparable are the studies of Beavers
et al, (1975, 1981a, 1981b) who investigated the flow of air and
of water through polyurethane foams. Our results for the
elastic properties of the foam in the glycerine solution are very
similar to their results on ‘‘conditioned’’ foams in water. They
also observed that the polyurethane foams they used tended to
undergo reduction in cross-sectional area with increasing com-
pression. We did not detect such behavior in our experiments.
The major difference between our study and theirs is in the
modelling and analysis. They assumed a nonlinear Darcy law
in which the pressure drop had a quadratic dependence on the
fluid velocity and included a threshold pressure gradient below
which no flow could occur. We have assumed a linear Darcy
law without any threshold pressure gradient and yet our model
is able to predict the nonlinear pressure flow relationship of
the flexible polyurethane foam very well.

7 Concluding Remarks

The simple model presented in this paper is essentially Biot’s
theory (Biot, 1955) in Kenyon’s formalism (Kenyon, 1976a,
1976b) and it appears to provide a reasonable description of
the pressure-flow relationship in porous, deformable media.
The model prediction of overall strain in the medium lacks
quantitative accuracy although it is qualitatively consistent
with experimental observations.

The present findings suggest that depending on the
kinematic properties of the fluid and the poroelastic properties
of the deformable matrix, the system can be used to perform
some useful tasks. For example, the nonuniform distribution
of strain and permeability within the matrix could be useful in
some separation processes, perhaps using the flexibility of the
matrix material to modify the filtration properties or to allow
for more efficient cleaning of the filter medium. The
analytical solutions presented in Section 3 also suggest useful
flow-control applications such as flow limitation and, given
suitable stress-strain properties, the possibility of hysteresis in
the pressure-flow relationship. Finally, fluid drag may not
always lead to compaction. If the solid matrix is prestressed by
constraining it between two freely draining rigid grids, the
porous structure will expand on the upstream end and be fur-
ther compressed downstream when a flow passes through the
matrix. This suggests yet another useful application of the
drag induced behavior of a porous, deformable medium.
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I Introduction

In both industrial and commercial applications, -large
amounts of material are transported in granular form. This in-
cludes the handling of such substances as coal, metal ores,
shale, dry chemicals, and grain. In addition, flowing granular
streams are being considered for some advanced concepts for
solar power plants and fusion reactor chambers. In order to
design the equipment for these varied applications in an effec-
tive and economical way, it is necessary to obtain a thorough
understanding of the flow characteristics of granular
materials. These design needs have already motivated exten-
sive analytical and experimental investigations of granular
flows. At this time, however, there is still no clear under-
standing of the constitutive relations that govern the motion
of granular materials. The general field is still in a stage of
development comparable to that of fluid mechanics before the
advent of the Navier-Stokes relations. The present work was
designed to contribute information which may prove helpful
in the eventual formulation of a constitutive law. The data
also provides practical information on the friction due to the
flow of granular materials over a smooth wall.

II Review of Related Work

R. A. Bagnold is credited with the development of the
modern research in granular material flows with his ex-
periments and theories dating to the early 1950’s (Bagnold,
1954, 1956, 1966). Recent progress has been described in an
excellent review by Savage (1984). The reader is referred to
this work and no attempt will be made here to offer any exten-
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sive account of the background material. For our purposes,
perhaps the most pertinent recent work is that performed by
Savage (1979, 1983), Sayed and Savage (1983), Hanes and In-
mann (1985), Craig et al. (1986), and Bailard (1978) all of
whom used Couette flow devices or open channels to ex-
perimentally study the shear of granular materials. With the
aid of Couette flow devices, the behavior of the shear stress as
a function of the shear rate, the normal pressure, and the par-
ticle size and density was studied. Sayed and Savage (1983),
Augenstein and Hogg (1974, 1978), and Bailard (1978) were
able to compute velocity and density profiles for the flow
along an inclined chute based on certain constitutive assump-
tions. Also applicable is the work by Campbell et al. (1985a)
on granular flow in an inclined chute. This experimental work
yielded some preliminary results on the shear stress in open
channel flows; however, their study did not account for the
density changes of the flow in the channel. The present study
shows that these density changes play an important role in
adequately describing a granular material flow. The computa-
tional work carried out by Campbell (1982), and Campbell
and Brennen (1985b), involved a statistical analysis of an
assembly of particles flowing down a chute. The results give
some indication of the magnitude and distribution of velocity
and density, as well as the fluctuational components of the
flow field, and may serve as background information for the
eventual formulation of the constitutive laws.

HI Experimental Installation

The present investigation was designed to obtain further in-
formation on the parameters that influence the shear in a
flowing granular material. For simplicity of analysis, an open
channel was proposed as the test section. With this purpose in
mind, a large installation was constructed which would allow
for continuous flow in a relatively wide open channel. A wide
channel was selected so that the effect of the side walls could
be minimized and a continuous operating loop allowed proper
adjustment of the flow as well as more accurate measurements
of the flow quantities by eliminating the time constraints on
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the measurements. An installation was built consisting of a 3
m long, 150 mm wide channel which could be placed at angles
up to 40 deg from the horizontal position. A high-speed
mechanical conveyor delivers the material to an upper hopper
from which the material flows into the channel. The discharge
from the channel is collected in a lower hopper which feeds the
material to the conveyor (See Fig. 1).

The measurements taken were the mass flow rate, profiles
of the depth of the flowing stream, and the local density. The
mass flow rate was determined by monitoring the rate of
depletion of the upper feed hopper through a graduated
transparent panel. Some confirmation of these flow rates were
obtained by collecting and weighing the material discharging
from the chute in a given amount of time. The depth of the
flow in the channel was measured at several points along the
chute by means of point depth probes identical to those com-
monly used in open-channel hydraulics. A simple yet effective
method was developed to measure an average density of the
flowing material. A device consisting of two plates connected

Variabie High Speed Elevator

Upper Feed Hopper

;; Chute Intake Hopper

Chute Rotation Axle

Flow Control Gate

Suspended
Mass Flow Rate
Measurament

Floor Level

\ N
Flow Control Gate
Coliection Hopper

Fig. 1 Schematic of the experimental facility

Supply Hopper

Cross Section

by a handle was suddenly pushed into the flow thereby trap-
ping the flowing material in the space between the plates. The
trapped material was then collected and weighed, and the
average density of the original stream was computed from this
weight, the measured depth of the original stream, and the
dimensions of the trap. For any given flow, this procedure
could be repeated at different locations along the channel
which allowed the density gradients to be evaluated in the
direction of flow. From such density measurements, mean-
ingful average velocities and densities could be computed. The
ability to obtain an indication of the average density in this
way was an important factor in allowing a more realistic inter-
pretation of the data for open channel granular material
flows. A drawing of the channel, point probes, and density
device may be seen in Fig, 2.

IV Computation of Shear

In addition to the flow quantities just mentioned, the shear
on the bottom of the channel was determined by means of the
following considerations. First the momentum equation was
written for the flow in the channel. The flow was assumed to
be steady and one-dimensional and the pressure distribution
was taken to be hydrostatic. It should be noted, however, that
the density is a variable and these density changes must be ac-
counted for in the momentum equation. With these assump-
tions the resulting equation may be written as:

TP

dh hod
—tanf+ —— (Fr? = 1)+ — —— (Fr>~1/2)
dx v dx

M

p,vghcost

where 7,, represents the shear at the channel bottom, p, the
particle density, v the solid fraction, # the depth of flow, ¢ the
channel inclination, x the distance along the channel, and g is
the gravitational acceleration. The Froude number, Fr, was
defined as U/(ghcosf)"/?, where U is the average velocity. The
first term on the right-hand side corresponds to the compo-
nent of the gravitational force in the direction of flow. The
last two terms account for the acceleration of the flow and de-
pend on the gradient of the depth of flow, (dh/dx), and on the
gradient of the density, (dv/dx). The accuracy of this equation
could be improved by the inclusion of profile parameters
which depend on the shape of the velocity and density profiles
over the depth of flow. However, in the absence of this infor-
mation, these profile parameters are assumed to be unity. The
factor P on the left-hand side accounts for the friction effect
of the side walls and may be expressed as

Alternative Locations of Capture Gates

Mass Flow Rate
Measurement

Fig. 2 Schematic of the test channel and density device
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Fig. 3 The variation of the solid fraction, v, as a function of the
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Fig. 4 The variation of the friction coefficient, u, as a function of
Froude Number Fr2. (Both 3 mm and 0.3 mm glass beads are shown.)

Table 1 Material properties

Average size of small glass beads 0.26 mm
Average size of large glass beads 2.94 mm
Bulk specific gravity (both sizes) 1.5
Wall friction angle against aluminum (both sizes) 15 to 18 deg
Internal friction angle (both sizes) 18 to 26 deg

P=(1+8h/b)

where b is the width of the channel, / is the flow depth, and 3
is a constant which is selected as discussed below. Once this
selection has been made, the shear 7, (or the ratio of 7,, to the
normal stress p,rghcosf) may be computed from measured
quantities A(x), »(x) and the total mass flow rate. The ratio
7,/ppvghcost is called the friction coefficient, p.

The accuracy of the determination of 7,, from equation (1)
depends on the accuracy with which the variables can be
measured. Perhaps the largest source of uncertainty comes
from the measurement of 4, particularly for flows of very low
densities. This measurement in turn influences the values of
the density ». Under these conditions we have allowed for er-
rors as high as =30 percent. Fortunately, the product vh,
which enters the computation of 7, is obtained directly from
the trapped material and this quantity is, therefore, more ac-
curately assessed than either » or 4 alone. The terms involving
the derivatives dh/dx and dv/dx were, in all cases, small com-
pared to the body force term, and did not materially con-
tribute to errors in the computation of 7.

A comment should be added regarding the constant 5. A
value of 8=2 results from the assumption that the shear
against the side walls is equal to that at the channel bottom. A
value of 8=0, on the other hand, represents frictionless side
walls. For the granular materials tested, the data suggest a
value for 8 somewhere in between. Furthermore, at very low
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velocities, one would expect the shear to correspond to that
produced by Coulomb friction between two solids. With this
consideration in mind, 8 was selected to be unity. Fortunately
the selection of 8 is not critical to the determination of the
shear r,,, since the chute was designed to be sufficiently wide
with the express purpose of minimizing the wall friction effect.

V Experimental Results

A large number of experiments were conducted using two
sizes of glass beads measuring 0.3 mm and 3.0 mm in
diameter. The material properties of these glass beads are
given in Table 1. For each material the channel was set at a
number of different angles and for each angle a range of mass
flow rates and flow depths were covered. The flow was con-
trolled by gates at the inlet section and in some cases also at
the discharge section of the channel. ‘

The experimental results may be presented in terms of a
number of possible dimensionless parameters. The two
parameters which seem to be particularly suitable are the fric-
tion coefficient (r,/p,vghcost) and the Froude number
U/ (ghcost)!’2. Additional parameters, such as h/d, may be
considered when results for different sizes of particles are
compared.

Before considering the variations in the friction coefficient
with various parameters, it is useful to examine the effects of
the density on the flow characteristics. To obtain further in-
sight into the relation between the density and the flow
characteristics, one may define a quantity

vh
d

One may think of N as the number of particle layers in the
flow. By plotting N against », one can examine the extent to
which the dilation of the material depends on the number of
layers of particles in the flow. Fig. 3 is such a graph and con-
tains the data for both the 0.3 and 3 mm glass beads. Note that
for both sizes, the depth-averaged solids fraction, », is essen-
tially constant for flows with N greater than approximately
four. On the other hand, when N decreases below 4 the
material dilates substantially, These data appear to be almost
independent of shear rate.

The relationship between the friction coefficient, p, and the
Froude number is shown in Fig. 4. The data for both sizes of
glass beads indicate that the friction coefficient remains fairly
constant up to a certain Froude number. Beyond that, the data
shows a rapid increase in u with a further increase in the
Froude number. Even though the individual points may be
subject to large errors, as pointed out earlier, the measured in-
crease in friction coefficient is so large as to leave no doubt
about the reality of this sudden rise. The deviation from this
constant value occurs at different Froude numbers for the two
sizes. The smaller glass beads show a more gradual increase
with Froude number than the larger glass beads, but it is ap-
parent that a definite deviation from the Coulomb friction
coefficient occurs. For both sizes of beads the value of the
friction coefficient at low Froude numbers is essentially equal
to the Coulomb friction coefficient for glass beads against
aluminum, which implies Coulomb friction governs these
flows in this range. At higher flow velocities, the increase in
the friction coefficient represents a deviation from this simple
Coulomb behavior. This behavior of the friction coefficient
has an interesting consequence. It implies that a solid material
in granular form may reach uniform flow (non-accelerating
flow) at various chute angles.

The question arises as to the mechanism responsible for the
increase in the friction coefficient at high Froude numbers. At
these high Froude numbers it is observed that the particles are
highly agitated and contact with the wall consists of collisions

N=
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(Both sizes of glass beads are shown.)

rather than sliding. These different means for the exchange of
momentum might explain the deviation from Coulomb fric-
tion seen in these flows. The precise mechanism responsible
for an increase in the effective friction angle, however, is
unclear. The interaction between the granules and the channel
surface is likely to be quite complex and may depend on addi-
tional parameters including the size of the particles, the
thickness of the channel bottom, the materlals involved and
the condition of the surfaces.

As we have already observed, the experimental data of the
friction coefficient for the two different sizes of beads fall on
two different curves when plotted as a function of the Froude
number. This fact seems to indicate that a geometrical factor
such as 4/d is influencing the results. In an attempt to include
this factor in a simple way, a modified Froude number is in-
troduced.

Fr’ =Fr(d/h)

The results for both sizes of glass beads are shown in Fig. 5 in
which the friction coefficient is plotted against this new
Froude number. The two sets of data appear to fall on approx-
imately the same curve. The generalization of this result will
depend on future experiments with a greater variety of sizes
and materials. Nevertheless, the data in Fig. 5 indicate the

possibility of obtaining reasonable correlations by means of

simple modified parameters.

So far the friction coefficient, u, has been presented as a
function of the Froude numbers. One might also consider the
average density v as a parameter. In order to account also for
the factor h/d, several combinations of » and h/d were tried
and a rather acceptable correlation was established between »

and v(h/d), as shown in Fig. 6. In general, low densities coin-
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Fig. 8 The variation of Fyy(») as a function of », as compared with
previous works

cide with high Froude numbers. Therefore, the friction coeffi-
cient reaches its largest values as »(#/d) becomes small.

VI Implications for the Constitutive Relations

In a model originally proposed by Bagnold (1954, 1956,
1966) and further developed by Lun et al. (1984), Jenkins and
Savage (1983), as well as others, the stresses in a rapidly flow-
ing granular material may be expressed in the form so that

05 = 0y () (du/dy)? @

where the functions F; depend only on the solid fraction ».
The available expenmental data do not allow accurate com-
putations or local determinations of these functions.
However, since the formulation of stresses in terms of the
functlons F; represents a very fundamental aspect in the
understanding of granular flows, an attempt to obtain some
rough estimates of those functions seems justified. Therefore,
since details of the velocity profile and any possible slip at the
wall have not been measured, the velocity gradient du/dy will
be characterized by U/h where U is the average velocity and 4
the depth of flow. The stress ¢,, and o, are taken to be the
pressure and shear on the channel bottom and the corre-
sponding density functions are given the symbols F, and F,,
The function F,, computed in this way for the present study
is shown in Fig. 7. The data for the two sizes of glass beads fall
essentially on the same curve. The data from the experiments
by Bagnold (1954, 1956, 1966) and by Savage and Sayed
(1982) are shown which were taken using Couette flow
devices. Considering the rough approximations used in the
computation of ,,, the data from these experiments correlate
rather well with the present results and adds further support to
the significance of Bagnold’s original formulation. The data
for the normal stress function F,, are shown in Fig. 8 together
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with those of Bagnold and Savage. The same conclusions may
be drawn about the normal stress function.

It should be mentioned that values for the functions F,, and
F,, may also be derived from the computational work of
Campbell (1982) and others. The values derived by Campbell,
although showing the same trends, are numerically higher
than those derived experimentally. These computational
works, however, are based on a number-of assumptions con-
cerning the details of the collision mechanics which, at this
time, cannot be compared to the actual physical conditions.
The data developed by Campbell (1982) for the density func-
tions, F,, and F),, are also shown in Figs. 7 and 8.

VIII Summary and Conclusions

An extensive experimental study of the flow of granular
materials in an open channel was performed. The materials in-
volved in the study were glass beads of two different sizes. A
technique was developed which allowed the measurement of
the average density of the flowing material. The results clearly
show that for the materials studied in this work the friction
coefficient, u, is not a constant as in the case of two solids in
sliding contact but rather that the friction coefficient increases
with increases in the Froude number. This result implies that
for the flows of granular materials in open channels, it may be
possible to obtain uniform flow for a range of different angles
of channel inclination.

The experimental data was also used to assess the validity of
the analytic expressions proposed by Bagnold for the stresses
developed in a granular material flow. In particular,
Bagnold’s expressions for the shear and normal force, which
define the functions F,, and F,, as functions of only the den-
sity, were tested. The results support such a relationship and
are in qualitative agreement with other experimental and
theoretical works for simple shear flows of granular materials.
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Analytical Characterization of
Shear Localization in
Thermoviscoplastic Materials

Critical conditions for shear localization in thermoviscoplastic materials are ob-
tained in closed form for idealized models of simple shearing deformations. The
idealizations, which include the neglect of heat conduction, inertia, and elasticity,
are viewed as quite acceptable for many applications in which shear bands occur.
Explicit results obtained for the idealized, but fully nonlinear problem show the
roles of strain-rate sensitivity, thermal softening, strain hardening, and initial im-
perfection on the localization behavior. Numerical solutions for two steels are
shown to exhibit the principal features reported for torsional Kolsky bar ex-
periments on these steels. Mathematically exact critical conditions obtained for the
Sully nonlinear problem are compared with critical conditions obtained by means of
linear perturbation analysis. Use of relative changes instead of absolute changes in
the linear perturbation analysis gives better agreement with predictions of the fully
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nonlinear analysis.

1 Introduction

Shear instabilities in the form of shear bands are commonly
observed in metals and polymers subjected to large deforma-
tions. The formation of a shear band is often an immediate
precursor to rupture of the material. Even when rupture does
not occur, the development of shear bands generally reduces
the performance of the material. Thus, improved under-
standing of shear band formation is critical to the develop-
ment of improved materials and components made from these
materials.

Shear bands can be divided into two types: those in which
thermal softening plays a negligible role in their formation and
those in which thermal softening plays a primary role. In the
former case the shear bands, sometimes called isothermal
shear bands, form as a result of strain softening due, for ex-
ample, to material damage, to the development of soft tex-
tures, or to phase transformations. In the latter case the shear
bands, often called adiabatic shear bands, form as a result of
an autocatalytic process: an increase in strain rate in a weaker
zone causes a local increase in temperature which in turn, for a
thermal softening material, causes a further increase in strain
rate.

In this paper we consider both types of shear bands. We
limit our attention to simple shearing deformations. Two fun-
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damental questions regarding the critical conditions for shear
band formation are addressed.

1. For a given constitutive law, will shear localization
occur for a sufficiently large shear?

2. If so, what is the nominal critical shear for which the
catastrophic process occurs?

As background for this study we note that an analysis of the
stability of homogeneous simple shearing deformations has
been presented by Clifton (1978) for a quasi-static deforma-
tions and Bai (1982) for dynamic deformations. They used a
classical, linear perturbation analysis in which the coefficients
in the linear differential equations for the perturbations were
assumed to vary sufficiently slowly that these variations could
be neglected in estimating the rate of growth or decay of fluc-
tuations from the homogeneous solution. This procedure
determines a critical strain at which fluctuations begin to
grow; however, this initial growth may or may not lead to in-
stablity depending on the neglected effects of the time
dependence of the coefficients and the nonlinearity of the
complete system of equations. Molinari and Clifton (1983)
and Molinari (1984, 1985) have presented some analytical
solutions of the fully nonlinear problem under quasi-static and
adiabatic (no heat conduction) conditions. With these solu-
tions available for measuring the reliability of more simple ap-
proaches for determining the onset of instability, Molinari
(1985) and Fressengeas and Molinari (1987) developed a so-
called relative linear perturbation analysis that accounts, in
part, for the nonsteadiness of the homogeneous solution by
linearizing in the relative perturbation defined as the perturba-
tion divided by the corresponding unperturbed quantity. This
approach has been shown to give predictions, as to whether or
not shear bands will form, that are more in agreement with the
fully nonlinear theory than are predictions based on classical
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Fig. 1 Specimen geometry and loading condition

linear perturbation analysis. Dafermos and Hsiao (1983) ob-
tained a priori estimates of the asymptotic behavior of the
solution of the nonlinear problem (including inertia, but not
heat conduction) for the case of the Newtonian fluid with
temperature-dependent viscosity. Tzavaras (1984) extended
these results to the case of non-Newtonian fluids with
temperature-dependent viscosities.

Numerical solutions of the fully nonlinear system of equa-
tions have been presented by several authors: Shawki et al.
(1983), Shawki (1986), Wright and Batra (1985), and Molinari
(1985).-From these solutions one can conclude that dynamical
effects and heat conduction are relatively unimportant for
steel specimens, with lengths of 5-10 mm, subjected to shear-
ing rates of 10°s~! as in the torsional Kolsky bar experiments
of Costin et al. (1979) and Hartley (1986). Thus, in this paper
we neglect dynamical effects and heat conduction in order to
present an analytical approach to the fully nonlinear problem
of thermoviscoplastic localization in simple shear. Our aim is
to obtain simple analytical formulae for determining whether
or not a shear strain localization instability will occur and, if
so, the critical strain ¢ at which the localization becomes
catastrophic. The boundary conditions will, in some cases, be
general whereas in others they will be restricted to a constant
imposed shear stress or a constant imposed velocity. Isother-
mal shear bands are considered in Section 2 and adiabatic
shear bands are considered in Sections 3 and 4.

2 Isothermal Problem

We consider a simple shearing deformation of strain
hardening material with strain-rate sensitivity. For illustra-
tions, we consider the following constitutive law:

T=f(YY" (m>0) )

where 7 is the shear stress, v is the shear strain, and v is the
shear rate. The function f(vy) takes account of the strain
hardening. This function is not necessarily monotonicaly in-
creasing in order to account for possible strain softening.

Suppose that, for a constant applied strain rate v, the shear
stress 7 passes through a maximum. Will strain localization oc-
cur? By localization we mean that in some narrow region, the
strain becomes much larger than elsewhere. More precisely,
we define localization as follows:

L_ -Localization. If for every point A different from B, the
ratio yz/v, tends to infinity with increasing time, then
L -localization of the deformation at the point B is said to
occur. ‘

The analysis of localization in this section is performed in
two different ways. First we derive an analytical solution of
the fully nonlinear problem. Then an absolute and a relative
linear perturbation analysis are performed and the correspon-
ding predictions are compared with the exact solution.

2.1 The Nonlinear Theory. We consider a slab with a
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Table T Influence of strain rate sensitivity on the asymptotic
behavior of plastic flow (geometrical defect: {3 /f, =0.99)

m 0.2 0.1 0.01  0.006 0.001
1.052  1.106 2.732 7.464 2.316x 10

(’YB/‘YA )oo

geometrical defect. The width #y) is nonuniform as shown in
Fig. 1. Using the same approach as Hutchinson and Neale
(1977) for the uniaxial tension of a bar, we get from the
equilibrium equation written at two different points A and B:

Gta =Laf(Ya) (V)" =l =taf(vs) (vp)". ()
Taking the power 1/m of each term, we get after integration:

g/lq/m S:; (f( g-)l/mdg-z Eb/m S:; (f( ﬂ'))l/mdg' (3)

where v4 and v§ are the initial strains at points A and B. If
(Y™ is integrable at infinity, then the values of the in-
tegrals are finite. While maintaining the equality (3), let yg
and v, be increased until the strain becomes infinite at one of
the two points, say B. Then there exists a finite strain v, for
which equation (3) is satisfied. Hence, we have
L ,-localization of strain if and only if the function (f ()™ is
integrable at infinity.

Assume that f({) has power law behavior at infinity of the
form

S ~arPas{—~oo C))
where a and p are positive constants. Then, from the in-
tegrability condition (3), the deformation exhibits L, localiza-
tion if and only if

—p+m<0 5)

This condition illustrates the stabilizing effect of the strain-
rate sensitivity for m>0. Even if the material is strain soften-
ing (p>0), localization will occur only if m is sufficiently
small (m<p). For m—p>0, L-localization does not occur.
Indeed, for m>p it is readily shown that (Molinari and CIlif-
ton, 1986)

im  (yg/va) = (4/5)"" P (6)
Y4 R
so that yg/v4 remains bounded as -y 4 — .

To appreciate the strong stabilizing effect of strain rate sen-
sitivity, consider a material with no strain hardening at large
strains (i.e., p=0) and with a 1 percent geometrical defect
(i.e., £3/0,=0.99). Values of (y5/74)w =({4/5)"/™ are given
in Table 1 for different values of m. A value m=0.01 is suffi-
cient to prevent pronounced localization as y—o. The
stabilizing effect of strain-rate sensitivity has been shown by
Pan (1983) using a similar approach.

2.2 Linear Perturbation Analysis. For comparison of
the results of the fully nonlinear theory to the predictions of a
linear stability analysis, consider a block of uniform thickness
f(y)=1{, undergoing homogeneous simple shearing deforma-
tion «,(#). Let the perturbation 6y be the difference v(y,
f)—+, () where y(y, t) is the shear strain for the same block
subjected to the same boundary conditions, but having a fluc-
tuation in strain and strain rate beginning at some time ¢,,. Let
the relative perturbation Ay be defined as

&
Ay=-"T, @)
Yo
Using the constitutive law (1) and considering the problem as
quasistatic (i.e., 67 =0) we obtain:
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when the respective perturbations are sufficiently small. Equa-
tion (8) shows that, at least initially, the strain difference &y
grows when f7(y)<0, i.e., when strain softening occurs. The
relative perturbation Ay tends to grow more slowly than the
absolute perturbation éy and may even decay as the perturba-
tion grows. If f(y,) has the behavior (4) for large values of v,,
then as vy, ~— o the relative perturbation Ay continues to grow
for —p+m<0 and decays for —p+ m>0. These conditions
are, respectively, the same as the critical conditions for
L, —localization to occcur or not. This parallellism between
predictions of the linear relative perturbation analysis and the
exact results for the nonlinear theory suggests that linear
relative perturbation analysis may be more widely useful in
predicting the stability of deformations than is commonly
used linear perturbation analysis represented by equation (8).
However, we emphasize that the localization analysis in the
nonlinear theory and the linear relative perturbation analysis
address different problems and there is not a priori reason to
expect that the critical conditions for L -localization are, in
general, the same as the critical conditions for predicted un-
bounded growth of a relative perturbation.

3 Adiabatic Case

We consider next the influence of temperature on localiza-
tion. As discussed in the introduction, the deformation is
assumed to be adiabatic and quasistatic. We consider the con-
stitutive equation

r=7(7,7,0), (10$)
the equation of equilibrium
)7y, ) =t(h)7(h, 1), (11)
the compatibility equation
. adv
= , 12
=% (12)
and the energy equation
a0 .
C——=L1y. 13
pC—; Bry 13)

In these equations p is the mass density, C is the heat capacity
per unit mass, 4 is the absolute temperature, v is the particle
velocity, and f is the Taylor-Quinney coefficient which
characterizes the fraction of plastic work that is converted into
heat; usually 3 is taken constant and equal to 0.9. Equations
(10)-(13) constitute four equations in the four unknowns v, 6,
7, v. With elasiticity effects neglected these equations are ap-
plicable to arbitrarily large deformations in simple shear.

In the following, we present a discussion of localization for
different constitutive laws and different boundary conditions.
We consider the cases of constant velocity boundary condi-
tions:

v(0,¢)=0
v(h, 1) =0, 14
or constant stress boundary conditions
£(h)T(h, t) =K0)7(0, £) = const. (15)

- 3.1 Materials Without Strain-Hardening. An exact solu-
tion of the fully nonlinear problem has been presented by
Molinari and Clifton (1983) for the case in which the material
is not strain hardening and equation (10) has the form
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Table 2 Localization results for visco-plastic, thermal
softening materials without strain hardening (m>0, po >0,
a>0)

Constitutive law L, -Localization

Ly = p 077" y+m<0
Ly 7=p,exp/(— af)y™ a>0

L, r=sup(a+ bf, O)yy™ b<0

L, T=p,exp(—a/0)y™ never exhibits

L, -localization

T=p(6)y". (16)
In order to obtain this exact solution we write equations (11)
and (13) at two different points 4 and B. Substitutions of
equation (16) into (11) and use of equation (13) to eliminate
Ya/vp gives

[/(im+ 1)/'"/.L (0A ) deOA — l’g" + 1)/'"‘u (03 ) 1/md0B (17)
which, after integration, becomes
04 bp
e[%m«h n/m Saz M(g—) V”’d§'=f§m+ 1)/m SB% “(g-) dei‘ (18)

where 84 and 64 are the initial temperatures at points 4 and B.
From equation (18) it appears that L -localization of
temperature occurs at B if, and only if, u(8)'/™ is integrable at
infinity. Localization will occur at the point B where the
following quantity, defined for each point M of the slab,

M_,e)v,wr Wm S . I"(g.) l/mdg- (19)
274

is a minimum. At localization the temperature §< at any point
A is given by

85 o
g{(4m+ Yy/m SG: #(f) V"’d_{':fgnﬂ)/m Sgg “ ( g-) l/mdg-. (20)
A

It is easy to show that L, -localization of temperature tends
to result in strain localization. Indeed, from the equilibrium
condition (11) and the constitutive law (16), we have

ap(0,4)v =L (65) v}
Then, assuming temperature localization, we get

y Vm
lim (7/‘ ): lim (M) - oo
Y4 64~6% Lpp(0p)

8465
since Iimc;,c(GB):O from the integrability condition. This
040

A

L -localization of the strain rate essentially ensures
L -localization of the strain although various pathological
cases must be excluded in a rigorous analysis. We henceforth
consider constitutive equations and loading conditions for
which such pathological cases are excluded.

Localization results obtained from the integrability condi-
tion are summarized in Table 2 for several constitutive laws.

3.1.1 Calculation of the Critical Strain. 1In this section
we obtain explicit results for the critical strain at localization.
We illustrate the approach by considering the constitutive law

L,. Substituting this law in equation (18), we obtain the

following expression for the temperature at a point B as a
function of the temperature at a point 4

ol (7

(A+m}/m
) exp(—aﬁA/m)+Cl] (P3))
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£
C, =exp(—alfy/m)— ( 4
tp

(L+m)/m
) exp(—aby/m). (22)

From equation (21), a necessary condition for localization
to occur is C; <0 since for C, =0 the logarithm cannot tend to
infinity. Let us identify the point B as the point where the
quantity £ "+ D/"exp(— «6%/m) is a minimum. Then, if the
initial temperature (or width {) is nonuniform, C, is strictly
negative.

For thermal softening material, i.e., o> 0, the quantity exp
(—af,/m) decreases to zero as 0,—oo, For some critical
temperature 05, the temperature 8, will become infinite. From

equation (22), this value is
1+m

17
sl ()
A

exp(—a(()‘é—@,‘g)/m)]. (23)

If the material is thermal hardening, i.e., & <0, then the term
exp(— ol 4/m) grows and, from equation (21), it is obvious

that L,-localization is impossible. Indeed, for sufficiently
large 6,4, the difference

E (—1-m)/a
o] ()]
by

becomes small compared to the absolute temperature, say 6.
To calculate the critical strain from the critical temperature
we consider first the case in which a constant stress 7 is applied
at the boundary. Then, from the energy equation (13), 6§ can
be calculated as a function of the strain vy
T
0= —B—’y +6°,
oC
The critical strain, v, at A is obtained by substituting the
critical temperature 85 given by equation (23) into (24) to ob-
tain

24

oCm
Ya=— logx 25)
afiT
where
1+m
?
x:l—[%] m  exp(— (83 —09)/m) (26)
A

is a defect parameter that includes both geometrical and
temperature defects. The stabilizing effects of increased strain
rate sensitivity (i.e., larger m) and decreased thermal softening
(i.e., smaller o) are evident in this expression. The critical,
nominal strain at which the temperature becomes infinite at B
is obtained from the integration of the critical strain
¥ (y4) =74 over the height of the block. Thus, the critical,
nominal strain is

1
AL @)

h
Numerical integration of equation (27) is straightforward as
long as the thickness £(y ) varies sufficiently slowly near the
point (s) B at which the strain becomes infinite.

We consider next the calculation of the critical strain for the
case of the velocity boundary conditions (14). An exact solu-
tion does not appear to be possible in this case. However, a
good approximate solution can be obtained for the case of
weak strain-rate sensitivity (i.e., m <« 1). Such weak strain rate
sensitivity is commonly observed in metals at room
temperature for strain rates up to 10* s~1. Typical values of m
are of the order of m=0.01. In order to obtain an approx-
imate solution for small m we introduce the mean constant
strain rate ‘
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Yo=V/h (28)
For small values of m we can approximate the stress 7 by
(Molinari and Clifton, 1986)
72 p,exp(— )y (29)
Substitution of the approximate stress (29) into the energy
equation (13) leads to

a6 ) ..
pC—— =B exp(— ) 734 (30)

at

This equation can be integrated by separation of the variables
6 and v to give

(31

m
0(y) =00 +— log[1+ oo exp(-a@")'y].
o oC
where 6° is the initial temperature.
With the relationship between 6 and vy given by equation
(31), the critical strain, v4, at 4 can be obtained by integra-
tion of the equilibrium equation (11). Such integration gives

)
efm | exp(-ats (v /m)ay

)
=t |7 exp(— ot (v)/m)dy (32)

with 64 (y) and 65 () given by equation (31). At localization,
vp becomes infinite and the critical strain 44 at point A
becomes, for m< 1,

= - ()
T4 of3tg IR

—m/(1—m)
exp(——a(l—m)((}’%——@ﬁ)/m)] —1}

33)

where
9 = toyTexp(— af3)

is the shear stress at 4 in an isothermal deformation at the
same strain rate. If £ and 6° are both uniform, then equation
(33) implies that v is infinite and localization does not occur.
The critical strain decreases as (f3/f,) decreases and 6% —69
increases. The energy measure, 7575, of the critical strain in-
creases with increasing strain rate sensitivity (i.e., increasing
m) and decreasing thermal softening (i.e., decreasing o).
Again, the nominal critical strain is obtained by the substitu-
tion of equations (33) into (27). Comparison of equation (33)
and (25) indicates that, for m<< 1, the defect parameter x of
equation (26) again characterizes the effects of both
temperature and geometric defects.

Identical calculations can be performed for a power law
dependence of the flow stress on the temperature. Analogous
results for the constitutive law L; of Table 2 are

1+m v+m m

Ao () = () T 1) wo
BTA fA 031
for constant stress boundary conditions, and

. pCO
A= 0=,

1 v+m(l—v)
g\ [ 0%

i[l_ ( ) m ( > m ] v+m(l-p) _1} (34b)
2, 69,

for constant velocity boundary conditions; equation (34b)
holds only for m<<1.

(I-v)m
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3.2 Materials With Strain Hardening. Strain hardening
cannot be ignored for most materials. In this section we derive
analytical localization criteria for constitutive laws of the form

T=p(0) (Y +7°)"y" 35)

where 7 is the initial strain. The approach is similar to that
used in Section 3.1.

3.2.1 Stress Boundary Condition. Elimination of vy be-
tween the constitutive law (35) and the energy equation (13)
leads to

m+1

db — 61 m —1/m 0y —n/m
dr = oC n(0) (y+v°)7mm.

(36)

We write equation (36) at two different points A and B, take
account of the equilibrium equation (11), use equation (24) to
eliminate v, and integrate to obtain

m+1

m 0A m [ pC 0 nm
D T (e R EY R
€p)
mtl op oC n/m
—t " wr (ot ) d

Equation (37) is a generalization of equation (18) to strain
hardening materials. Analysis of equation (37) analogous to
that of (18), shows that L -localization occurs if and only if
the function

m 0 pC 0 n/m
0—n(®) (00 L )

is integrable at infinity. For the constitutive law

T=m 8 (y+7°)y" (38)
L -localization occurs if and only if
v+n+m<0. (3%9)

The inequality (39) provides a good illustration of the com-
petition between the stabilizing effects of strain hardening
(n>0) and positive strain-rate sensitivity (m>0), and the
destabilizing effects of thermal softening (» < 0). The localiza-
tion criteria (39), obtained by Molinari and Clifton (1983), has
also been obtained by Fressengeas and Molinari (1986) as the
criterion for the initial growth of a fluctuation based on a
linear relative perturbation analysis. The inequality (39) dif-
fers from the condition

v+n<0 (40

that must be satisfied for the initial growth of a fluctuation ac-

cording to absolute linear perturbation analysis. The dif-

ference between the conditions (39) and (40) illustrates the

tendency for absolute linear perturbation analysis to predict

growth of fluctuations under some conditions for which the

full nonlinear analysis predicts that localization will not occur.
For the constitutive law

T=hoe (Y +7°) " (1)
a similar analysis shows that L -localization occurs if and on-
ly if &> o (thermal softening). For this constitutive equation
the critical strain v at A4 when the strain at point B becomes
infinite is obtained by the substitution of equation (41) into
(37) to obtain, after a change of variable,

% -
K, SA e“"u"/’"dv=KBS_o e=ryn/mdy “2)

YA YB

where
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';C:_QBT_(C_*_ 9y, 40 = abr
A mpC YaTY4) Ya -—dmpC YA
l+n+m
Ky=t, ™

with A4 replaced by B for 45 and K. Localization will occur at
the point B, where the quantity on the right side of equation
(42) is a minimum. Equation (42) has the same form as that
obtained by Hutchinson and Neale (1977) in the study of the
rupture of a viscoplastic bar in tension although the physical
effects being modeled are different—their analysis included
necking, but did not include the thermal softening which is in-
cluded here.

3.2.2 Velocity Boundary Conditions. As in Section 3.1
we consider constant velocity boundary conditions and
assume that the strain rate sensitivity of the material is small
(i.e., m<<1). To calculate the temperature from the energy
equation (13) we replace y by 4, = V/A in the constitutive
equation (35) and integrate to obtain

Bvy

g 1
= 43
Jo GTECES) “

((,Y+,YO)n+1 _(,Yo)n+1>‘

Substitution into equation (43) of functions p(6) that model
the temperature dependence of the flow stress gives the re-
quired relationship between the temperature 6 and the shear
strain . For u(8) =p,6” we obtain

Bll-l’Y.f;"

pC(n+1)0°)'
1

O(y)=0° [I+(1—V)

[yt = Gy | 1 (44)
and for u(8) =pu,e~* we obtain
6(y) =00+—é—log [1+ apc(-ner_l;oo
(@+rymri-@oym) . @)

These equations provide an approximate relationship between
the temperature and the strain at each position as long as the
exponent m is sufficiently small for the dependence of the
shear stress on strain rate to be represented by 45, where v, is
the nominal strain rate, instead of by 4", where v is the local
strain rate.

In order to investigate the critical conditions for localiza-
tion, we substitute the functions #(y) obtained from equa-
tions (44) or (45) into the equation

YA
8n | 10401V (g gy mag

YB
=t [ w05 () (4 ag) v 46)

As before, L -localization occurs if, and only if, the integral
on the right side of equation (46) remains bounded as yz— .
For 6(y) given by equation (44), the condition for
L. -localization becomes

v+n+m(l-r)<0 @7

for 0<m<x<1, and v<1. This condition is slightly more
restrictive than the condition (39) obtained for stress boundary
conditions. That is, the tendency for localization is slightly
stronger for stress boundary conditions than for velocity

‘boundary conditions in that the localization condition (39) is
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Table 3 Thermomechanical properties of CRS 1018 and

HRS 1020 steels
Steel CRS 1018 HRS 1020
Parmeter
v —-0.38 -0.51
n 0.015 0.12
m 0.019 0.0133
0 7800 kg/m> 7800 kg/m?
c 500 J/kg K 500 J/kg K
™ 3579 10° S.I 7587 % 10° S.I.
6.0
2 ] — . HRs1020 297
1.5
- B
E TR N CRS1018 10 A\
jul 4
=
n .
c 4.0
.0
-+ .
g 3.0-
T
Q
i) 2.0
©
£ 0
E .
2
OO CTTTTT T TRy O 77 T T P = TP

1

° 107 10t 1t 107 10

Defect parameter &

Fig.2 Dependence of the nominal critical strain on the initial imperfec:
tion for CRS 1018 and HRS 1020

satisfied by all », m, and n which satisfy (47); however, for
m <« 1, the terms involving m in both equations (39) and (47)
are often so small that, effectively, the localization conditions
(39) and (47) are the same. For 6(+y) given by equation (45) the
condition for L -localization is satisfied for all >0 provided
that m, n satisfy m>0, n> —1.

4 Numerical Example

Dynamic torsion experiments for investigating shear
localization have been performed by Hartley et al. (1986) on
two different types of steel: CRS 1018 and HRS 1020. At the
strain rates (10°s ~!) and temperatures (§° = 300 K) of these ex-
periments the behavior of these materials can be represented
reasonably well by a constitutive equation of the form (38).
Numerical values of the various parameters in the model are
given in Table 3 (Shawki, 1986). The strain v° is taken to have
the value 0.01 for both steels. More detailed fitting of the
plastic response of these steels has been presented by Klepac-
zko (1986). The length 4 of the specimens is 2.5 mm.

Variations £(¥) in the wall thickness of the specimens were
not reported by Hartley (1986). Subsequently, Duffy (1986)
has sectioned specimens used in such experiments to determine
the variation in wall thickness, both along the length of the
specimen and around its circumference. For CRS 1018 the
wall thickness is relatively uniform around the circumference,
but strong variation—up to 10 percent—occurs along the
length of the specimen. For the purpose of this numerical
example we take the geometrical factor (f3/¢,) in the
preceding analysis to be a parameter that varies from 0.9 to
0.999999. In order to' relate the critical strains 44 to the
nominal strain v at localization (see equation (27)), the varia-
tion in wall thickness £, =£(y,) must be prescribed over the
entire length of the specimen. Based on the general appearance
of the sectioned specimens we take this variation to have the
form )
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Fig. 3 Strain distribution at localization for CRS 1018 (¢ = 0.02)
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Fig. 4 Nominal stress-strain curve for simple shear of CRS 1018 and
HRS 1020

) _y +—E—(cosﬂ— 1) (48)

7 2 h

where ¢ is a geometrical parameter that is taken to vary from
10~ ! to 10~ to give the range of values of 0.9 to 0.999999 for
Ep/0,.

Boundary conditions for the dynamic torsion (‘‘torsional
Kolsky bar’’) experiment are effectively those of imposed con-
stant velocity a the ends of the specimen. Hence, we use the
solution for velocity boundary conditions given by equations
(44) and (46). The restriction to m << 1 that is required in ob-
taining equation (44) is well satisfied by the values m=0.019
for the CRS and m=0.0133 for the HRS. Evaluation of
v¢(y4) from equation (46) and integration over the length of
the specimen, according to equation (27), gives the
dependence of the critical nominal strain y¢ on the geometrical
imperfection parameter e that is shown in Fig. 2. For small €
the nominal critical strain varies approximately as log e, as
predicted for the local critical strain by equation (25); the cor-
responding equation, equation (33), for constant velocity
boundary conditions also gives the logarithmic dependence for
O<exm<x 1 (Molinari and Clifton, 1986). The insert pro-
vides an expanded scale of the region of primary interest in the
interpretation of torsional Kolsky bar experiments. For one
value of e{e=0.02), the strain distribution at localization for
CRS 1018 is shown in Fig. 3. The width of the band of intense
shear (say, the region for which vy (y) > 3v(0)) is approximate-
ly 20 percent of the length of the specimen. Such relatively
wide bands are observed in CRS 1018 (Hartely et al., 1985).
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The predicted nominal stress-strain curves for the two steels,
with the geometrical imperfection parameter ¢ equal to 0.02,
are shown in Fig. 4; a corresponding curve for ¢=0.04 is in-
cluded for HRS 1020. The general features of the curves in-
clude a slowly rising segment during which the shearing is
quite uniform, a slowly falling segment during which a broad
band of enhanced shearing develops, and a sharply falling seg-
ment during which the shearing becomes intensely localized in
a band. These general features are characteristic of the ex-
perimental records obtained in such experiments (Hartley et
al., 1986). Numerical values for the strain at the peak of the
stress-strain curve and the strain at the beginning of the sharp
decline in stress are comparable to values obtained in ex-
periments. However, the predicted rate of sharp decline is
greater than normally measured. This rate of decline is af-
fected by the detailed geometry of the initial imperfection
which probably was not modeled adequately by the generic
form (48). Other difficulties with comparisons between theory
and experiment for the steeply falling part of the curve in-
clude: (i) the inadequacy of the assumption that the stress ob-
tained using the nominal strain rate can be used in calculating
the local rate of energy dissipation; (i) the likelihood that the
final localization varies so strongly around the circumference
of the specimen that a one-dimensional analysis is inap-
propriate; and (i) the lack of constant velocity boundary con-
ditions when the stress decreases strongly in torsional Kolsky
bar experiments.

5 Conclusions

By assuming the deformation to be adiabatic and quasi-
static, and by neglecting elasticity effects, we have character-
ized, analytically, the critical conditions for shear strain
localization in simple shear. The assumed conditions are good
approximations for the specimen sizes and strain rates that are
commonly used in torsional Kolsky bar experiments on shear
band formation in steels.

We assume the existance of initial inhomogeneities which
are either geometrical defects or nonuniform fields of initial
temperature or strain. The localization strain is obtained as a
function of these defects, the material parameters and the
boundary conditions. Two types of boundary conditions have
been considered:

—constant applied stress,
-constant applied velocity.

In the latter case, the analytical results are restricted to
materials with weak strain rate sensitivity.

The results are particularly simple for materials without
strain hardening. In this case, explicit expressions are obtained
for the dependence of the critical strain on a defect parameter
that characterizes the geometrical defect and the nonuniformi-
ty of the intial temperature. For materials with weak strain
rate sensitivity the critical strain depends weakly (essentially
logarithmically) on the amplitude of the imperfection for
small imperfections.

Comparison of predictions of the theory with experimental
results for a cold-rolled steel shows good agreement in the
qualitative features of the response.Quantitative comparisons
require detailed descriptions of the geometrical defects of the
specimens used in the experiments. Preliminary comparisons
based on approximate representations of the geometrical im-
perfections of the specimens suggest that good quantitative
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agreement may be obtained once the defects are modeled
accurately.
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Thermal Conditions for Inhibition
of Stress Induced Slip in Zinc-

S. Motaket

Department of Mechanical Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139

Blende Crystals in Czochralski
Growth Configuration

The methodology for calculation of thermal conditions required for control of ther-
mal stresses at below the plasticity limit during Czochraiski growth of crystals with
the zinc-blende structure is developed, and quantitative results are obtained for
GaAs as the model crystal.

Introduction

Increased performance and yield of electronic devices based
on compound semiconductors such as Gallium Arsenide
(GaAs), and Indium Phosphide (InP), require improvement of
the chemical and crystalline perfection of the presently
available substrate materials. The primary crystalline defect in
III-V compound semiconductors is the presence of a large den-
sity of dislocation networks which are associated with ex-
cessive thermal stresses experienced by the solid during
growth. Whereas quantitative study of the plastic deformation
mechanism of compound semiconductor crystals relating the
absolute levels of thermal stresses in the growing solid and the
observed dislocation densities requires a (presently
unavailable) model for plastic strain release mechanism in
compound semiconductors, modelling (Jordan et al., 1980);
Kobayashi et al., 1985; Motakef and Witt, 1987; and
Motakef, 1987b) and experimental (Seki et al., 1978; Uemura
et al., 1981; and Jordan et al., 1984) results indicate that the
stresses in III-V crystals grown by the liquid encapsulated
Czochralski (LEC) technique significantly exceed the plasticity
limit of the matrix.

Thermoelastic study of GaAs crystals grown by the LEC
technique in conventional furnaces was first pioneered by Jor-
dan (1980) and later improved and modified by Kobayashi and
Iwaki (1985) through the exact solution of the thermoelastic
equations and by Motakef and Witt (1987) and Motakef
(1987a) by identification of the influence of the encapsulant
on thermal stresses in the growing solid.

The present study is concerned with the development of a
methodology for calculation of thermal conditions required
for control of stresses in crystals with preferred orientations
for plastic deformation. Results are obtained for GaAs
crystals, characterized by the primary slip system {111}
< 110>, grown by the LEC technique. The numerical calcula-
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tions are conducted for a 75 mm (3 in.) diameter crystal with
uniform thermal and elastic properties (Table 1).

Problem Formulation

The growing solid is modelled as an axisymmetric cylinder
of uniform radius r, with shoulder and growth interface
geometries S, (r,z) and S, (r,z), respectively (Fig. 1(a)).

The temperature distribution in the crystal, used as the in-
put to the thermoelastic equations, is obtained by the solution
of the Fourier equation, V20 =90, subject to the following
boundary conditions:

30/0r=0. at r=0 1)
00/0r=q,(z) atr=1 2
00/0n=gq, at S, 3)

0=1 at S;, @

where the length scales are nondimensionalized by the crystal
radius, © is the nondimensional temperature variable 7/T;
(T is the freezing point temperature of the matrix), and q is
the nondimensional heat flux variable = gr./k. T, (the
superscript ~ denotes a dimensional quantity).

The stress distribution associated with the axial and radial
temperature gradients in the crystal is obtained by solution of
the thermoelastic equations. The radial and axial displacement
components, ¥ and w, respectively, in an axisymmetric and
isotropic body with constant thermoelastic properties are
(Boley and Weiner, 1960):

Table1 Listing of thermoelastic parameters

GaAs

Thermal Conductivity (W/cm K) 0.08
Surface Emissivity 0.5
Isotropic Thermoelastic Constant (aE/1—v)
{Dynes/cm? — K)

CRSS (Dynes/cm? —K)

1x107
10(5.83+ 1382/T)

Encapsulant (Boric Oxide)
Thermal Conductivity (W/cm K)

1.9% 1072
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Fig. 1 Geometric model of (a) axisymmetric crystal including the cone
and growth interface morphologies, and (b) cylindrical model of the
crystal
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where v is the Poisson ratio, « is the thermal expansion coeffi-
cient of the crystal, and e is the dilatation parameter:

e= ﬂ F i + _a_u.)__ 7
0z

ar r
The thermal stress tensor, T, for the geometry under con-
sideration is:

g, 0 7,
T=|0 o, 0 ®)
Tar 0 o,

The elements of T are calculated from Hooke’s strain-stress
relationship:

E [au + v o 1+ .6 1)] 9
O‘: — —
" 14»L or 1—2v 1—-2ua Y ©)
E [”+ A S L 1)] 10
0oLy T 1=2r ST 1= ¥V (10
. _ E [aw v . 1+» 7.6 1)] 1
“T1xs L0z 1-20C 1=2 ¥V an

- E < ow N 6u) (12
Frp=

220 +w) \ or 0z )
In the above E is the Young’s modulus of the crystal. Equa-
tions (9)-(12) are subject to the boundary conditions of trac-
tion free surfaces and zero radial displacement at the
centerline. :

The geometry of the crystal is reduced to a cylinder with flat
top and bottom surfaces while the influence of the shoulder
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and growth interface geometries is retained by the introduc-
tion of a radially nonuniform heat flux distribution, g (r), at
the cylinder top, a radially nonuniform temperature distribu-
tion, ©p(r), at the cylinder’s bottom, and radially
nonuniform traction boundary conditions X, (r) and X (r)
at the cylinder’s top and bottom. Thus, the thermal and trac-
tion boundary conditions for the cylindrical model of the
crystal are:

90/9r=0, u=0 at r=0 (13)
30/0r=q,(2), 7,=7%,=0 atr=1 (14)
0=0,(r), X=X, at z=0 15)
80/9z=q,(r), X=X (r) atz=L (16)

The above boundary conditions indicate that the stress field
in the crystal is controlled by: (1) the heat flux distribution at
the crystal periphery, equation (14); (2) growth interface mor-
phology, equation (15); and (3) the shoulder geometry, equa-
tion (16). Although the primary influence of the shoulder and
growth interface geometries on the stress Ievels in the crystal is
restricted to the areas close to the two regions, generation of
excessive stresses at these areas can significantly influence the
crystalline perfection of the growing solid independent of the
following stresses generated by the heat loss at the crystal
periphery: (@) plastic deformation of the crystal shoulder
results in generation of dislocations that penetrate into the
crystal core, and (b) the low values of CRSS close to the
growth interface provide the potential for plastic deformation
of the crystal at low stress levels. Therefore, equations
(14)-(16) suggest that the results of thermoelastic studies of
crystals which exclude the thermal and traction boundary con-
ditions of equations (15) and (16) are inaccurate close to the
growth interface and the shoulder area.

The present study is concerned with maintaining the thermal
stresses in the growing solid at below the plasticity limit
through control of heat losses from the crystal periphery and,
thus, the influences of the shoulder and interface mor-
phologies on the stress distribution in the crystal are excluded.
Therefore, the thermal and elastic boundary conditions, equa-
tions (14)-(17), are modified to exclusively reflect the in-
fluence of heat loss from the crystal periphery (Fig. 1(b)): the
crystal top and bottom are assumed to be flat and traction
free, the growth interface is taken to be at the freezing point,
and the heat flux at the crystal top is radially uniform (a
radially uniform heat flux at the cylinder’s top results in a con-
stant axial temperature gradient in the solid which, ignoring
variations in the thermoelastic properties of the matrix with
temperature, does not result in generation of thermal stresses
in the crystal).

The new boundary conditions are:

09/dr=0, u=0 at r=0 (19)

30/0r=q,(z), G, =7, = atr=1 (20)

0=1, G,=%,=0 at z=0 21

36/3z=4qr, G,=%,= atz=1L 22)
Solutions

The locus of thermal boundary conditions resulting in

. generation of stresses smaller than the plasticity limit of the

crystal is obtained, for the geometry defined in the previous
section, through calculation of the maximum allowable heat
fluxes at the crystal periphery, g, (z). Characterization of the
permissible thermal boundary conditions in terms of g, (z), as
opposed to the calculation of allowable axial temperature

~ distribution at the crystal’s surface (7, (z)), is advantageous

for two reasons. First, g,(z) respresents radial temperature
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gradients at the crystal periphery and, thus, is directly related
to thermal stresses in the crystal providing for significant
simplification of the solution methodoly. Second, calculation
of allowable families of T (z) rquires Taylor expansion of
T, (z) to quantify-the nonlinear axial variation of the crystal
surface temperature which significantly increases the complex-
ity of the solution scheme. ]

Thermal stresses in the growing solid are generated by axial
and radial temperature gradients and, ignoring variations of
thermoelastic properties of the crystal with temperature, are
not affected by the absolute levels of temperature in the
crystal. Furthermore, as linear axial temperature gradients do
not generate thermal stresses, the stresses are invariant with
respect to the magnitude of a radially uniform heat flux at the
crystal top, g. Therefore, the temperature distribution re-
quired for the calculation of thermal stresses in the crystal is
obtained by imposing adiabatic boundary conditions at the
solid’s top, gr=0:

TI r) sin (a,2)L
e:l—qu o{e?) (1:1" )S %:12) sin (a,z)dz | (21)
o o 50
11(0(,,) ;
where
_ @n+Dm n=0.1 2
oy =+ =0,1...., (22)
1 L
a==7| a.(2)az, (23
o

and 7; is the modified Bessel function of the first kind of order
i. The temperature distribution in the crystal may be succinctly
written as:
e=I“qsof‘(r,z;L)QS(z)/Q.ro)‘ (24)
Plastic deformation in GaAs is presently considered to be
associated with glide in the {111} < 110> slip system which
has twelve permissible operations. Once the resolved shear
stress in each of the twelve slip systems exceeds a critical value,
the so-called critical resolved shear stress (CRSS), plastic
deformation of the crystal is to be expected. The resolved
shear stress in each of the slip operations, &, is obtained by
projection of the principal stresses onto the appropriate
crystallographic planes and, thus, it is a linear combination of
the principal stresses:
ah=L;(8,, 64,6, 7,) i=1,12, 25)
where L; is the linear operator associated with the ith slip
operation. The thermal stress tensor is obtained by the solu-
tion of the thermoelastic equations in conjunction with the
calculated temperature distribution, equation (24). As the
thermoelastic equations are linear in temperature (for a cons-
tant property system) the resovled shear stress for each slip
direction in the crystal can be written as:

. aET, .
! = T, L;H(©) i=1,12 (26)

In the above H(O) represents the linear operation associated
with the solution of the thermoelastic equations which yields
the thermal stress tensor T. Equation (26) suggests nondimen-
sionalization of the stresses as 0 = /P and P is the property
parameter aET,/(1~»). Using equation (24) and recognizing
that a uniform temperature field does not result in generation
of thermal stresses (H (O =1)=0), equation (26) becomes:

ol = — Qs LiH{f(r,z: L,q4,(2)/q5)}  i=1.12, @7

where ¢ is the azimuthal direction in the radial plane of the
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crystal and reflects the anisotropy of the slip system. Thus, the
resolved shear stress distribution in the crystal is uniquely
defined by the solid’s aspect ratio L, the periphereal heat flux
distribution g, (z), and the property of parameter P.

The maximum allowable heat flux at the crystal periphery,
g} (z), may be calculated by constraining the magnitude of
resolved shear stress in each of the twelve slip operations to be
less than the plasticity limit oy. This large number of con-
straints can be reduced to one by an averaging approximation
whereby the sum of the absolute values of the resolved shear
stresses at each location, oy, is less than 120y:

12
or= E loi | =120y, (28)

i=1

In certain locations in the crystal where the resolved shear
stress exceeds the plasticity limit in some of, but not in all of,
the 12 slip operations, the above averaging approximation
underestimates the actual driving forces for plastic deforma-
tion of the crystal. Therefore, equation (28) will result in the
overestimation of maximum allowable heat fluxes at the
crystal periphery.

In the radial plane the maximum value of ¢+ occurs at the
periphery of the solid (r=1), and (for the <100> growth
direction) at the angle ¢, = nw/2, n=0-3. The requirement
for maintaining the stress levels in the crystal to below the
plasticity limit is satisfied by constraining the maximum
stresses in the radial plane (occuring at r=1, ¢ =0) to be less
that 12¢:

(29)

The heat flux distribution g (z) is related to the plasticity
limit by combining equations (26), (28), and (29):

or(r=1,2,0=0)<120y

q%, =120 /F, (30)

where

12
F= Y ILH{f(rae Ll (/@) et g0 B1)

i=1

Calculation of gF(z) requires quantification of the plasticity
limit. Presently two different types of plasticity limits are con-
sidered: (1) an athermal constraint where at all axial locations
ar(r=1,z, $=0) is restrained to be equal to a constant value,
and (2) a temperature-dependent constraint where o, (7= 1,7,
¢ =0)at each axial location is contained by the local magnitude
of the temperature-dependent plasticity limit. The
temperature-dependent values of CRSS (Jordan, 1980) are
used as the temperature-dependent plasticity limit, and the
minimum values of CRSS (occurring at the melting point of
the matrix) is chosen as the athermal constraints (CRSS values
are nondimensionalized, similar to the stresses, by the proper-
ty parameter P). As CRSS is a decreasing function of
temperature the athermal constraint underestimates the
resistance of the crystal to plastic deformation at locations
away from the growth interface and results in the calculation
of a lower bound to ¢ (z) (denoted as g;* (z) ). The choice of
the two plasticity limits has significant implications for the
practical implementation of the calculated heat fluxes and is
later discussed.

It must be noted that although the presented methodology is
for a plasticity model based on glide in the slip system, any
criterion for nucleation of dislocations which is a linear func-
tion of the principal thermal stresses can be used to arrive at a
formulation similar to equations (30) and (31).

Calculation of ¢;*(z). The heat flux distribution q}* (z)
is obtained by contraining or(r=1,z, ¢=0) at all axial loca-
tions to be equal to ECRSS (Effective CRSS=12CRSS)
evaluated at the freezing point of the matrix:
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or(r=1,¢=0,7)=ECRSS(6=1) vz (32)

As constraint (32) is independent of the temperature distribu-
tion in the crystal it is (similar to the thermal stress distribution

in the crystal) invariant with respect to the magnitude of the’

radially-uniform heat loss at the crystal top (g;). Therefore,
considering equations (30) and (31), ¢}*(z) is, for a given
material, only a function of the crystal’s aspect ratio.

The calculation of g**(z) is achieved by the simultaneous
solution of equations (30) and (31) in conjunction with equa-
tions (21) and (32), where the function F is calculated by the
numerical solution of the thermoelastic equations and the ten-
sor transformations relating resolved shear stresses to the prin-
cipal stresses.

The axial distribution of g**(z) for various aspect ratios of
a GaAs crystal growing in the < 100> direction is presented in
Fig. 2. The results indicate that the influence of the end effects
persists up to approximately one-half of the crystal radius
and, thus, for crystals with aspect ratio of less than two the
growth interface and the cone morphologies control the stress
levels in the crystal. The increase of ¢}*(z) in the direction
towards the growth interface reflects the assumed conditions
of a flat growth interface (00/9r=Xz=0 at z=0), and sug-
gests that if such conditions can be maintained (during
growth) the maximum values of g}*(z) occur close to the
growth interface. In practice, however, as a result of the ther-
mal coupling between the solid and the melt large heat losses
from the crystal surface at z ~ 0 result in a nonplanar growth
morphology and the assumed boundary conditions (planar
solidification interface) can not be sustained. Therefore, the
observed increase in g, * (z) towards z ~ 0 in an artifact of the
assumed boundary conditions and suggests that the accurate
calculation of g}* (z) close to the solidification front requires
incorporation of the growth interface morphology in the
geometric model of the crystal. Towards the crystal top
g;*(z) also increases to a large value. Nevertheless,
qX*(z=L) < g}*(z=0) reflecting the difference in the im-
posed thermal boundary conditions at the solid’s two ends: the
assumed uniform temperature distribution at the crystal bot-
tom results in zero radial temperature gradients and an
associated reduction of local thermal stresses whereas the im-
posed condition of uniform heat flux at the crystal top does
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permit presence of radial thermal gradients (generated by the
peripheral heat losses) in that region. The calculation results
also indicate that, consistent with the imposed constraint of
uniform total resolved shear stress at the crystal periphery,
q*(z) away from the two ends of the crystal is approximately
constant.

Calculation of ¢*(z). The maximum allowable heat flux at
the crystal periphery, ¢*(z), is calculated by requiring
or(r=1,z, =0) at every axial location along the crystal be
equal to ECRSS evaluated at the local temperature:

or(r=1, ¢=0,2) =ECRSS(6(r=1,2)) (33)

The above constraint is directly tied to the absolute levels of
temperature in the crystal and is, therefore, influenced by the
magnitude of heat loss at the crystal top. The temperature
distribution in the solid subject to the thermal boundary con-
ditions of equations (17)~(20) (g = 0) is obtained by the super-
position of a linear axial temperature drop onto equation (21):

b=1-gq,, E I, (a,r) sin (o,2)

n o, L
I n
l(an) 2

L
S q5(z) (34)

o

sin (oc,,z)dz] Sl e

qSO

In order to closely relate the calculations in this work to the
Czochralski growth conditions, the crystal top is taken to
radiate to a black environment at temperature O7%-:

gr=Rn (07— 0}%) (35)
where O, is the average temperature at the crystal top:
1
0,4= SO 04(r,z=L) 2rdr (36)
and
*T3
Rn, =0 1 37)
k.

In equation (37), o¢* is the Stefan-Boltzmann constant and e is
the surface emissivity of the crystal. The heat flux at the
crystal top, equation (35), is, consistent with the thermal
boundary conditions of equation (21), radially uniform. By
considering the parameters which influence the temperature
distribution in the crystal, equation, (30) is reformulated into
the following form:
g5 =BCRSS(O(r=1,2; L,q; (2)/45,,07.Rn)1}/F  (38)

The above indicates that ¢ (z) is parametrically dependent
on, in addition to the crystal aspect ratio L and the property
parameter P (implicit in the ECRSS term), the magnitude of
heat loss for the crystal top.

Calculation of g (z) is achieved by the iterative solution of
equations (31), (34), and (38) in conjunction with the
temperature-dependent plasticity limit for GaAs:

CRSS = [10683+.92/0)]/p (39)

The calculated profiles of ¢ (z) for 3 crystal aspect ratios
of 1, 2, and 4 over a range of O©% are presented in Figs. 3-5.
Beyond the zone of influence of the end effect at the crystal
bottom the magnitude of ¢ (z) increases towards the crystal
top, indicating that as the temperature along the crystal

~decreases (increasing ECRSS) the maximum magnitude of

heat flux that can be removed from the crystal surface while
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maintaining the peripheral stresses at the plasticity limit in-
creases. The increase in g* (z) above its lower bound, ¢.;}* (z),
essentially reflects the temperature dependence of CRSS and is
a function of the environmental temperature that the crystal
top radiates to. It can be readily observed that a reduction in
O% leads to an overall reduction of the crystal temperature
resulting in lower values of ECRSS and g} (z). The reduction
in the rate of increase of g (z) with decreasing values of 9%
reflects the nonlinear dependence of g, on 6% (equation (35))
which asymptotically becomes independent of ©% as 6% — 0.

The relative magntiude of heat loss at the crystal top to that
at the crystal periphery is investigated in Fig. 6, where the ratio

Journal of Applied Mechanics

g 38 & T3 =6

al rr 1 17

3_

z

2 -

1=

O ) A ]

0 0.01 0.02 0.03 0.04

as

Fig. 5 The profiles of q}(z) for a GaAs crystal with L =4 at different
values of 0}
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Fig. 6 The ratio of heat loss from the crystal top to the heat loss from
its periphery for different lengths of GaAs crystal versus 0%

of the heat loss at the crystal top to the peripheral losses, p =
feqr2 rdr/{qr (2)2 dz, is plotted versus O%. The results in-
dicate that during the early stages of growth the primary heat
loss mechanisms from the crystal is from its top. Therefore,
reduction of the temperature to which the crystal top radiates
is an important factor in maximization of total heat loss from
the crystal. Under such conditions the temperature distribu-
tion in the crystal is essentially determined by the magnitude
of heat loss at its top. It must be noted, however, that the axial
variation of the crystal diameter in the cone area results in
generation of temperature gradients and associated thermal
stresses in that region which limits the maximum rate of heat
transfer at the crystal top. At L =1, the centerline temperature
of a crystal radiating to ©%=0.2 exhibits a linear axial varia-
tion (Fig. 7) indicating that the temperature distribution in the
crystal is one-dimensional and determined by the magnitude
of radiative losses at its top. The effect of heat loss at the
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Fig. 8 The axial distribution of qJ(z) for a GaAs crystal at aspect ratios
of 1,2, and 4, 0§ =0.2

crystal periphery on the temperature distribution at L =2 ap-
pears as slight deviations of the centerline temperature from
linearity, and at L=4 the axial variation of the centerline
temperature does not exhibit a linear variation; thus, only as
the crystal length approaches 4 radii the peripheral heat losses
influence the overall temperature distribution in the solid.
During LEC growth of GaAs the crystal top radiates to
temperatures which are significantly higher than 0.2 indicating
that the deviation of the heat transfer in the crystal from quasi
one-dimensional to two-dimensional occurs at crystal lengths
smaller than 4 radii. With increasing crystal length the conduc-
tive path to the crystal top increases and the solid’s
temperature at fixed axial positions increases (Fig. 7),
resulting in the reduction of local values of ECRSS and g, (z).
The axial variations of g (z), plotted for the three crystal
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Fig. 9 Temperature dependence of CRSS for GaAs (Motakef and Witt,
1986)

aspect ratios (at 6%=0.2) in Fig. 8, demonstrate that at fixed
axial positions the magnitude of maximum allowable heat flux
from the crystal surface decreases with increasing crystal
length.

The large calculated values of ¢ (z) (as well as those of
q*(z)) close to the solidification interface is a result of the
assumed planarity of the growth interface. In practice,
however, removal of such large fluxes close to the solidifica-
tion interface can be expected to lead to a concave growth in-
terface and an associated generation of stresses in that region.
Nevertheless, the heat flux from the periphery of the crystal
constitutes a minor portion of the total heat transfer for
crystals with L < 4 (Fig. 7) and for L =4 the heat transfer
from the crystal’s lower one-eighth does not influence the
temperature distribution in the crystal significantly. In order
to investigate the influence of the large calculated fluxes at
z~0 on the temperature distribution in the crystal, and conse-
quently on the magnitude of g (z) beyond z=0 through the
temperature dependance of CRSS, the temperature distribu-
tion in the solid and g (z) were recalculated (for the 3 crystal
aspect ratios of 1, 2, and 4) by constraining the heat flux close
to the growth interface to be a constant value and equal to
0.005 (a representative value of ¢ (z) beyond z=0). The
results indicate that the reduction of heat losses from the
crystal at z~0 does not appreciably alter the temperature
distribution in the crystal and the calculated profiles of g (2)
are essentially unchanged. Therefore, it can be concluded that
the assumed condition of planar growth interface does not in-
fluence the magnitude of calculated maximum allowable heat
fluxes beyond z~0.

Critical Crystal Length

The temperature dependence of CRSS for GaAs, Fig. 9, in-
dicates that CRSS is relatively constant at temperatures close
to the melting point of the matrix and increases exponentially
with decreasing temperature for © < 0.6. Beyond a critical
length of the crystal, L., the temperature of the upper portion
of the solid enters the region of rapid variation of CRSS with

"temperature and, thus, as the crystal length exceeds L, the

calculated magnitude of gF(z), associated with the local
values of CRSS, increases significantly. Such a behavior sug-
gests that beyond L. control of heat transfer from the crystal
is not required and that the growing solid can be safely
allowed to thermally interact with the walls of the growth

" furnace.
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The magnitude of the critical crystal length is determined by
the heat loss at the solid’s periphery and top. As the maximum
allowable heat transfer at the periphery of the crystal (¢.* (z))
is a function of the temperature to which the crystal top
radiates (equation (38)), the critical crystal length is uniquely
determined by ©%. The calculated locus of (L., ©%)) is shown
in Fig. 10 as curve 1. The results indicate that the smallest
critical length is about 4.1 (corresponding to the minimum
value of ©%=0.2) and L, increases with ©% (decreasing heat
transfer at the crystal top).

Radiative cooling of the crystal requires that the average
temperature at the crystal top (©) be larger than the en-
vironmental temperature to which it is radiating (©%).
Therefore, the envionmental temperature 6% must be always
smaller than the value of 6 calculated for a crystal with an
adiabatic top and experiencing a heat transfer rate of g* (z) at
its periphery. The locus of (L,0%) associated with the
calculated profiles of g (z) is shown as curve ITin Fig. 10. As
L — 6 curves I and /I intersect indicating that the crystal has
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reached such a length that with no heat transfer at its top (0%
= Oy) it is sufficiently cooled so that there are no upper limits
on the heat transfer from its periphery. The region bounded
by curves I, IT and the two axes (region 1 in Fig.10) is the locus
of L — 0% where the reduction of the stress levels in the crystal
requires control of heat transfer at the solid’s periphery. The
region to the right of curve I and below curved I7 (region 2 in
Fig. 13) respresent the locus of L — O} where the heat transfer
from the crystal does not need to be controlled. For example,
at an environmental temperature of ©%=0.5 control of heat
transfer at the crystal periphery must be maintained only for
the first 5 radii of the crystal; as the crystal aspect ratio ex-
ceeds 5 the growing solid may be safely allowed to interact
with the environment at any temperature. In the region curve
IT (region 3 in Fig. 10) the crystal is radiatively heated by the
environment (0% >O6;) and is, therefore, in a nonoptimal
region of operation.

Regions of Operation

During growth of semiconductor crystals, maximization of
total heat transfer from the crystal surface, subject to the ther-
mal stress constraints, is advantageous from the point of view
of increased growth rate as well as decreased interaction and
clustering of point defects through reduction of the time-
temperature integral of the growing matrix. Therefore, the
heat flux distribution at the crystal periphery must be main-
tained at the-calculated values of ¢.f (z) and dynamically con-
trolled as the crystal length increases. However, during growth
the establishment and dynamic control of such distributions
may be impractical and deviations from the prescribed profiles
of g*(z) appear unavoidable. In this section the effect of
deviations from the calculated profiles of ¢*(z) on thermal
stresses in the crystal will be investigated.

For a crystal subject to some heat flux distribution (g, (z))
at its periphery, the two heat flux distributions ¢F(z) and
g}*(z) define, for each value of L and 0%, three possible
regions of operation, (Fig. 11):

Region I; 0<g,(2)<g¢/* ()
Region II:  q**(z)<q,(z)<q}(z)
Region III: g (2) <¢,(z)

The first two regions define the families of allowable heat flux
distributions and operation in the third region must be
avoided. The heat flux distribution ¢ (z) is calculated using a
temperature-dependent plasticity limit (i.e., local values of
CRSS) and, therefore, its values at any axial location along the
crystal is dependent on the temperature distribution in the
solid, and consequently on the entire axial profile of ¢ (z).
Thus, an imposed heat flux distribution in region II which
deviates from the calculated profile of g (z) will result in a
higher temperature and lower CRSS distribution in the crystal
than the one associated with ¢ (z), and the plasticity limit in
the crystal may be reduced to below the prevailing stress levels
in the crystal resulting in generation of dislocations. In this
context, the hypothetical distribution g?(z) located in region
II of Fig. 11 (which is smaller than g} (z) close to the
solidification interface and approaches it towards the crystal
top) results in a temperature distribution in the crystal which
at all locations is higher than the one associated with ¢} (z),
leading to lower values of ECRSS throughout the solid; close
to the crystal top as gf (z) approaches g (z), the generated
thermal stresses exceed the local values of ECRSS. On the
other hand, the heat flux distribution g}*(z) is calculated
subject to an athermal plasticity limit (CRSS evaluated at the
melting point of the matrix) and is invariant with respect to the
absolute levels of temperature in the crystal. Stresses
generated in a crystal experiencing any heat flux distribution
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less than g**(z) (i.e., located in region I, such as ¢ (z) in
Fig. 11) are everywhere smaller than the local plasticity limit.
Hence, a significant distinction between operation in regions I
and II exists: in region I any heat flux distribution can be safe-
ly removed from the crystal surface, whereas operation in
region II is contingent on the availability of the necessary con-
trol hardware to closely emulate the calculated axial variations
of g}(z). The complete definition of the characteristics of
allowable families of g, (z) in region II, where the total heat
transfer from the crystal is not maximized but the stress levels
are maintained below the plasticity limit, is complicated by the
nonlinear dependence of CRSS on temperature. However, as a
broad guideline it may be noted that a heat flux distribution
that is lower than g * (z) over some length of the crystal cannot
be equal to it at other axial locations.

Discussion

The present study provides the dynamic conditions
necessary for inhibition of plastic deformation in crystals with
the {111} <110> slip system in general and GaAs in par-
ticular from after shouldering to the critical crystal length,
beyond which control of heat transfer from the growing solid
is not required. Results indicate that the morphologies of the
cone, during the early stages of growth, and the solidification
front, at all stages of growth, strongly influence the crystalline
quality of the growing solid. Thus, reduction of the
temperature gradients associated with the nonplanarity of the
growth interface appears as a primary control objective; iden-
tification of the optimum cone geometry cannot be, however,
readily deduced from the present analysis. In this context it
must be noted that in the early stages of growth the cone in-
fluences, through controlling the radial distribution of heat
transfer from the crystal top, the morphology of the growth
interface. Furthermore, whereas results of the thermoelastic
analysis of Szabo (Szabo, 1985), conducted for a crystal with a
planar growth interface, suggest that the tendency for plastic
deformation at the early stages of growth (z < 0.2) are largest
at the crystal centerline and not at its periphery, the observed
nonplanar geometry of the solidification interface in grown
crystals indicates that identification of the mechanisth of
dislocation generation and the necessary conditions for
minimization of stresses in this region require calculation of
the growth interface morphology. Therefore, complete
characterization of the optimum thermal environment for
Czochralski growth of dislocation-free crystals mandates
development of a macroscopic thermal model of the growth
furnace, whereby accurate calculation of the heat transfer
from the crystal cone and the shape of the solid-liquid inter-
face can be achieved (Motakef, 1987b).

During growth, heat transfer from the crystal surface and
top is controlled by the thermal coupling of the crystal
(radiative in low pressure systems and radiative and convective
in high pressure systems) to the crucible, encapsulant and melt
surfaces, and the furnace walls. In conventional growth fur-
naces three primary controllers are available: (§) the crystal
pull rate, (i) the power input to the heater, and (iii) the loca-
tion of the crucible containing the charge inside the heater. Of
these the last two may be adjusted to control the ‘‘en-
vironmental’’ temperature distribution of the crystal, and the
first to control the crystal radius during growth. Calculation
of the required dynamic control trajectory of the crucible posi-
tion and the heater power to insure operation in regions 1 or 2
of Fig. 11 is complicated by the transient (batch) nature of the
growth process, the physical complexity of the growth fur-
nace, and the need for accurate quantification of the evolution
(during growth) of thermophysical properties such as the
emissivity of the interacting surfaces, and transparency of the
liquid encapsulant to infrared radiation. There are no indica-
tions at present to suggest that dynamic control of heater
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power and crucible position is sufficient to provide for control
of thermal stresses at below the plasticity limit of the matrix:
as of yet such a parameter space has not been empirically iden-
tified and modelling results (Motakef, 1987b) suggest that the
optimum thermal conditions cannot be achieved by the adjust-
ment of heater power. Elimination of the transient
characteristics of the growth environment and the thermal
coupling of the crystal with its environment can be achieved by
isolation of the crystal from the crucible and furnace walls
through installation of a coaxial heat exchange system around
the growing solid. The calculation results indicate that the
temperature distribution of the inner surface of such a system
must be dynamically controlled with increasing crystal length.
Furthermore, in addition to controlling the heat transfer from
the crystal periphery, heat losses from the crystal top must be
enhanced. In this context use of conical heat-reflectors, placed
on top of the crystal, is not an optimal approach, for the heat
transfer from both the side and top of the crystal is reduced.
The calculated narrow operating range suggests that use of
heat reflectors or uniform-temperature after heaters cannot
provide the required spatial and temporal controllability of
the growth process, and new approaches to heat transfer con-
trol during LEC growth of GaAs must be considered.

The reported thermoelastic analysis of GaAs in the
literature [Jordan et al., 1980, 1984; Kobayahsi and Iwaki,
1985; and Szabo, 1985) are based on characterization of the
growth furnace with a uniform Biot number and/or uniform
temperature. Whereas such studies do provide qualitatively
correct indications of the extent of the plastic deformation
driving forces, protraction of such results to the calculation of
thermal conditions necessary for inhibition of slip in the grow-
ing crystal requires more accurate thermal characterization of
the growth furnace. For example, Jordan at al. (1984) have
calculated a uniform environmental temperature distribution
which would result in inhibition of plastic deformation of the
growing GaAs crystal. These results are based on models of
heat tranfer mechanisms from the crystal to its environment (a
uniform environmental temperature, thermally transparent
encapasulant, and grossly inaccurate natural convection heat
transfer from the crystal to the encapsulant) which have been
shown to be incorret (Motakef and Witt, 1987; Motakef,
1987a; Ostogorsky, 1987). Calculation of an ‘‘environmental
temperature’’ based on the present results of maximum
allowable heat transfer rates requires quantification of the
thermal coupling between the crystal and the so-called “‘en-
vironment”’ which, considering the complex geometry of the
growth system and the transient nature of the growth process,
cannot be readily identified.

The present results are based on an averaging approxima-
tion of the resolved shear stresses in the growing solid which
overestimates the maximum allowable heat transfer rates at
the crystal periphery. An alternative approach to calculation
of g (z) and g;** (z) is to restrict the maximum resolved shear
stress at each location to be smaller than the plasticity limit.
Extension of the present study to an analysis based on this
criterion is in progress.

This analysis is based on the currently accepted, but as of
yet unquantified, relationship between excess stress, onset of
plastic deformation, and dislocation generation in GaAs.
Although the methodology developed in this paper is not
restricted to glide in the slip system and can be extended to

other plastic deformation mechanisms, the calculated values
“of maximum allowable heat fluxes at the crystal periphery are

based on the magnitudes of CRSS and other thermophysical
properties cited in the literature. Therefore, further investiga-
tions into the mechanisms of dislocation generation in GaAs is
essential for enhanced interaction between experimental and
modelling efforts aimed at improvement of the LEC growth
process.
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